Loading...

ΒΙΒΛΙΟΝ IX

ΣΤΟΙΧΕΙΩΝ ΕΥΚΛΕΙΔΟΥ
ΣΤΟΙΧΕΙΩΝ Θ΄

Στοιχεῖα Εὐκλείδου θ΄

[Βιβλίον IX]


Προτάσεις λς΄. [36]

α΄. [1]
Ἐὰν δύο ὅμοιοι ἐπίπεδοι ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα, ὁ γενόμενος τετράγωνος ἔσται.


β΄.[2]
Ἐὰν δύο ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσι τετράγωνον, ὅμοιοι ἐπίπεδοί εἰσιν ἀριθμοί.


γ΄.[3]
Ἐὰν κύβος ἀριθμὸς ἑαυτὸν πολλαπλασιάσας ποιῇ τινα, ὁ γενόμενος κύβος ἔσται.


δ΄.[4]
Ἐὰν κύβος ἀριθμὸς κύβον ἀριθμὸν πολλαπλασιάσας ποιῇ τινα, ὁ γενόμενος κύβος ἔσται.


ε΄.[5]
Ἐὰν κύβος ἀριθμὸς ἀριθμόν τινα πολλαπλασιάσας κύβον ποιῇ, καὶ ὁ πολλαπλασιασθεὶς κύβος ἔσται.


ς΄.[6]
Ἐὰν ἀριθμὸς ἑαυτὸν πολλαπλασιάσας κύβον ποιῇ, καὶ αὐτὸς κύβος ἔσται.


ζ΄.[7]
Ἐὰν σύνθετος ἀριθμὸς ἀριθμόν τινα πολλαπλασιάσας ποιῇ τινα, ὁ γενόμενος στερεὸς ἔσται.


η΄.[8]
Ἐὰν ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον ὦσιν, ὁ μὲν τρίτος ἀπὸ τῆς μονάδος τετράγωνος ἔσται καὶ οἱ ἕνα διαλείποντες, ὁ δὲ τέταρτος κύβος καὶ οἱ δύο διαλείποντες πάντες, ὁ δὲ ἕβδομος κύβος ἅμα καὶ τετράγωνος καὶ οἱ πέντε διαλείποντες.


θ΄.[9]
Ἐὰν ἀπὸ μονάδος ὁποσοιοῦν ἑξῆς κατὰ τὸ συνεχὲς ἀριθμοὶ ἀνάλογον ὦσιν, ὁ δὲ μετὰ τὴν μονάδα τετράγωνος ᾖ, καὶ οἱ λοιποὶ πάντες τετράγωνοι ἔσονται. καὶ ἐὰν ὁ μετὰ τὴν μονάδα κύβος ᾖ, καὶ οἱ λοιποὶ πάντες κύβοι ἔσονται.


ι΄.[10]
Ἐὰν ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ [ἑξῆς] ἀνάλογον ὦσιν, ὁ δὲ μετὰ τὴν μονάδα μὴ ᾖ τετράγωνος, οὐδ' ἄλλος οὐδεὶς τετράγωνος ἔσται χωρὶς τοῦ τρίτου ἀπὸ τῆς μονάδος καὶ τῶν ἕνα διαλειπόντων πάντων. καὶ ἐὰν ὁ μετὰ τὴν μονάδα κύβος μὴ ᾖ, οὐδὲ ἄλλος οὐδεὶς κύβος ἔσται χωρὶς τοῦ τετάρτου ἀπὸ τῆς μονάδος καὶ τῶν δύο διαλειπόντων πάντων.


ια΄.[11]
Ἐὰν ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον ὦσιν, ὁ ἐλάττων τὸν μείζονα μετρεῖ κατά τινα τῶν ὑπαρχόντων ἐν τοῖς ἀνάλογον ἀριθμοῖς.


ιβ΄.[12]
Ἐὰν ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον ὦσιν, ὑφ᾿ ὅσων ἂν ὁ ἔσχατος πρώτων ἀριθμῶν μετρῆται, ὑπὸ τῶν αὐτῶν καὶ ὁ παρὰ τὴν μονάδα μετρηθήσεται.


ιγ΄.[13]
Ἐὰν ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἀνάλογον ὦσιν, ὁ δὲ μετὰ τὴν μονάδα πρῶτος ᾖ, ὁ μέγιστος ὑπ' οὐδενὸς [ἄλλου] μετρηθήσεται παρὲξ τῶν ὑπαρχόντων ἐν τοῖς ἀνάλογον ἀριθμοῖς.


