α΄ [1]. Σημεῖόν ἐστιν, οὗ μέρος οὐθέν.
β΄ [2]. Γραμμὴ δὲ μῆκος ἀπλατές.
γ΄ [3]. Γραμμῆς δὲ πέρατα σημεῖα.
δ΄ [4]. Εὐθεῖα γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐφ' ἑαυτῆς σημείοις κεῖται.
ε΄ [5]. Ἐπιφάνεια δέ ἐστιν, ὃ μῆκος καὶ πλάτος μόνον ἔχει.
ς΄ [6]. Ἐπιφανείας δὲ πέρατα γραμμαί.
ζ΄ [7]. Ἐπίπεδος ἐπιφάνειά ἐστιν, ἥτις ἐξ ἴσου ταῖς ἐφ' ἑαυτῆς εὐθείαις κεῖται.
η΄ [8]. Ἐπίπεδος δὲ γωνία ἐστὶν ἡ ἐν ἐπιπέδῳ δύο γραμμῶν ἁπτομένων ἀλλήλων καὶ μὴ ἐπ᾿ εὐθείας κειμένων πρὸς ἀλλήλας τῶν γραμμῶν κλίσις.
θ΄ [9]. Ὅταν δὲ αἱ περιέχουσαι τὴν γωνίαν γραμμαὶ εὐθεῖαι ὦσιν, εὐθύγραμμος καλεῖται ἡ γωνία.
ι΄ [10]. Ὅταν δὲ εὐθεῖα ἐπ᾿ εὐθεῖαν σταθεῖσα τὰς ἐφεξῆς γωνίας ἴσας ἀλλήλαις ποιῇ, ὀρθὴ ἑκατέρα τῶν ἴσων γωνιῶν ἐστι, καὶ ἡ ἐφεστηκυῖα εὐθεῖα κάθετος καλεῖται, ἐφ' ἣν ἐφέστηκεν.
ια΄ [11]. Ἀμβλεῖα γωνία ἐστὶν ἡ μείζων ὀρθῆς.
ιβ΄ [12]. Ὀξεῖα δὲ ἡ ἐλάσσων ὀρθῆς.
ιγ΄ [13]. Ὅρος ἐστίν, ὅ τινός ἐστι πέρας.
ιδ΄ [14]. Σχῆμά ἐστι τὸ ὑπό τινος ἤ τινων ὅρων περιεχόμενον.
ιε΄ [15]. Κύκλος ἐστὶ σχῆμα ἐπίπεδον ὑπὸ μιᾶς γραμμῆς περιεχόμενον [ἣ καλεῖται περιφέρεια], πρὸς ἣν ἀφ' ἑνὸς σημείου τῶν ἐντὸς τοῦ σχήματος κειμένων πᾶσαι αἱ προσπίπτουσαι εὐθεῖαι [πρὸς τὴν τοῦ κύκλου περιφέρειαν] ἴσαι ἀλλήλαις εἰσίν.
ις΄ [16]. Κέντρον δὲ τοῦ κύκλου τὸ σημεῖον καλεῖται.
ιζ΄ [17]. Διάμετρος δὲ τοῦ κύκλου ἐστὶν εὐθεῖά τις διὰ τοῦ κέντρου ἠγμένη καὶ περατουμένη ἐφ' ἑκάτερα τὰ μέρη ὑπὸ τῆς τοῦ κύκλου περιφερείας, ἥτις καὶ δίχα τέμνει τὸν κύκλον.
ιη΄ [18]. Ἡμικύκλιον δέ ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ' αὐτῆς περιφερείας. κέντρον δὲ τοῦ ἡμικυκλίου τὸ αὐτό, ὃ καὶ τοῦ κύκλου ἐστίν.
ιθ΄ [19]. Σχήματα εὐθύγραμμά ἐστι τὰ ὑπὸ εὐθειῶν περιεχόμενα, τρίπλευρα μὲν τὰ ὑπὸ τριῶν, τετράπλευρα δὲ τὰ ὑπὸ τεσσάρων, πολύπλευρα δὲ τὰ ὑπὸ πλειόνων ἢ τεσσάρων εὐθειῶν περιεχόμενα.
κ΄ [20]. Τῶν δὲ τριπλεύρων σχημάτων ἰσόπλευρον μὲν τρίγωνόν ἐστι τὸ τὰς τρεῖς ἴσας ἔχον πλευράς, ἰσοσκελὲς δὲ τὸ τὰς δύο μόνας ἴσας ἔχον πλευράς, σκαληνὸν δὲ τὸ τὰς τρεῖς ἀνίσους ἔχον πλευράς.
