Ἐκκείσθωσαν δύο ἀριθμοὶ οἱ ΑΓ, ΓΒ, ὥστε τὸν συγκείμενον ἐξ αὐτῶν τὸν ΑΒ πρὸς μὲν τὸν ΒΓ λόγον ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, πρὸς δὲ τὸν ΓΑ λόγον μὴ ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, καὶ ἐκκείσθω τις ῥητὴ ἡ Δ, καὶ τῇ Δ σύμμετρος ἔστω μήκει ἡ ΕΖ. ῥητὴ ἄρα ἐστὶ καὶ ἡ ΕΖ. καὶ γεγονέτω ὡς ὁ ΒΑ ἀριθμὸς πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ. ὁ δὲ ΑΒ πρὸς τὸν ΑΓ λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν· καὶ τὸ ἀπὸ τῆς ΕΖ ἄρα πρὸς τὸ ἀπὸ τῆς ΖΗ λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν· ὥστε σύμμετρόν ἐστι τὸ ἀπὸ τῆς ΕΖ τῷ ἀπὸ τῆς ΖΗ. καί ἐστι ῥητὴ ἡ ΕΖ· ῥητὴ ἄρα καὶ ἡ ΖΗ. καὶ ἐπεὶ ὁ ΒΑ πρὸς τὸν ΑΓ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὸ ἀπὸ τῆς ΕΖ ἄρα πρὸς τὸ ἀπὸ τῆς ΖΗ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· ἀσύμμετρος ἄρα ἐστὶν ἡ ΕΖ τῇ ΖΗ μήκει. αἱ ΕΖ, ΖΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι· ἐκ δύο ἄρα ὀνομάτων ἐστὶν ἡ ΕΗ.
Λέγω, ὅτι καὶ πρώτη.
Ἐπεὶ γάρ ἐστιν ὡς ὁ ΒΑ ἀριθμὸς πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ, μείζων δὲ ὁ ΒΑ τοῦ ΑΓ, μεῖζον ἄρα καὶ τὸ ἀπὸ τῆς ΕΖ τοῦ ἀπὸ τῆς ΖΗ. ἔστω οὖν τῷ ἀπὸ τῆς ΕΖ ἴσα τὰ ἀπὸ τῶν ΖΗ, Θ. καὶ ἐπεί ἐστιν ὡς ὁ ΒΑ πρὸς τὸν ΑΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΖΗ, ἀναστρέψαντι ἄρα ἐστὶν ὡς ὁ ΑΒ πρὸς τὸν ΒΓ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς Θ. ὁ δὲ ΑΒ πρὸς τὸν ΒΓ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· καὶ τὸ ἀπὸ τῆς ΕΖ ἄρα πρὸς τὸ ἀπὸ τῆς Θ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. σύμμετρος ἄρα ἐστὶν ἡ ΕΖ τῇ Θ μήκει· ἡ ΕΖ ἄρα τῆς ΖΗ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ. καί εἰσι ῥηταὶ αἱ ΕΖ, ΖΗ, καὶ σύμμετρος ἡ ΕΖ τῇ Δ μήκει.
Ἡ ΕΗ ἄρα ἐκ δύο ὀνομάτων ἐστὶ πρώτη· ὅπερ ἔδει δεῖξαι.