Δύο γὰρ [ἀνίσων] ἀριθμῶν τῶν ΑΒ, ΓΔ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος ὁ λειπόμενος μηδέποτε καταμετρείτω τὸν πρὸ ἑαυτοῦ, ἕως οὗ λειφθῇ μονάς· λέγω, ὅτι οἱ ΑΒ, ΓΔ πρῶτοι πρὸς ἀλλήλους εἰσίν, τουτέστιν ὅτι τοὺς ΑΒ, ΓΔ μονὰς μόνη μετρεῖ.
Εἰ γὰρ μή εἰσιν οἱ ΑΒ, ΓΔ πρῶτοι πρὸς ἀλλήλους, μετρήσει τις αὐτοὺς ἀριθμός. μετρείτω, καὶ ἔστω ὁ Ε· καὶ ὁ μὲν ΓΔ τὸν ΒΖ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΖΑ, ὁ δὲ ΑΖ τὸν ΔΗ μετρῶν λειπέτω ἑαυτοῦ ἐλάσσονα τὸν ΗΓ, ὁ δὲ ΗΓ τὸν ΖΘ μετρῶν λειπέτω μονάδα τὴν ΘΑ.
Ἐπεὶ οὖν ὁ Ε τὸν ΓΔ μετρεῖ, ὁ δὲ ΓΔ τὸν ΒΖ μετρεῖ καὶ ὁ Ε ἄρα τὸν ΒΖ μετρεῖ· μετρεῖ δὲ καὶ ὅλον τὸν ΒΑ· καὶ λοιπὸν ἄρα τὸν ΑΖ μετρήσει. ὁ δὲ ΑΖ τὸν ΔΗ μετρεῖ· καὶ ὁ Ε ἄρα τὸν ΔΗ μετρεῖ· μετρεῖ δὲ καὶ ὅλον τὸν ΔΓ· καὶ λοιπὸν ἄρα τὸν ΓΗ μετρήσει. ὁ δὲ ΓΗ τὸν ΖΘ μετρεῖ· καὶ ὁ Ε ἄρα τὸν ΖΘ μετρεῖ· μετρεῖ δὲ καὶ ὅλον τὸν ΖΑ· καὶ λοιπὴν ἄρα τὴν ΑΘ μονάδα μετρήσει ἀριθμὸς ὤν· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα τοὺς ΑΒ, ΓΔ ἀριθμοὺς μετρήσει τις ἀριθμός· οἱ ΑΒ, ΓΔ ἄρα πρῶτοι πρὸς ἀλλήλους εἰσίν· ὅπερ ἔδει δεῖξαι.