Πενταγώνου γὰρ ἰσοπλεύρου καὶ ἰσογωνίου τοῦ ΑΒΓ ΔΕ δύο γωνίας τὰς κατὰ τὸ ἑξῆς τὰς πρὸς τοῖς Α, Β ὑποτεινέτωσαν εὐθεῖαι αἱ ΑΓ, ΒΕ τέμνουσαι ἀλλήλας κατὰ τὸ Θ σημεῖον· λέγω, ὅτι ἑκατέρα αὐτῶν ἄκρον καὶ μέσον λόγον τέτμηται κατὰ τὸ Θ σημεῖον, καὶ τὰ μείζονα αὐτῶν τμήματα ἴσα ἐστὶ τῇ τοῦ πενταγώνου πλευρᾷ.
Περιγεγράφθω γὰρ περὶ τὸ ΑΒΓΔΕ πεντάγωνον κύκλος ὁ ΑΒΓΔΕ. καὶ ἐπεὶ δύο εὐθεῖαι αἱ ΕΑ, ΑΒ δυσὶ ταῖς ΑΒ, ΒΓ ἴσαι εἰσὶ καὶ γωνίας ἴσας περιέχουσιν, βάσις ἄρα ἡ ΒΕ βάσει τῇ ΑΓ ἴση ἐστίν, καὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΒΓ τριγώνῳ ἴσον ἐστίν, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ᾿ ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν. ἴση ἄρα ἐστὶν ἡ ὑπὸ ΒΑΓ γωνία τῇ ὑπὸ ΑΒΕ· διπλῆ ἄρα ἡ ὑπὸ ΑΘΕ τῆς ὑπὸ ΒΑΘ. ἔστι δὲ καὶ ἡ ὑπὸ ΕΑΓ τῆς ὑπὸ ΒΑΓ διπλῆ, ἐπειδήπερ καὶ περιφέρεια ἡ ΕΔΓ περιφερείας τῆς ΓΒ ἐστι διπλῆ· ἴση ἄρα ἡ ὑπὸ ΘΑΕ γωνία τῇ ὑπὸ ΑΘΕ· ὥστε καὶ ἡ ΘΕ εὐθεῖα τῇ ΕΑ, τουτέστι τῇ ΑΒ ἐστιν ἴση.
καὶ ἐπεὶ ἴση ἐστὶν ἡ ΒΑ εὐθεῖα τῇ ΑΕ, ἴση ἐστὶ καὶ γωνία ἡ ὑπὸ ΑΒΕ τῇ ὑπὸ ΑΕΒ. ἀλλὰ ἡ ὑπὸ ΑΒΕ τῇ ὑπὸ ΒΑΘ ἐδείχθη ἴση· καὶ ἡ ὑπὸ ΒΕΑ ἄρα τῇ ὑπὸ ΒΑΘ ἐστιν ἴση. καὶ κοινὴ τῶν δύο τριγώνων τοῦ τε ΑΒΕ καὶ τοῦ ΑΒΘ ἐστιν ἡ ὑπὸ ΑΒΕ· λοιπὴ ἄρα ἡ ὑπὸ ΒΑΕ γωνία λοιπῇ τῇ ὑπὸ ΑΘΒ ἐστιν ἴση· ἰσογώνιον ἄρα ἐστὶ τὸ ΑΒΕ τρίγωνον τῷ ΑΒΘ τριγώνῳ· ἀνάλογον ἄρα ἐστὶν ὡς ἡ ΕΒ πρὸς τὴν ΒΑ, οὕτως ἡ ΑΒ πρὸς τὴν ΒΘ. ἴση δὲ ἡ ΒΑ τῇ ΕΘ· ὡς ἄρα ἡ ΒΕ πρὸς τὴν ΕΘ, οὕτως ἡ ΕΘ πρὸς τὴν ΘΒ. μείζων δὲ ἡ ΒΕ τῆς ΕΘ· μείζων ἄρα καὶ ἡ ΕΘ τῆς ΘΒ. ἡ ΒΕ ἄρα ἄκρον καὶ μέσον λόγον τέτμηται κατὰ τὸ Θ, καὶ τὸ μεῖζον τμῆμα τὸ ΘΕ ἴσον ἐστὶ τῇ τοῦ πενταγώνου πλευρᾷ. ὁμοίως δὴ δείξομεν, ὅτι καὶ ἡ ΑΓ ἄκρον καὶ μέσον λόγον τέτμηται κατὰ τὸ Θ, καὶ τὸ μεῖζον αὐτῆς τμῆμα ἡ ΓΘ ἴσον ἐστὶ τῇ τοῦ πενταγώνου πλευρᾷ· ὅπερ ἔδει δεῖξαι.