Δύο γὰρ ἀριθμοὶ οἱ Α, Β πρὸς ἀλλήλους λόγον ἐχέτωσαν, ὃν τετράγωνος ἀριθμὸς ὁ Γ πρὸς τετράγωνον ἀριθμὸν τὸν Δ, ὁ δὲ Α τετράγωνος ἔστω· λέγω, ὅτι καὶ ὁ Β τετράγωνός ἐστιν.
Ἐπεὶ γὰρ οἱ Γ, Δ τετράγωνοί εἰσιν, οἱ Γ, Δ ἄρα ὅμοιοι ἐπίπεδοί εἰσιν. τῶν Γ, Δ ἄρα εἷς μέσος ἀνάλογον ἐμπίπτει ἀριθμός. καί ἐστιν ὡς ὁ Γ πρὸς τὸν Δ, ὁ Α πρὸς τὸν Β· καὶ τῶν Α, Β ἄρα εἷς μέσος ἀνάλογον ἐμπίπτει ἀριθμός. καί ἐστιν ὁ Α τετράγωνος· καὶ ὁ Β ἄρα τετράγωνός ἐστιν· ὅπερ ἔδει δεῖξαι.