κα΄ [21]. Ἔτι δὲ τῶν τριπλεύρων σχημάτων ὀρθογώνιον μὲν τρίγωνόν ἐστι τὸ ἔχον ὀρθὴν γωνίαν, ἀμβλυγώνιον δὲ τὸ ἔχον ἀμβλεῖαν γωνίαν, ὀξυγώνιον δὲ τὸ τὰς τρεῖς ὀξείας ἔχον γωνίας.
κβ΄ [22]. Τῶν δὲ τετραπλεύρων σχημάτων τετράγωνον μέν ἐστιν, ὃ ἰσόπλευρόν τέ ἐστι καὶ ὀρθογώνιον, ἑτερόμηκες δέ, ὃ ὀρθογώνιον μέν, οὐκ ἰσόπλευρον δέ, ῥόμβος δέ, ὃ ἰσόπλευρον μέν, οὐκ ὀρθογώνιον δέ, ῥομβοειδὲς δὲ τὸ τὰς ἀπεναντίον πλευράς τε καὶ γωνίας ἴσας ἀλλήλαις ἔχον, ὃ οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον: τὰ δὲ παρὰ ταῦτα τετράπλευρα τραπέζια καλείσθω.
κγ΄ [23]. Παράλληλοί εἰσιν εὐθεῖαι, αἵτινες ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι καὶ ἐκβαλλόμεναι εἰς ἄπειρον ἐφ' ἑκάτερα τὰ μέρη ἐπὶ μηδέτερα συμπίπτουσιν ἀλλήλαις.
α΄ [1]. Πᾶν παραλληλόγραμμον ὀρθογώνιον περιέχεσθαι λέγεται ὑπὸ δύο τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν εὐθειῶν.
β΄ [2]. Παντὸς δὲ παραλληλογράμμου χωρίου τῶν περὶ τὴν διάμετρον αὐτοῦ παραλληλογράμμων ἓν ὁποιονοῦν σὺν τοῖς δυσὶ παραπληρώμασι γνώμων καλείσθω.
α΄ [1]. Ἴσοι κύκλοι εἰσίν, ὧν αἱ διάμετροι ἴσαι εἰσίν, ἢ ὧν αἱ ἐκ τῶν κέντρων ἴσαι εἰσίν.
β΄.[2]. Εὐθεῖα κύκλου ἐφάπτεσθαι λέγεται, ἥτις ἁπτομένη τοῦ κύκλου καὶ ἐκβαλλομένη οὐ τέμνει τὸν κύκλον.
γ΄.[3]. Κύκλοι ἐφάπτεσθαι ἀλλήλων λέγονται οἵτινες ἁπτόμενοι ἀλλήλων οὐ τέμνουσιν ἀλλήλους.
δ΄.[4]. Ἐν κύκλῳ ἴσον ἀπέχειν ἀπὸ τοῦ κέντρου εὐθεῖαι λέγονται, ὅταν αἱ ἀπὸ τοῦ κέντρου ἐπ᾿ αὐτὰς κάθετοι ἀγόμεναι ἴσαι ὦσιν.
ε΄.[5]. Μεῖζον δὲ ἀπέχειν λέγεται, ἐφ' ἣν ἡ μείζων κάθετος πίπτει.
ς΄.[6]. Τμῆμα κύκλου ἐστὶ τὸ περιεχόμενον σχῆμα ὑπό τε εὐθείας καὶ κύκλου περιφερείας.
ζ΄.[7]. Τμήματος δὲ γωνία ἐστὶν ἡ περιεχομένη ὑπό τε εὐθείας καὶ κύκλου περιφερείας.
η΄.[8]. Ἐν τμήματι δὲ γωνία ἐστίν, ὅταν ἐπὶ τῆς περιφερείας τοῦ τμήματος ληφθῇ τι σημεῖον καὶ ἀπ' αὐτοῦ ἐπὶ τὰ πέρατα τῆς εὐθείας, ἥ ἐστι βάσις τοῦ τμήματος, ἐπιζευχθῶσιν εὐθεῖαι, ἡ περιεχομένη γωνία ὑπὸ τῶν ἐπιζευχθεισῶν εὐθειῶν.
θ΄.[9]. Ὅταν δὲ αἱ περιέχουσαι τὴν γωνίαν εὐθεῖαι ἀπολαμβάνωσί τινα περιφέρειαν, ἐπ᾿ ἐκείνης λέγεται βεβηκέναι ἡ γωνία.
ι΄.[10]. Τομεὺς δὲ κύκλου ἐστίν, ὅταν πρὸς τῷ κέντρῳ τοῦ κύκλου συσταθῇ γωνία, τὸ περιεχόμενον σχῆμα ὑπό τε τῶν τὴν γωνίαν περιεχουσῶν εὐθειῶν καὶ τῆς ἀπολαμβανομένης ὑπ' αὐτῶν περιφερείας.
