Euclid's Elements - Contents of Book 8 - Original Greek Text    

Στοιχεῖα Εὐκλείδου η΄

[Βιβλίον VIII]


Προτάσεις κζ΄. [27]

α΄. [1]
Ἐὰν ὦσιν ὁσοιδηποτοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, οἱ δὲ ἄκροι αὐτῶν πρῶτοι πρὸς ἀλλήλους ὦσιν, ἐλάχιστοί εἰσι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς.


β΄.[2]
Ἀριθμοὺς εὑρεῖν ἑξῆς ἀνάλογον ἐλαχίστους, ὅσους ἂν ἐπιτάξῃ τις, ἐν τῷ δοθέντι λόγῳ.


γ΄.[3]
Ἐὰν ὦσιν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς, οἱ ἄκροι αὐτῶν πρῶτοι πρὸς ἀλλήλους εἰσίν.


δ΄.[4]
Λόγων δοθέντων ὁποσωνοῦν ἐν ἐλαχίστοις ἀριθμοῖς ἀριθμοὺς εὑρεῖν ἑξῆς ἀνάλογον ἐλαχίστους ἐν τοῖς δοθεῖσι λόγοις.


ε΄.[5]
Οἱ ἐπίπεδοι ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχουσι τὸν συγκείμενον ἐκ τῶν πλευρῶν.


ς΄.[6]
Ἐὰν ὦσιν ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, ὁ δὲ πρῶτος τὸν δεύτερον μὴ μετρῇ, οὐδὲ ἄλλος οὐδεὶς οὐδένα μετρήσει.


ζ΄.[7]
Ἐὰν ὦσιν ὁποσοιοῦν ἀριθμοὶ [ἑξῆς] ἀνάλογον, ὁ δὲ πρῶτος τὸν ἔσχατον μετρῇ, καὶ τὸν δεύτερον μετρήσει.


η΄.[8]
Ἐὰν δύο ἀριθμῶν μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτωσιν ἀριθμοί, ὅσοι εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί, τοσοῦτοι καὶ εἰς τοὺς τὸν αὐτὸν λόγον ἔχοντας [αὐτοῖς] μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται.


θ΄.[9]
Ἐὰν δύο ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους ὦσιν, καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτωσιν ἀριθμοί, ὅσοι εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί, τοσοῦτοι καὶ ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται.


ι΄.[10]
Ἐὰν δύο ἀριθμῶν ἑκατέρου καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτωσιν ἀριθμοί, ὅσοι ἑκατέρου αὐτῶν καὶ μονάδος μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπίπτουσιν ἀριθμοί, τοσοῦτοι καὶ εἰς αὐτοὺς μεταξὺ κατὰ τὸ συνεχὲς ἀνάλογον ἐμπεσοῦνται.


ια΄.[11]
Δύο τετραγώνων ἀριθμῶν εἷς μέσος ἀνάλογόν ἐστιν ἀριθμός, καὶ ὁ τετράγωνος πρὸς τὸν τετράγωνον διπλασίονα λόγον ἔχει ἤπερ ἡ πλευρὰ πρὸς τὴν πλευράν.


ιβ΄.[12]
Δύο κύβων ἀριθμῶν δύο μέσοι ἀνάλογόν εἰσιν ἀριθμοί, καὶ ὁ κύβος πρὸς τὸν κύβον τριπλασίονα λόγον ἔχει ἤπερ ἡ πλευρὰ πρὸς τὴν πλευράν.


ιγ΄.[13]
Ἐὰν ὦσιν ὁσοιδηποτοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, καὶ πολλαπλασιάσας ἕκαστος ἑαυτὸν ποιῇ τινα, οἱ γενόμενοι ἐξ αὐτῶν ἀνάλογον ἔσονται· καὶ ἐὰν οἱ ἐξ ἀρχῆς τοὺς γενομένους πολλαπλασιάσαντες ποιῶσί τινας, καὶ αὐτοὶ ἀνάλογον ἔσονται [καὶ ἀεὶ περὶ τοὺς ἄκρους τοῦτο συμβαίνει].


