Στοιχεῖα Εὐκλείδου γ΄
[Βιβλίον III]
Ὅροι ια΄ [11].
α΄ [1]. Ἴσοι κύκλοι εἰσίν, ὧν αἱ διάμετροι ἴσαι εἰσίν, ἢ ὧν αἱ ἐκ τῶν κέντρων ἴσαι εἰσίν.
β΄ [2]. Εὐθεῖα κύκλου ἐφάπτεσθαι λέγεται, ἥτις ἁπτομένη τοῦ κύκλου καὶ ἐκβαλλομένη οὐ τέμνει τὸν κύκλον.
γ΄ [3]. Κύκλοι ἐφάπτεσθαι ἀλλήλων λέγονται οἵτινες ἁπτόμενοι ἀλλήλων οὐ τέμνουσιν ἀλλήλους.
δ΄ [4]. Ἐν κύκλῳ ἴσον ἀπέχειν ἀπὸ τοῦ κέντρου εὐθεῖαι λέγονται, ὅταν αἱ ἀπὸ τοῦ κέντρου ἐπ᾿ αὐτὰς κάθετοι ἀγόμεναι ἴσαι ὦσιν.
ε΄ [5]. Μεῖζον δὲ ἀπέχειν λέγεται, ἐφ' ἣν ἡ μείζων κάθετος πίπτει.
ς΄ [6]. Τμῆμα κύκλου ἐστὶ τὸ περιεχόμενον σχῆμα ὑπό τε εὐθείας καὶ κύκλου περιφερείας.
ζ΄ [7]. Τμήματος δὲ γωνία ἐστὶν ἡ περιεχομένη ὑπό τε εὐθείας καὶ κύκλου περιφερείας.
η΄ [8]. Ἐν τμήματι δὲ γωνία ἐστίν, ὅταν ἐπὶ τῆς περιφερείας τοῦ τμήματος ληφθῇ τι σημεῖον καὶ ἀπ' αὐτοῦ ἐπὶ τὰ πέρατα τῆς εὐθείας, ἥ ἐστι βάσις τοῦ τμήματος, ἐπιζευχθῶσιν εὐθεῖαι, ἡ περιεχομένη γωνία ὑπὸ τῶν ἐπιζευχθεισῶν εὐθειῶν.
θ΄ [9]. Ὅταν δὲ αἱ περιέχουσαι τὴν γωνίαν εὐθεῖαι ἀπολαμβάνωσί τινα περιφέρειαν, ἐπ᾿ ἐκείνης λέγεται βεβηκέναι ἡ γωνία.
ι΄ [10]. Τομεὺς δὲ κύκλου ἐστίν, ὅταν πρὸς τῷ κέντρῳ τοῦ κύκλου συσταθῇ γωνία, τὸ περιεχόμενον σχῆμα ὑπό τε τῶν τὴν γωνίαν περιεχουσῶν εὐθειῶν καὶ τῆς ἀπολαμβανομένης ὑπ' αὐτῶν περιφερείας.
ια΄ [11]. Ὅμοια τμήματα κύκλων ἐστὶ τὰ δεχόμενα γωνίας ἴσας, ἢ ἐν οἷς αἱ γωνίαι ἴσαι ἀλλήλαις εἰσίν.
Προτάσεις λζ΄ [37]
α΄ [1]
Τοῦ δοθέντος κύκλου τὸ κέντρον εὑρεῖν.
β΄ [2]
Ἐὰν κύκλου ἐπὶ τῆς περιφερείας ληφθῇ δύο τυχόντα σημεῖα, ἡ ἐπὶ τὰ σημεῖα ἐπιζευγνυμένη εὐθεῖα ἐντὸς πεσεῖται τοῦ κύκλου.
γ΄ [3]
Ἐὰν ἐν κύκλῳ εὐθεῖά τις διὰ τοῦ κέντρου εὐθεῖάν τινα μὴ διὰ τοῦ κέντρου δίχα τέμνῃ, καὶ πρὸς ὀρθὰς αὐτὴν τέμνει· καὶ ἐὰν πρὸς ὀρθὰς αὐτὴν τέμνῃ, καὶ δίχα αὐτὴν τέμνει.
δ΄ [4]
Ἐὰν ἐν κύκλῳ δύο εὐθεῖαι τέμνωσιν ἀλλήλας μὴ διὰ τοῦ κέντρου οὖσαι, οὐ τέμνουσιν ἀλλήλας δίχα.