ια΄.[11]. Ὅμοια τμήματα κύκλων ἐστὶ τὰ δεχόμενα γωνίας ἴσας, ἢ ἐν οἷς αἱ γωνίαι ἴσαι ἀλλήλαις εἰσίν.
α΄ [1]. Σχῆμα εὐθύγραμμον εἰς σχῆμα εὐθύγραμμον ἐγγράφεσθαι λέγεται, ὅταν ἑκάστη τῶν τοῦ ἐγγραφομένου σχήματος γωνιῶν ἑκάστης πλευρᾶς τοῦ, εἰς ὃ ἐγγράφεται, ἅπτηται.
β΄ [2]. Σχῆμα δὲ ὁμοίως περὶ σχῆμα περιγράφεσθαι λέγεται, ὅταν ἑκάστη πλευρὰ τοῦ περιγραφομένου ἑκάστης γωνίας τοῦ, περὶ ὃ περιγράφεται, ἅπτηται.
γ΄ [3]. Σχῆμα εὐθύγραμμον εἰς κύκλον ἐγγράφεσθαι λέγεται, ὅταν ἑκάστη γωνία τοῦ ἐγγραφομένου ἅπτηται τῆς τοῦ κύκλου περιφερείας.
δ΄ [4]. Σχῆμα δὲ εὐθύγραμμον περὶ κύκλον περιγράφεσθαι λέγεται, ὅταν ἑκάστη πλευρὰ τοῦ περιγραφομένου ἐφάπτηται τῆς τοῦ κύκλου περιφερείας.
ε΄ [5]. Κύκλος δὲ εἰς σχῆμα ὁμοίως ἐγγράφεσθαι λέγεται, ὅταν ἡ τοῦ κύκλου περιφέρεια ἑκάστης πλευρᾶς τοῦ, εἰς ὃ ἐγγράφεται, ἅπτηται.
ς΄ [6]. Κύκλος δὲ περὶ σχῆμα περιγράφεσθαι λέγεται, ὅταν ἡ τοῦ κύκλου περιφέρεια ἑκάστης γωνίας τοῦ, περὶ ὃ περιγράφεται, ἅπτηται.
ζ΄ [7]. Εὐθεῖα εἰς κύκλον ἐναρμόζεσθαι λέγεται, ὅταν τὰ πέρατα αὐτῆς ἐπὶ τῆς περιφερείας ᾖ τοῦ κύκλου.
α΄ [1]. Μέρος ἐστὶ μέγεθος μεγέθους τὸ ἔλασσον τοῦ μείζονος, ὅταν καταμετρῇ τὸ μεῖζον.
β΄ [2]. Πολλαπλάσιον δὲ τὸ μεῖζον τοῦ ἐλάττονος, ὅταν καταμετρῆται ὑπὸ τοῦ ἐλάττονος.
γ΄ [3]. Λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.
δ΄ [4]. Λόγον ἔχειν πρὸς ἄλληλα μεγέθη λέγεται, ἃ δύναται πολλαπλασιαζόμενα ἀλλήλων ὑπερέχειν.
ε΄ [5]. Ἐν τῷ αὐτῷ λόγῳ μεγέθη λέγεται εἶναι πρῶτον πρὸς δεύτερον καὶ τρίτον πρὸς τέταρτον, ὅταν τὰ τοῦ πρώτου καὶ τρίτου ἰσάκις πολλαπλάσια τῶν τοῦ δευτέρου καὶ τετάρτου ἰσάκις πολλαπλασίων καθ᾿ ὁποιονοῦν πολλαπλασιασμὸν ἑκάτερον ἑκατέρου ἢ ἅμα ὑπερέχῃ ἢ ἅμα ἴσα ᾖ ἢ ἅμα ἐλλείπῃ ληφθέντα κατάλληλα.
ς΄ [6]. Τὰ δὲ τὸν αὐτὸν ἔχοντα λόγον μεγέθη ἀνάλογον καλείσθω.
ζ΄ [7]. Ὅταν δὲ τῶν ἰσάκις πολλαπλασίων τὸ μὲν τοῦ πρώτου πολλαπλάσιον ὑπερέχῃ τοῦ τοῦ δευτέρου πολλαπλασίου, τὸ δὲ τοῦ τρίτου πολλαπλάσιον μὴ ὑπερέχῃ τοῦ τοῦ τετάρτου πολλαπλασίου, τότε τὸ πρῶτον πρὸς τὸ δεύτερον μείζονα λόγον ἔχειν λέγεται, ἤπερ τὸ τρίτον πρὸς τὸ τέταρτον.