ιδ΄.[14]
Ἐὰν τετράγωνος τετράγωνον μετρῇ, καὶ ἡ πλευρὰ τὴν πλευρὰν μετρήσει· καὶ ἐὰν ἡ πλευρὰ τὴν πλευρὰν μετρῇ, καὶ ὁ τετράγωνος τὸν τετράγωνον μετρήσει.


ιε΄.[15]
Ἐὰν κύβος ἀριθμὸς κύβον ἀριθμὸν μετρῇ, καὶ ἡ πλευρὰ τὴν πλευρὰν μετρήσει· καὶ ἐὰν ἡ πλευρὰ τὴν πλευρὰν μετρῇ, καὶ ὁ κύβος τὸν κύβον μετρήσει.


ις΄.[16]
Ἐὰν τετράγωνος ἀριθμὸς τετράγωνον ἀριθμὸν μὴ μετρῇ, οὐδὲ ἡ πλευρὰ τὴν πλευρὰν μετρήσει· κἂν ἡ πλευρὰ τὴν πλευρὰν μὴ μετρῇ, οὐδὲ ὁ τετράγωνος τὸν τετράγωνον μετρήσει.


ιζ΄.[17]
Ἐὰν κύβος ἀριθμὸς κύβον ἀριθμὸν μὴ μετρῇ, οὐδὲ ἡ πλευρὰ τὴν πλευρὰν μετρήσει· κἂν ἡ πλευρὰ τὴν πλευρὰν μὴ μετρῇ, οὐδὲ ὁ κύβος τὸν κύβον μετρήσει.


ιη΄.[18]
Δύο ὁμοίων ἐπιπέδων ἀριθμῶν εἷς μέσος ἀνάλογόν ἐστιν ἀριθμός· καὶ ὁ ἐπίπεδος πρὸς τὸν ἐπίπεδον διπλασίονα λόγον ἔχει ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν.


ιθ΄.[19]
Δύο ὁμοίων στερεῶν ἀριθμῶν δύο μέσοι ἀνάλογον ἐμπίπτουσιν ἀριθμοί· καὶ ὁ στερεὸς πρὸς τὸν ὅμοιον στερεὸν τριπλασίονα λόγον ἔχει ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν.


κ΄.[20]
Ἐὰν δύο ἀριθμῶν εἷς μέσος ἀνάλογον ἐμπίπτῃ ἀριθμός, ὅμοιοι ἐπίπεδοι ἔσονται οἱ ἀριθμοί.


κα΄.[21]
Ἐὰν δύο ἀριθμῶν δύο μέσοι ἀνάλογον ἐμπίπτωσιν ἀριθμοί, ὅμοιοι στερεοί εἰσιν οἱ ἀριθμοί.


κβ΄.[22]
Ἐὰν τρεῖς ἀριθμοὶ ἑξῆς ἀνάλογον ὦσιν, ὁ δὲ πρῶτος τετράγωνος ᾖ, καὶ ὁ τρίτος τετράγωνος ἔσται.


κγ΄.[23]
Ἐὰν τέσσαρες ἀριθμοὶ ἑξῆς ἀνάλογον ὦσιν, ὁ δὲ πρῶτος κύβος ᾖ, καὶ ὁ τέταρτος κύβος ἔσται.


κδ΄.[24]
Ἐὰν δύο ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχωσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, ὁ δὲ πρῶτος τετράγωνος ᾖ, καὶ ὁ δεύτερος τετράγωνος ἔσται.


κε΄.[25]
Ἐὰν δύο ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχωσιν, ὃν κύβος ἀριθμὸς πρὸς κύβον ἀριθμόν, ὁ δὲ πρῶτος κύβος ᾖ, καὶ ὁ δεύτερος κύβος ἔσται.


κς΄.[26]
Οἱ ὅμοιοι ἐπίπεδοι ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχουσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν.


κζ΄.[27]
Οἱ ὅμοιοι στερεοὶ ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχουσιν, ὃν κύβος ἀριθμὸς πρὸς κύβον ἀριθμόν.