ε΄ [5]
Ἐὰν δύο κύκλοι τέμνωσιν ἀλλήλους, οὐκ ἔσται αὐτῶν τὸ αὐτὸ κέντρον.
ς΄ [6]
Ἐὰν δύο κύκλοι ἐφάπτωνται ἀλλήλων, οὐκ ἔσται αὐτῶν τὸ αὐτὸ κέντρον.
ζ΄ [7]
Ἐὰν κύκλου ἐπὶ τῆς διαμέτρου ληφθῇ τι σημεῖον, ὃ μή ἐστι κέντρον τοῦ κύκλου, ἀπὸ δὲ τοῦ σημείου πρὸς τὸν κύκλον προσπίπτωσιν εὐθεῖαί τινες, μεγίστη μὲν ἔσται, ἐφ' ἧς τὸ κέντρον, ἐλαχίστη δὲ ἡ λοιπή, τῶν δὲ ἄλλων ἀεὶ ἡ ἔγγιον τῆς διὰ τοῦ κέντρου τῆς ἀπώτερον μείζων ἐστίν, δύο δὲ μόνον ἴσαι ἀπὸ τοῦ σημείου προσπεσοῦνται πρὸς τὸν κύκλον ἐφ' ἑκάτερα τῆς ἐλαχίστης.
η΄ [8]
Ἐὰν κύκλου ληφθῇ τι σημεῖον ἐκτός, ἀπὸ δὲ τοῦ σημείου πρὸς τὸν κύκλον διαχθῶσιν εὐθεῖαί τινες, ὧν μία μὲν διὰ τοῦ κέντρου, αἱ δὲ λοιπαί, ὡς ἔτυχεν, τῶν μὲν πρὸς τὴν κοίλην περιφέρειαν προσπιπτουσῶν εὐθειῶν μεγίστη μέν ἐστιν ἡ διὰ τοῦ κέντρου, τῶν δὲ ἄλλων ἀεὶ ἡ ἔγγιον τῆς διὰ τοῦ κέντρου τῆς ἀπώτερον μείζων ἐστίν, τῶν δὲ πρὸς τὴν κυρτὴν περιφέρειαν προσπιπτουσῶν εὐθειῶν ἐλαχίστη μέν ἐστιν ἡ μεταξὺ τοῦ τε σημείου καὶ τῆς διαμέτρου, τῶν δὲ ἄλλων ἀεὶ ἡ ἔγγιον τῆς ἐλαχίστης τῆς ἀπώτερόν ἐστιν ἐλάττων, δύο δὲ μόνον ἴσαι ἀπὸ τοῦ σημείου προσπεσοῦνται πρὸς τὸν κύκλον ἐφ' ἑκάτερα τῆς ἐλαχίστης.
θ΄ [9]
Ἐὰν κύκλου ληφθῇ τι σημεῖον ἐντός, ἀπὸ δὲ τοῦ σημείου πρὸς τὸν κύκλον προσπίπτωσι πλείους ἢ δύο ἴσαι εὐθεῖαι, τὸ ληφθὲν σημεῖον κέντρον ἐστὶ τοῦ κύκλου.
ι΄ [10]
Κύκλος κύκλον οὐ τέμνει κατὰ πλείονα σημεῖα ἢ δύο.
ια΄ [11]
Ἐὰν δύο κύκλοι ἐφάπτωνται ἀλλήλων ἐντός, καὶ ληφθῇ αὐτῶν τὰ κέντρα, ἡ ἐπὶ τὰ κέντρα αὐτῶν ἐπιζευγνυμένη εὐθεῖα καὶ ἐκβαλλομένη ἐπὶ τὴν συναφὴν πεσεῖται τῶν κύκλων.
ιβ΄ [12]
Ἐὰν δύο κύκλοι ἐφάπτωνται ἀλλήλων ἐκτός, ἡ ἐπὶ τὰ κέντρα αὐτῶν ἐπιζευγνυμένη διὰ τῆς ἐπαφῆς ἐλεύσεται.
ιγ΄ [13]
Κύκλος κύκλου οὐκ ἐφάπτεται κατὰ πλείονα σημεῖα ἢ καθ᾿ ἕν, ἐάν τε ἐντὸς ἐάν τε ἐκτὸς ἐφάπτηται.