η΄ [8]. Ἀναλογία δὲ ἐν τρισὶν ὅροις ἐλαχίστη ἐστίν.
θ΄ [9]. Ὅταν δὲ τρία μεγέθη ἀνάλογον ᾖ, τὸ πρῶτον πρὸς τὸ τρίτον διπλασίονα λόγον ἔχειν λέγεται ἤπερ πρὸς τὸ δεύτερον.
ι΄ [10]. Ὅταν δὲ τέσσαρα μεγέθη ἀνάλογον ᾖ, τὸ πρῶτον πρὸς τὸ τέταρτον τριπλασίονα λόγον ἔχειν λέγεται ἤπερ πρὸς τὸ δεύτερον, καὶ ἀεὶ ἑξῆς ὁμοίως, ὡς ἂν ἡ ἀναλογία ὑπάρχῃ.
ια΄ [11]. Ὁμόλογα μεγέθη λέγεται τὰ μὲν ἡγούμενα τοῖς ἡγουμένοις τὰ δὲ ἑπόμενα τοῖς ἑπομένοις.
ιβ΄ [12]. Ἐναλλὰξ λόγος ἐστὶ λῆψις τοῦ ἡγουμένου πρὸς τὸ ἡγούμενον καὶ τοῦ ἑπομένου πρὸς τὸ ἑπόμενον.
ιγ΄ [13]. Ἀνάπαλιν λόγος ἐστὶ λῆψις τοῦ ἑπομένου ὡς ἡγουμένου πρὸς τὸ ἡγούμενον ὡς ἑπόμενον.
ιδ΄ [14]. Σύνθεσις λόγου ἐστὶ λῆψις τοῦ ἡγουμένου μετὰ τοῦ ἑπομένου ὡς ἑνὸς πρὸς αὐτὸ τὸ ἑπόμενον.
ιε΄ [15]. Διαίρεσις λόγου ἐστὶ λῆψις τῆς ὑπεροχῆς, ᾗ ὑπερέχει τὸ ἡγούμενον τοῦ ἑπομένου, πρὸς αὐτὸ τὸ ἑπόμενον.
ις΄ [16]. Ἀναστροφὴ λόγου ἐστὶ λῆψις τοῦ ἡγουμένου πρὸς τὴν ὑπεροχήν, ᾗ ὑπερέχει τὸ ἡγούμενον τοῦ ἑπομένου.
ιζ΄ [17]. Δι' ἴσου λόγος ἐστὶ πλειόνων ὄντων μεγεθῶν καὶ ἄλλων αὐτοῖς ἴσων τὸ πλῆθος σύνδυο λαμβανομένων καὶ ἐν τῷ αὐτῷ λόγῳ, ὅταν ᾖ ὡς ἐν τοῖς πρώτοις μεγέθεσι τὸ πρῶτον πρὸς τὸ ἔσχατον, οὕτως ἐν τοῖς δευτέροις μεγέθεσι τὸ πρῶτον πρὸς τὸ ἔσχατον· ἢ ἄλλως· Λῆψις τῶν ἄκρων καθ᾿ ὑπεξαίρεσιν τῶν μέσων.
ιη΄ [18]. Τεταραγμένη δὲ ἀναλογία ἐστίν, ὅταν τριῶν ὄντων μεγεθῶν καὶ ἄλλων αὐτοῖς ἴσων τὸ πλῆθος γίνηται ὡς μὲν ἐν τοῖς πρώτοις μεγέθεσιν ἡγούμενον πρὸς ἑπόμενον, οὕτως ἐν τοῖς δευτέροις μεγέθεσιν ἡγούμενον πρὸς ἑπόμενον, ὡς δὲ ἐν τοῖς πρώτοις μεγέθεσιν ἑπόμενον πρὸς ἄλλο τι, οὕτως ἐν τοῖς δευτέροις ἄλλο τι πρὸς ἡγούμενον.
α΄ [1]. Ὅμοια σχήματα εὐθύγραμμά ἐστιν, ὅσα τάς τε γωνίας ἴσας ἔχει κατὰ μίαν καὶ τὰς περὶ τὰς ἴσας γωνίας πλευρὰς ἀνάλογον.
β΄ [2]. [Ἀντιπεπονθότα δὲ σχήματά ἐστιν, ὅταν ἐν ἑκατέρῳ τῶν σχημάτων ἡγούμενοί τε καὶ ἑπόμενοι λόγοι ὦσιν.]
γ΄ [3]. Ἄκρον καὶ μέσον λόγον εὐθεῖα τετμῆσθαι λέγεται, ὅταν ᾖ ὡς ἡ ὅλη πρὸς τὸ μεῖζον τμῆμα, οὕτως τὸ μεῖζον πρὸς τὸ ἔλαττον.
