Loading...
Στοιχεῖα Εὐκλείδου β΄
[Βιβλίον II]
Ὅροι b΄ [2].
α΄ [1]. Πᾶν παραλληλόγραμμον ὀρθογώνιον περιέχεσθαι λέγεται ὑπὸ δύο τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν εὐθειῶν.
β΄ [2]. Παντὸς δὲ παραλληλογράμμου χωρίου τῶν περὶ τὴν διάμετρον αὐτοῦ παραλληλογράμμων ἓν ὁποιονοῦν σὺν τοῖς δυσὶ παραπληρώμασι γνώμων καλείσθω.
Προτάσεις ιδ΄. [14]
α΄ [1]Ἐὰν ὦσι δύο εὐθεῖαι, τμηθῇ δὲ ἡ ἑτέρα αὐτῶν εἰς ὁσαδηποτοῦν τμήματα, τὸ περιεχόμενον ὀρθογώνιον ὑπὸ τῶν δύο εὐθειῶν ἴσον ἐστὶ τοῖς ὑπό τε τῆς ἀτμήτου καὶ ἑκάστου τῶν τμημάτων περιεχομένοις ὀρθογωνίοις.
β΄ [2]
Ἐὰν εὐθεῖα γραμμὴ τμηθῇ, ὡς ἔτυχεν, τὸ ὑπὸ τῆς ὅλης καὶ ἑκατέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ἀπὸ τῆς ὅλης τετραγώνῳ.
γ΄ [3]
Ἐὰν εὐθεῖα γραμμὴ τμηθῇ, ὡς ἔτυχεν, τὸ ὑπὸ τῆς ὅλης καὶ ἑνὸς τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ τε ὑπὸ τῶν τμημάτων περιεχομένῳ ὀρθογωνίῳ καὶ τῷ ἀπὸ τοῦ προειρημένου τμήματος τετραγώνῳ.
δ΄ [4]
Ἐὰν εὐθεῖα γραμμὴ τμηθῇ, ὡς ἔτυχεν, τὸ ἀπὸ τῆς ὅλης τετράγωνον ἴσον ἐστὶ τοῖς τε ἀπὸ τῶν τμημάτων τετραγώνοις καὶ τῷ δὶς ὑπὸ τῶν τμημάτων περιεχομένῳ ὀρθογωνίῳ.
ε΄ [5]
Ἐὰν εὐθεῖα γραμμὴ τμηθῇ εἰς ἴσα καὶ ἄνισα, τὸ ὑπὸ τῶν ἀνίσων τῆς ὅλης τμημάτων περιεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου ἴσον ἐστὶ τῷ ἀπὸ τῆς ἡμισείας τετραγώνῳ.
ς΄ [6]
Ἐὰν εὐθεῖα γραμμὴ τμηθῇ δίχα, προστεθῇ δέ τις αὐτῇ εὐθεῖα ἐπ᾿ εὐθείας, τὸ ὑπὸ τῆς ὅλης σὺν τῇ προσκειμένῃ καὶ τῆς προσκειμένης περιεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ τῆς ἡμισείας τετραγώνου ἴσον ἐστὶ τῷ ἀπὸ τῆς συγκειμένης ἔκ τε τῆς ἡμισείας καὶ τῆς προσκειμένης τετραγώνῳ.
ζ΄ [7]
Ἐὰν εὐθεῖα γραμμή τμηθῇ, ὡς ἔτυχεν, τὸ ἀπὸ τῆς ὅλης καὶ τὸ ἀφ' ἑνὸς τῶν τμημάτων τὰ συναμφότερα τετράγωνα ἴσα ἐστὶ τῷ τε δὶς ὑπὸ τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος περιεχομένῳ ὀρθογωνίῳ καὶ τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ.
η΄ [8]
Ἐὰν εὐθεῖα γραμμὴ τμηθῇ, ὡς ἔτυχεν, τὸ τετράκις ὑπὸ τῆς ὅλης καὶ ἑνὸς τῶν τμημάτων περιεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνου ἴσον ἐστὶ τῷ ἀπό τε τῆς ὅλης καὶ τοῦ εἰρημένου τμήματος ὡς ἀπὸ μιᾶς ἀναγραφέντι τετραγώνῳ.
θ΄ [9]
Ἐὰν εὐθεῖα γραμμὴ τμηθῇ εἰς ἴσα καὶ ἄνισα, τὰ ἀπὸ τῶν ἀνίσων τῆς ὅλης τμημάτων τετράγωνα διπλάσιά ἐστι τοῦ τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς μεταξὺ τῶν τομῶν τετραγώνου.
ι΄ [10]
Ἐὰν εὐθεῖα γραμμὴ τμηθῇ δίχα, προστεθῇ δέ τις αὐτῇ εὐθεῖα ἐπ᾿ εὐθείας, τὸ ἀπὸ τῆς ὅλης σὺν τῇ προσκειμένῃ καὶ τὸ ἀπὸ τῆς προσκειμένης τὰ συναμφότερα τετράγωνα διπλάσιά ἐστι τοῦ τε ἀπὸ τῆς ἡμισείας καὶ τοῦ ἀπὸ τῆς συγκειμένης ἔκ τε τῆς ἡμισείας καὶ τῆς προσκειμένης ὡς ἀπὸ μιᾶς ἀναγραφέντος τετραγώνου.
ια΄ [11]
Τὴν δοθεῖσαν εὐθεῖαν τεμεῖν ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ.
ιβ΄ [12]
Ἐν τοῖς ἀμβλυγωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ἀμβλεῖαν γωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον μεῖζόν ἐστι τῶν ἀπὸ τῶν τὴν ἀμβλεῖαν γωνίαν περιεχουσῶν πλευρῶν τετραγώνων τῷ περιεχομένῳ δὶς ὑπό τε μιᾶς τῶν περὶ τὴν ἀμβλεῖαν γωνίαν, ἐφ' ἣν ἡ κάθετος πίπτει, καὶ τῆς ἀπολαμβανομένης ἐκτὸς ὑπὸ τῆς καθέτου πρὸς τῇ ἀμβλείᾳ γωνίᾳ.
ιγ΄ [13]
Ἐν τοῖς ὀξυγωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀξεῖαν γωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον ἔλαττόν ἐστι τῶν ἀπὸ τῶν τὴν ὀξεῖαν γωνίαν περιεχουσῶν πλευρῶν τετραγώνων τῷ περιεχομένῳ δὶς ὑπό τε μιᾶς τῶν περὶ τὴν ὀξεῖαν γωνίαν, ἐφ' ἣν ἡ κάθετος πίπτει, καὶ τῆς ἀπολαμβανομένης ἐντὸς ὑπὸ τῆς καθέτου πρὸς τῇ ὀξείᾳ γωνίᾳ.
ιδ΄ [14]
Τῷ δοθέντι εὐθυγράμμῳ ἴσον τετράγωνον συστήσασθαι.