Loading...

ΒΙΒΛΙΟΝ X

ΣΤΟΙΧΕΙΩΝ ΕΥΚΛΕΙΔΟΥ
ΠΡΟΤΑΣΙΣ ϞΒ΄ 82

Στοιχεῖα Εὐκλείδου ι΄

[Βιβλίον X]


Αἱ Προτάσεις τῶν Στοιχείων ι΄.
Προηγουμένη Πρότασις
Ἑπομένη Πρότασις

Πρότασις Ϟβ΄ [92]


Ἐὰν χωρίον περιέχηται ὑπὸ ῥητῆς καὶ ἀποτομῆς δευτέρας, ἡ τὸ χωρίον δυναμένη μέσης ἀποτομή ἐστι πρώτη.

Χωρίον γὰρ τὸ ΑΒ περιεχέσθω ὑπὸ ῥητῆς τῆς ΑΓ καὶ ἀποτομῆς δευτέρας τῆς ΑΔ· λέγω, ὅτι ἡ τὸ ΑΒ χωρίον δυναμένη μέσης ἀποτομή ἐστι πρώτη.

Ἔστω γὰρ τῇ ΑΔ προσαρμόζουσα ἡ ΔΗ· αἱ ἄρα ΑΗ, ΗΔ ῥηταί εἰσι δυνάμει μόνον σύμμετροι, καὶ ἡ προσαρμόζουσα ἡ ΔΗ σύμμετρός ἐστι τῇ ἐκκειμένῃ ῥητῇ τῇ ΑΓ, ἡ δὲ ὅλη ἡ ΑΗ τῆς προσαρμοζούσης τῆς ΗΔ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει. ἐπεὶ οὖν ἡ ΑΗ τῆς ΗΔ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ, ἐὰν ἄρα τῷ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ΗΔ ἴσον παρὰ τὴν ΑΗ παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ, εἰς σύμμετρα αὐτὴν διαιρεῖ. τετμήσθω οὖν ἡ ΔΗ δίχα κατὰ τὸ Ε· καὶ τῷ ἀπὸ τῆς ΕΗ ἴσον παρὰ τὴν ΑΗ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώνῳ, καὶ ἔστω τὸ ὑπὸ τῶν ΑΖ, ΖΗ· σύμμετρος ἄρα ἐστὶν ἡ ΑΖ τῇ ΖΗ μήκει. καὶ ἡ ΑΗ ἄρα ἑκατέρᾳ τῶν ΑΖ, ΖΗ σύμμετρός ἐστι μήκει. ῥητὴ δὲ ἡ ΑΗ καὶ ἀσύμμετρος τῇ ΑΓ μήκει· καὶ ἑκατέρα ἄρα τῶν ΑΖ, ΖΗ ῥητή ἐστι καὶ ἀσύμμετρος τῇ ΑΓ μήκει· ἑκάτερον ἄρα τῶν ΑΙ, ΖΚ μέσον ἐστίν. πάλιν, ἐπεὶ σύμμετρός ἐστιν ἡ ΔΕ τῇ ΕΗ, καὶ ἡ ΔΗ ἄρα ἑκατέρᾳ τῶν ΔΕ, ΕΗ σύμμετρός ἐστιν. ἀλλ' ἡ ΔΗ σύμμετρός ἐστι τῇ ΑΓ μήκει. [ῥητὴ ἄρα καὶ ἑκατέρα τῶν ΔΕ, ΕΗ καὶ σύμμετρος τῇ ΑΓ μήκει.] ἑκάτερον ἄρα τῶν ΔΘ, ΕΚ ῥητόν ἐστιν.