δ΄ [4]. Ὕψος ἐστὶ παντὸς σχήματος ἡ ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν κάθετος ἀγομένη.
ε΄ [5]. [Λόγος ἐκ λόγων συγκεῖσθαι λέγεται, ὅταν αἱ τῶν λόγων πηλικότητες ἐφ' ἑαυτὰς πολλαπλασιασθεῖσαι ποιῶσί τινα.]
α΄ [1]. Μονάς ἐστιν, καθ᾿ ἣν ἕκαστον τῶν ὄντων ἓν λέγεται.
β΄ [2]. Ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος.
γ΄ [3]. Μέρος ἐστὶν ἀριθμὸς ἀριθμοῦ ὁ ἐλάσσων τοῦ μείζονος, ὅταν καταμετρῇ τὸν μείζονα.
δ΄ [4]. Μέρη δέ, ὅταν μὴ καταμετρῇ.
ε΄ [5]. Πολλαπλάσιος δὲ ὁ μείζων τοῦ ἐλάσσονος, ὅταν καταμετρῆται ὑπὸ τοῦ ἐλάσσονος.
ς΄ [6]. Ἄρτιος ἀριθμός ἐστιν ὁ δίχα διαιρούμενος.
ζ΄ [7]. Περισσὸς δὲ ὁ μὴ διαιρούμενος δίχα ἢ [ὁ] μονάδι διαφέρων ἀρτίου ἀριθμοῦ.
η΄ [8]. Ἀρτιάκις ἄρτιος ἀριθμός ἐστιν ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ἀριθμόν.
θ΄ [9]. Ἀρτιάκις δὲ περισσός ἐστιν ὁ ὑπὸ ἀρτίου ἀριθμοῦ μετρούμενος κατὰ περισσὸν ἀριθμόν.
ι΄ [10]. Περισσάκις ἄρτιός ἐστιν ὁ ὑπὸ περισσοῦ ἀριθμοῦ μετρούμενος κατὰ ἄρτιον ἀριθμόν.
ια΄ [11]. Περισσάκις δὲ περισσὸς ἀριθμός ἐστιν ὁ ὑπὸ περισσοῦ ἀριθμοῦ μετρούμενος κατὰ περισσὸν ἀριθμόν.
ιβ΄ [12]. Πρῶτος ἀριθμός ἐστιν ὁ μονάδι μόνῃ μετρούμενος.
ιγ΄ [13]. Πρῶτοι πρὸς ἀλλήλους ἀριθμοί εἰσιν οἱ μονάδι μόνῃ μετρούμενοι κοινῷ μέτρῳ.
ιδ΄ [14]. Σύνθετος ἀριθμός ἐστιν ὁ ἀριθμῷ τινι μετρούμενος.
ιε΄ [15]. Σύνθετοι δὲ πρὸς ἀλλήλους ἀριθμοί εἰσιν οἱ ἀριθμῷ τινι μετρούμενοι κοινῷ μέτρῳ.
ις΄ [16]. Ἀριθμὸς ἀριθμὸν πολλαπλασιάζειν λέγεται, ὅταν, ὅσαι εἰσὶν ἐν αὐτῷ μονάδες, τοσαυτάκις συντεθῇ ὁ πολλαπλασιαζόμενος, καὶ γένηταί τις.
ιζ΄ [17]. Ὅταν δὲ δύο ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα, ὁ γενόμενος ἐπίπεδος καλεῖται, πλευραὶ δὲ αὐτοῦ οἱ πολλαπλασιάσαντες ἀλλήλους ἀριθμοί.
ιη΄ [18]. Ὅταν δὲ τρεῖς ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα, ὁ γενόμενος στερεός ἐστιν, πλευραὶ δὲ αὐτοῦ οἱ πολλαπλασιάσαντες ἀλλήλους ἀριθμοί.
ιθ΄ [19]. Τετράγωνος ἀριθμός ἐστιν ὁ ἰσάκις ἴσος ἢ [ὁ] ὑπὸ δύο ἴσων ἀριθμῶν περιεχόμενος.
κ΄ [20]. Κύβος δὲ ὁ ἰσάκις ἴσος ἰσάκις ἢ [ὁ] ὑπὸ τριῶν ἴσων ἀριθμῶν περιεχόμενος.
κα΄ [21]. Ἀριθμοὶ ἀνάλογόν εἰσιν, ὅταν ὁ πρῶτος τοῦ δευτέρου καὶ ὁ τρίτος τοῦ τετάρτου ἰσάκις ᾖ πολλαπλάσιος ἢ τὸ αὐτὸ μέρος ἢ τὰ αὐτὰ μέρη ὦσιν.