ιδ΄ [14]
Ἐν κύκλῳ αἱ ἴσαι εὐθεῖαι ἴσον ἀπέχουσιν ἀπὸ τοῦ κέντρου, καὶ αἱ ἴσον ἀπέχουσαι ἀπὸ τοῦ κέντρου ἴσαι ἀλλήλαις εἰσίν.
ιε΄ [15]
Ἐν κύκλῳ μεγίστη μὲν ἡ διάμετρος τῶν δὲ ἄλλων ἀεὶ ἡ ἔγγιον τοῦ κέντρου τῆς ἀπώτερον μείζων ἐστίν.
ις΄ [16]
Ἡ τῇ διαμέτρῳ τοῦ κύκλου πρὸς ὀρθὰς ἀπ' ἄκρας ἀγομένη ἐκτὸς πεσεῖται τοῦ κύκλου, καὶ εἰς τὸν μεταξὺ τόπον τῆς τε εὐθείας καὶ τῆς περιφερείας ἑτέρα εὐθεῖα οὐ παρεμπεσεῖται, καὶ ἡ μὲν τοῦ ἡμικυκλίου γωνία ἁπάσης γωνίας ὀξείας εὐθυγράμμου μείζων ἐστίν, ἡ δὲ λοιπὴ ἐλάττων.
ιζ΄ [17]
Ἀπὸ τοῦ δοθέντος σημείου τοῦ δοθέντος κύκλου ἐφαπτομένην εὐθεῖαν γραμμὴν ἀγαγεῖν.
ιη΄ [18]
Ἐὰν κύκλου ἐφάπτηταί τις εὐθεῖα, ἀπὸ δὲ τοῦ κέντρου ἐπὶ τὴν ἁφὴν ἐπιζευχθῇ τις εὐθεῖα, ἡ ἐπιζευχθεῖσα κάθετος ἔσται ἐπὶ τὴν ἐφαπτομένην.
ιθ΄ [19]
Ἐὰν κύκλου ἐφάπτηταί τις εὐθεῖα, ἀπὸ δὲ τῆς ἁφῆς τῇ ἐφαπτομένῃ πρὸς ὀρθὰς [γωνίας] εὐθεῖα γραμμὴ ἀχθῇ, ἐπὶ τῆς ἀχθείσης ἔσται τὸ κέντρον τοῦ κύκλου.
κ΄ [20]
Ἐν κύκλῳ ἡ πρὸς τῷ κέντρῳ γωνία διπλασίων ἐστὶ τῆς πρὸς τῇ περιφερείᾳ, ὅταν τὴν αὐτὴν περιφέρειαν βάσιν ἔχωσιν αἱ γωνίαι..
κα΄ [21]
Ἐν κύκλῳ αἱ ἐν τῷ αὐτῷ τμήματι γωνίαι ἴσαι ἀλλήλαις εἰσίν.
κβ΄ [22]
Τῶν ἐν τοῖς κύκλοις τετραπλεύρων αἱ ἀπεναντίον γωνίαι δυσὶν ὀρθαῖς ἴσαι εἰσίν.
κγ΄ [23]
Ἐπὶ τῆς αὐτῆς εὐθείας δύο τμήματα κύκλων ὅμοια καὶ ἄνισα οὐ συσταθήσεται ἐπὶ τὰ αὐτὰ μέρη.
κδ΄ [24]
Τὰ ἐπὶ ἴσων εὐθειῶν ὅμοια τμήματα κύκλων ἴσα ἀλλήλοις ἐστίν.
κε΄ [25]
Κύκλου τμήματος δοθέντος προσαναγράψαι τὸν κύκλον, οὗπέρ ἐστι τμῆμα.
κς΄ [26]
Ἐν τοῖς ἴσοις κύκλοις αἱ ἴσαι γωνίαι ἐπὶ ἴσων περιφερειῶν βεβήκασιν, ἐάν τε πρὸς τοῖς κέντροις ἐάν τε πρὸς ταῖς περιφερείαις ὦσι βεβηκυῖαι.
κζ΄ [27]
Ἐν τοῖς ἴσοις κύκλοις αἱ ἐπὶ ἴσων περιφερειῶν βεβηκυῖαι γωνίαι ἴσαι ἀλλήλαις εἰσίν, ἐάν τε πρὸς τοῖς κέντροις ἐάν τε πρὸς ταῖς περιφερείαις ὦσι βεβηκυῖαι.