Βιβλίον ι΄ Πρότασις 92

Συνεστάτω οὖν τῷ μὲν ΑΙ ἴσον τετράγωνον τὸ ΛΜ, τῷ δὲ ΖΚ ἴσον ἀφῃρήσθω τὸ ΝΞ περὶ τὴν αὐτὴν γωνίαν ὂν τῷ ΛΜ τὴν ὑπὸ τῶν ΛΟΜ· περὶ τὴν αὐτὴν ἄρα ἐστὶ διάμετρον τὰ ΛΜ, ΝΞ τετράγωνα. ἔστω αὐτῶν διάμετρος ἡ ΟΡ, καὶ καταγεγράφθω τὸ σχῆμα. ἐπεὶ οὖν τὰ ΑΙ, ΖΚ μέσα ἐστὶ καί ἐστιν ἴσα τοῖς ἀπὸ τῶν ΛΟ, ΟΝ, καὶ τὰ ἀπὸ τῶν ΛΟ, ΟΝ [ἄρα] μέσα ἐστίν· καὶ αἱ ΛΟ, ΟΝ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι. καὶ ἐπεὶ τὸ ὑπὸ τῶν ΑΖ, ΖΗ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΗ, ἔστιν ἄρα ὡς ἡ ΑΖ πρὸς τὴν ΕΗ, οὕτως ἡ ΕΗ πρὸς τὴν ΖΗ· ἀλλ' ὡς μὲν ἡ ΑΖ πρὸς τὴν ΕΗ, οὕτως τὸ ΑΙ πρὸς τὸ ΕΚ· ὡς δὲ ἡ ΕΗ πρὸς τὴν ΖΗ, οὕτως [ἐστὶ] τὸ ΕΚ πρὸς τὸ ΖΚ· τῶν ἄρα ΑΙ, ΖΚ μέσον ἀνάλογόν ἐστι τὸ ΕΚ. ἔστι δὲ καὶ τῶν ΛΜ, ΝΞ τετραγώνων μέσον ἀνάλογον τὸ ΜΝ· καί ἐστιν ἴσον τὸ μὲν ΑΙ τῷ ΛΜ, τὸ δὲ ΖΚ τῷ ΝΞ· καὶ τὸ ΜΝ ἄρα ἴσον ἐστὶ τῷ ΕΚ. ἀλλὰ τῷ μὲν ΕΚ ἴσον [ἐστὶ] τὸ ΔΘ, τῷ δὲ ΜΝ ἴσον τὸ ΛΞ· ὅλον ἄρα τὸ ΔΚ ἴσον ἐστὶ τῷ ΥΦΧ γνώμονι καὶ τῷ ΝΞ. ἐπεὶ οὖν ὅλον τὸ ΑΚ ἴσον ἐστὶ τοῖς ΛΜ, ΝΞ, ὧν τὸ ΔΚ ἴσον ἐστὶ τῷ ΥΦΧ γνώμονι καὶ τῷ ΝΞ, λοιπὸν ἄρα τὸ ΑΒ ἴσον ἐστὶ τῷ ΤΣ. τὸ δὲ ΤΣ ἐστι τὸ ἀπὸ τῆς ΛΝ· τὸ ἀπὸ τῆς ΛΝ ἄρα ἴσον ἐστὶ τῷ ΑΒ χωρίῳ· ἡ ΛΝ ἄρα δύναται τὸ ΑΒ χωρίον.

Λέγω [δή], ὅτι ἡ ΛΝ μέσης ἀποτομή ἐστι πρώτη.

Ἐπεὶ γὰρ ῥητόν ἐστι τὸ ΕΚ καί ἐστιν ἴσον τῷ ΛΞ, ῥητὸν ἄρα ἐστὶ τὸ ΛΞ, τουτέστι τὸ ὑπὸ τῶν ΛΟ, ΟΝ. μέσον δὲ ἐδείχθη τὸ ΝΞ· ἀσύμμετρον ἄρα ἐστὶ τὸ ΛΞ τῷ ΝΞ· ὡς δὲ τὸ ΛΞ πρὸς τὸ ΝΞ, οὕτως ἐστὶν ἡ ΛΟ πρὸς ΟΝ· αἱ ΛΟ, ΟΝ ἄρα ἀσύμμετροί εἰσι μήκει. αἱ ἄρα ΛΟ, ΟΝ μέσαι εἰσὶ δυνάμει μόνον σύμμετροι ῥητὸν περιέχουσαι· ἡ ΛΝ ἄρα μέσης ἀποτομή ἐστι πρώτη· καὶ δύναται τὸ ΑΒ χωρίον.

Ἡ ἄρα τὸ ΑΒ χωρίον δυναμένη μέσης ἀποτομή ἐστι πρώτη· ὅπερ ἔδει δεῖξαι.




Ἑπομένη Πρότασις
Προηγουμένη Πρότασις
Αἱ Προτάσεις τῶν Στοιχείων ι΄.
Περιεχόμενα Στοιχείων Εὐκλείδου