κβ΄ [22]. Ὅμοιοι ἐπίπεδοι καὶ στερεοὶ ἀριθμοί εἰσιν οἱ ἀνάλογον ἔχοντες τὰς πλευράς.
κγ΄ [23]. Τέλειος ἀριθμός ἐστιν ὁ τοῖς ἑαυτοῦ μέρεσιν ἴσος ὤν.
α΄ [1]. Σύμμετρα μεγέθη λέγεται τὰ τῷ αὐτῷ μέτρῳ μετρούμενα, ἀσύμμετρα δέ, ὧν μηδὲν ἐνδέχεται κοινὸν μέτρον γενέσθαι.
β΄ [2]. Εὐθεῖαι δυνάμει σύμμετροί εἰσιν, ὅταν τὰ ἀπ' αὐτῶν τετράγωνα τῷ αὐτῷ χωρίῳ μετρῆται, ἀσύμμετροι δέ, ὅταν τοῖς ἀπ' αὐτῶν τετραγώνοις μηδὲν ἐνδέχηται χωρίον κοινὸν μέτρον γενέσθαι.
γ΄ [3]. Τούτων ὑποκειμένων δείκνυται, ὅτι τῇ προτεθείσῃ εὐθείᾳ ὑπάρχουσιν εὐθεῖαι πλήθει ἄπειροι σύμμετροί τε καὶ ἀσύμμετροι αἱ μὲν μήκει μόνον, αἱ δὲ καὶ δυνάμει. καλείσθω οὖν ἡ μὲν προτεθεῖσα εὐθεῖα ῥητή, καὶ αἱ ταύτῃ σύμμετροι εἴτε μήκει καὶ δυνάμει εἴτε δυνάμει μόνον ῥηταί, αἱ δὲ ταύτῃ ἀσύμμετροι ἄλογοι καλείσθωσαν.
δ΄ [4]. Καὶ τὸ μὲν ἀπὸ τῆς προτεθείσης εὐθείας τετράγωνον ῥητόν, καὶ τὰ τούτῳ σύμμετρα ῥητά, τὰ δὲ τούτῳ ἀσύμμετρα ἄλογα καλείσθω, καὶ αἱ δυνάμεναι αὐτὰ ἄλογοι, εἰ μὲν τετράγωνα εἴη, αὐταὶ αἱ πλευραί, εἰ δὲ ἕτερά τινα εὐθύγραμμα, αἱ ἴσα αὐτοῖς τετράγωνα ἀναγράφουσαι.
α΄ [1]. Ὑποκειμένης ῥητῆς καὶ τῆς ἐκ δύο ὀνομάτων διῃρημένης εἰς τὰ ὀνόματα, ἧς τὸ μεῖζον ὄνομα τοῦ ἐλάσσονος μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει, ἐὰν μὲν τὸ μεῖζον ὄνομα σύμμετρον ᾖ μήκει τῇ ἐκκειμένῃ ῥητῇ, καλείσθω [ἡ ὅλη] ἐκ δύο ὀνομάτων πρώτη.
β΄ [2]. Ἐὰν δὲ τὸ ἔλασσον ὄνομα σύμμετρον ᾖ μήκει τῇ ἐκκειμένῃ ῥητῇ, καλείσθω ἐκ δύο ὀνομάτων δευτέρα.
γ΄ [3]. Ἐὰν δὲ μηδέτερον τῶν ὀνομάτων σύμμετρον ᾖ μήκει τῇ ἐκκειμένῃ ῥητῇ, καλείσθω ἐκ δύο ὀνομάτων τρίτη.
δ΄ [4]. Πάλιν δὴ ἐὰν τὸ μεῖζον ὄνομα [τοῦ ἐλάσσονος] μεῖζον δύνηται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει, ἐὰν μὲν τὸ μεῖζον ὄνομα σύμμετρον ᾖ μήκει τῇ ἐκκειμένῃ ῥητῇ, καλείσθω ἐκ δύο ὀνομάτων τετάρτη.
ε΄ [5]. Ἐὰν δὲ τὸ ἔλασσον, πέμπτη.
ς΄ [6]. Ἐὰν δὲ μηδέτερον, ἕκτη.
α΄ [1]. Ὑποκειμένης ῥητῆς καὶ ἀποτομῆς, ἐὰν μὲν ἡ ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει, καὶ ἡ ὅλη σύμμετρος ᾖ τῇ ἐκκειμένῃ ῥητῇ μήκει, καλείσθω ἀποτομὴ πρώτη.