κη΄ [28]
Ἐν τοῖς ἴσοις κύκλοις αἱ ἴσαι εὐθεῖαι ἴσας περιφερείας ἀφαιροῦσι τὴν μὲν μείζονα τῇ μείζονι τὴν δὲ ἐλάττονα τῇ ἐλάττονι.
κθ΄ [29]
Ἐν τοῖς ἴσοις κύκλοις τὰς ἴσας περιφερείας ἴσαι εὐθεῖαι ὑποτείνουσιν.
λ΄ [30]
Ἐν τοῖς ἴσοις κύκλοις τὰς ἴσας περιφερείας ἴσαι εὐθεῖαι ὑποτείνουσιν.
λα΄ [31]
Ἐν κύκλῳ ἡ μὲν ἐν τῷ ἡμικυκλίῳ γωνία ὀρθή ἐστιν, ἡ δὲ ἐν τῷ μείζονι τμήματι ἐλάττων ὀρθῆς, ἡ δὲ ἐν τῷ ἐλάττονι τμήματι μείζων ὀρθῆς· καὶ ἔτι ἡ μὲν τοῦ μείζονος τμήματος γωνία μείζων ἐστὶν ὀρθῆς, ἡ δὲ τοῦ ἐλάττονος τμήματος γωνία ἐλάττων ὀρθῆς.
λβ΄ [32]
Ἐὰν κύκλου ἐφάπτηταί τις εὐθεῖα, ἀπὸ δὲ τῆς ἁφῆς εἰς τὸν κύκλον διαχθῇ τις εὐθεῖα τέμνουσα τὸν κύκλον, ἃς ποιεῖ γωνίας πρὸς τῇ ἐφαπτομένῃ, ἴσαι ἔσονται ταῖς ἐν τοῖς ἐναλλὰξ τοῦ κύκλου τμήμασι γωνίαις.
λγ΄ [33]
Ἐπὶ τῆς δοθείσης εὐθείας γράψαι τμῆμα κύκλου δεχόμενον γωνίαν ἴσην τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ.
λδ΄ [34]
Ἀπὸ τοῦ δοθέντος κύκλου τμῆμα ἀφελεῖν δεχόμενον γωνίαν ἴσην τῇ δοθείσῃ γωνίᾳ εὐθυγράμμῳ.
λε΄ [35]
Ἐὰν ἐν κύκλῳ δύο εὐθεῖαι τέμνωσιν ἀλλήλας, τὸ ὑπὸ τῶν τῆς μιᾶς τμημάτων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ὑπὸ τῶν τῆς ἑτέρας τμημάτων περιεχομένῳ ὀρθογωνίῳ.
λς΄ [36]
Ἐὰν κύκλου ληφθῇ τι σημεῖον ἐκτός, καὶ ἀπ' αὐτοῦ πρὸς τὸν κύκλον προσπίπτωσι δύο εὐθεῖαι, καὶ ἡ μὲν αὐτῶν τέμνῃ τὸν κύκλον, ἡ δὲ ἐφάπτηται, ἔσται τὸ ὑπὸ ὅλης τῆς τεμνούσης καὶ τῆς ἐκτὸς ἀπολαμβανομένης μεταξὺ τοῦ τε σημείου καὶ τῆς κυρτῆς περιφερείας ἴσον τῷ ἀπὸ τῆς ἐφαπτομένης τετραγώνῳ.
λζ΄ [37]
Ἐὰν κύκλου ληφθῇ τι σημεῖον ἐκτός, ἀπὸ δὲ τοῦ σημείου πρὸς τὸν κύκλον προσπίπτωσι δύο εὐθεῖαι, καὶ ἡ μὲν αὐτῶν τέμνῃ τὸν κύκλον, ἡ δὲ προσπίπτῃ, ᾖ δὲ τὸ ὑπὸ [τῆς] ὅλης τῆς τεμνούσης καὶ τῆς ἐκτὸς ἀπολαμβανομένης μεταξὺ τοῦ τε σημείου καὶ τῆς κυρτῆς περιφερείας ἴσον τῷ ἀπὸ τῆς προσπιπτούσης, ἡ προσπίπτουσα ἐφάψεται τοῦ κύκλου.