β΄ [2]. Ἐὰν δὲ ἡ προσαρμόζουσα σύμμετρος ᾖ τῇ ἐκκειμένῃ ῥητῇ μήκει, καὶ ἡ ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ, καλείσθω ἀποτομὴ δευτέρα.
γ΄ [3]. Ἐὰν δὲ μηδετέρα σύμμετρος ᾖ τῇ ἐκκειμένῃ ῥητῇ μήκει, ἡ δὲ ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ, καλείσθω ἀποτομὴ τρίτη.
δ΄ [4]. Πάλιν, ἐὰν ἡ ὅλη τῆς προσαρμοζούσης μεῖζον δύνηται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ [μήκει], ἐὰν μὲν ἡ ὅλη σύμμετρος ᾖ τῇ ἐκκειμένῃ ῥητῇ μήκει, καλείσθω ἀποτομὴ τετάρτη.
ε΄ [5]. Ἐὰν δὲ ἡ προσαρμόζουσα, πέμπτη.
ς΄ [6]. Ἐὰν δὲ μηδετέρα, ἕκτη.
α΄ [1]. Στερεόν ἐστι τὸ μῆκος καὶ πλάτος καὶ βάθος ἔχον.
β΄ [2]. Στερεοῦ δὲ πέρας ἐπιφάνεια.
γ΄ [3]. Εὐθεῖα πρὸς ἐπίπεδον ὀρθή ἐστιν, ὅταν πρὸς πάσας τὰς ἁπτομένας αὐτῆς εὐθείας καὶ οὔσας ἐν τῷ [ὑποκειμένῳ] ἐπιπέδῳ ὀρθὰς ποιῇ γωνίας.
δ΄ [4]. Ἐπίπεδον πρὸς ἐπίπεδον ὀρθόν ἐστιν, ὅταν αἱ τῇ κοινῇ τομῇ τῶν ἐπιπέδων πρὸς ὀρθὰς ἀγόμεναι εὐθεῖαι ἐν ἑνὶ τῶν ἐπιπέδων τῷ λοιπῷ ἐπιπέδῳ πρὸς ὀρθὰς ὦσιν.
ε΄ [5]. Εὐθείας πρὸς ἐπίπεδον κλίσις ἐστίν, ὅταν ἀπὸ τοῦ μετεώρου πέρατος τῆς εὐθείας ἐπὶ τὸ ἐπίπεδον κάθετος ἀχθῇ, καὶ ἀπὸ τοῦ γενομένου σημείου ἐπὶ τὸ ἐν τῷ ἐπιπέδῳ πέρας τῆς εὐθείας εὐθεῖα ἐπιζευχθῇ, ἡ περιεχομένη γωνία ὑπὸ τῆς ἀχθείσης καὶ τῆς ἐφεστώσης.
ς΄ [6]. Ἐπιπέδου πρὸς ἐπίπεδον κλίσις ἐστὶν ἡ περιεχομένη ὀξεῖα γωνία ὑπὸ τῶν πρὸς ὀρθὰς τῇ κοινῇ τομῇ ἀγομένων πρὸς τῷ αὐτῷ σημείῳ ἐν ἑκατέρῳ τῶν ἐπιπέδων.
ζ΄ [7]. Ἐπίπεδον πρὸς ἐπίπεδον ὁμοίως κεκλίσθαι λέγεται καὶ ἕτερον πρὸς ἕτερον, ὅταν αἱ εἰρημέναι τῶν κλίσεων γωνίαι ἴσαι ἀλλήλαις ὦσιν.
η΄ [8]. Παράλληλα ἐπίπεδά ἐστι τὰ ἀσύμπτωτα.
θ΄ [9]. Ὅμοια στερεὰ σχήματά ἐστι τὰ ὑπὸ ὁμοίων ἐπιπέδων περιεχόμενα ἴσων τὸ πλῆθος.
ι΄ [10]. Ἴσα δὲ καὶ ὅμοια στερεὰ σχήματά ἐστι τὰ ὑπὸ ὁμοίων ἐπιπέδων περιεχόμενα ἴσων τῷ πλήθει καὶ τῷ μεγέθει.
ια΄ [11]. Στερεὰ γωνία ἐστὶν ἡ ὑπὸ πλειόνων ἢ δύο γραμμῶν ἁπτομένων ἀλλήλων καὶ μὴ ἐν τῇ αὐτῇ ἐπιφανείᾳ οὐσῶν πρὸς πάσαις ταῖς γραμμαῖς κλίσις. Ἄλλως· στερεὰ γωνία ἐστὶν ἡ ὑπὸ πλειόνων ἢ δύο γωνιῶν ἐπιπέδων περιεχομένη μὴ οὐσῶν ἐν τῷ αὐτῷ ἐπιπέδῳ πρὸς ἑνὶ σημείῳ συνισταμένων.
ιβ΄ [12]. Πυραμίς ἐστι σχῆμα στερεὸν ἐπιπέδοις περιεχόμενον ἀπὸ ἑνὸς ἐπιπέδου πρὸς ἑνὶ σημείῳ συνεστώς.
ιγ΄ [13]. Πρίσμα ἐστὶ σχῆμα στερεὸν ἐπιπέδοις περιεχόμενον, ὧν δύο τὰ ἀπεναντίον ἴσα τε καὶ ὅμοιά ἐστι καὶ παράλληλα, τὰ δὲ λοιπὰ παραλληλόγραμμα.
ιδ΄ [14]. Σφαῖρά ἐστιν, ὅταν ἡμικυκλίου μενούσης τῆς διαμέτρου περιενεχθὲν τὸ ἡμικύκλιον εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ, ὅθεν ἤρξατο φέρεσθαι, τὸ περιληφθὲν σχῆμα
ιε΄ [15]. Ἄξων δὲ τῆς σφαίρας ἐστὶν ἡ μένουσα εὐθεῖα, περὶ ἣν τὸ ἡμικύκλιον στρέφεται.
ις΄ [16]. Κέντρον δὲ τῆς σφαίρας ἐστὶ τὸ αὐτό, ὃ καὶ τοῦ ἡμικυκλίου.
ιζ΄ [17]. Διάμετρος δὲ τῆς σφαίρας ἐστὶν εὐθεῖά τις διὰ τοῦ κέντρου ἠγμένη καὶ περατουμένη ἐφ' ἑκάτερα τὰ μέρη ὑπὸ τῆς ἐπιφανείας τῆς σφαίρας.
ιη΄ [18]. Κῶνός ἐστιν, ὅταν ὀρθογωνίου τριγώνου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν τὸ τρίγωνον εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ, ὅθεν ἤρξατο φέρεσθαι, τὸ περιληφθὲν σχῆμα. κἂν μὲν ἡ μένουσα εὐθεῖα ἴση ᾖ τῇ λοιπῇ [τῇ] περὶ τὴν ὀρθὴν περιφερομένῃ, ὀρθογώνιος ἔσται ὁ κῶνος, ἐὰν δὲ ἐλάττων, ἀμβλυγώνιος, ἐὰν δὲ μείζων, ὀξυγώνιος.
ιθ΄ [19]. Ἄξων δὲ τοῦ κώνου ἐστὶν ἡ μένουσα εὐθεῖα, περὶ ἣν τὸ τρίγωνον στρέφεται.
κ΄ [20]. Βάσις δὲ ὁ κύκλος ὁ ὑπὸ τῆς περιφερομένης εὐθείας γραφόμενος.
κα΄ [21]. Κύλινδρός ἐστιν, ὅταν ὀρθογωνίου παραλληλογράμμου μενούσης μιᾶς πλευρᾶς τῶν περὶ τὴν ὀρθὴν γωνίαν περιενεχθὲν τὸ παραλληλόγραμμον εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ, ὅθεν ἤρξατο φέρεσθαι, τὸ περιληφθὲν σχῆμα.
κβ΄ [22]. Ἄξων δὲ τοῦ κυλίνδρου ἐστὶν ἡ μένουσα εὐθεῖα, περὶ ἣν τὸ παραλληλόγραμμον στρέφεται.
κγ΄ [23]. Βάσεις δὲ οἱ κύκλοι οἱ ὑπὸ τῶν ἀπεναντίον περιαγομένων δύο πλευρῶν γραφόμενοι.
κδ΄ [24]. Ὅμοιοι κῶνοι καὶ κύλινδροί εἰσιν, ὧν οἵ τε ἄξονες καὶ αἱ διάμετροι τῶν βάσεων ἀνάλογόν εἰσιν.
κε΄ [25]. Κύβος ἐστὶ σχῆμα στερεὸν ὑπὸ ἓξ τετραγώνων ἴσων περιεχόμενον.
κς΄ [26]. Ὀκτάεδρόν ἐστι σχῆμα στερεὸν ὑπὸ ὀκτὼ τριγώνων ἴσων καὶ ἰσοπλεύρων περιεχόμενον.
κζ΄ [27]. Εἰκοσάεδρόν ἐστι σχῆμα στερεὸν ὑπὸ εἴκοσι τριγώνων ἴσων καὶ ἰσοπλεύρων περιεχόμενον.
κη΄ [28]. Δωδεκάεδρόν ἐστι σχῆμα στερεὸν ὑπὸ δώδεκα πενταγώνων ἴσων καὶ ἰσοπλεύρων καὶ ἰσογωνίων περιεχόμενον.