ιδ΄.[14]
Ἐὰν ἐλάχιστος ἀριθμὸς ὑπὸ πρώτων ἀριθμῶν μετρῆται, ὑπ' οὐδενὸς ἄλλου πρώτου ἀριθμοῦ μετρηθήσεται παρὲξ τῶν ἐξ ἀρχῆς μετρούντων.


ιε΄.[15]
Ἐὰν τρεῖς ἀριθμοὶ ἑξῆς ἀνάλογον ὦσιν ἐλάχιστοι τῶν τὸν αὐτὸν λόγον ἐχόντων αὐτοῖς, δύο ὁποιοιοῦν συντεθέντες πρὸς τὸν λοιπὸν πρῶτοί εἰσιν.


ις΄.[16]
Ἐὰν δύο ἀριθμοὶ πρῶτοι πρὸς ἀλλήλους ὦσιν, οὐκ ἔσται ὡς ὁ πρῶτος πρὸς τὸν δεύτερον, οὕτως ὁ δεύτερος πρὸς ἄλλον τινά.


ιζ΄.[17]
Ἐὰν ὦσιν ὁσοιδηποτοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, οἱ δὲ ἄκροι αὐτῶν πρῶτοι πρὸς ἀλλήλους ὦσιν, οὐκ ἔσται ὡς ὁ πρῶτος πρὸς τὸν δεύτερον, οὕτως ὁ ἔσχατος πρὸς ἄλλον τινά.


ιη΄.[18]
Δύο ἀριθμῶν δοθέντων ἐπισκέψασθαι, εἰ δυνατόν ἐστιν αὐτοῖς τρίτον ἀνάλογον προσευρεῖν.


ιθ΄.[19]
Τριῶν ἀριθμῶν δοθέντων ἐπισκέψασθαι, πότε δυνατόν ἐστιν αὐτοῖς τέταρτον ἀνάλογον προσευρεῖν.


κ΄.[20]
Οἱ πρῶτοι ἀριθμοὶ πλείους εἰσὶ παντὸς τοῦ προτεθέντος πλήθους πρώτων ἀριθμῶν.


κα΄.[21]
Ἐὰν ἄρτιοι ἀριθμοὶ ὁποσοιοῦν συντεθῶσιν, ὁ ὅλος ἄρτιός ἐστιν.


κβ΄.[22]
Ἐὰν περισσοὶ ἀριθμοὶ ὁποσοιοῦν συντεθῶσιν, τὸ δὲ πλῆθος αὐτῶν ἄρτιον ᾖ, ὁ ὅλος ἄρτιος ἔσται.


κγ΄.[23]
Ἐὰν περισσοὶ ἀριθμοὶ ὁποσοιοῦν συντεθῶσιν, τὸ δὲ πλῆθος αὐτῶν περισσὸν ᾖ, καὶ ὁ ὅλος περισσὸς ἔσται.


κδ΄.[24]
Ἐὰν ἀπὸ ἀρτίου ἀριθμοῦ ἄρτιος ἀφαιρεθῇ, ὁ λοιπὸς ἄρτιος ἔσται.


κε΄.[25]
Ἐὰν ἀπὸ ἀρτίου ἀριθμοῦ περισσὸς ἀφαιρεθῇ, ὁ λοιπὸς περισσὸς ἔσται.


κς΄.[26]
Ἐὰν ἀπὸ περισσοῦ ἀριθμοῦ περισσὸς ἀφαιρεθῇ, ὁ λοιπὸς ἄρτιος ἔσται.


κζ΄.[27]
Ἐὰν ἀπὸ περισσοῦ ἀριθμοῦ ἄρτιος ἀφαιρεθῇ, ὁ λοιπὸς περισσὸς ἔσται.


κη΄.[28]
Ἐὰν περισσὸς ἀριθμὸς ἄρτιον πολλαπλασιάσας ποιῇ τινα, ὁ γενόμενος ἄρτιος ἔσται.


κθ΄.[29]
Ἐὰν περισσὸς ἀριθμὸς περισσὸν ἀριθμὸν πολλαπλασιάσας ποιῇ τινα, ὁ γενόμενος περισσὸς ἔσται.


λ΄.[30]
Ἐὰν περισσὸς ἀριθμὸς ἄρτιον ἀριθμὸν μετρῇ, καὶ τὸν ἥμισυν αὐτοῦ μετρήσει.


λα΄.[31]
Ἐὰν περισσὸς ἀριθμὸς πρός τινα ἀριθμὸν πρῶτος ᾖ, καὶ πρὸς τὸν διπλασίονα αὐτοῦ πρῶτος ἔσται.


λβ΄.[32]
Τῶν ἀπὸ δυάδος διπλασιαζομένων ἀριθμῶν ἕκαστος ἀρτιάκις ἄρτιός ἐστι μόνον.


λγ΄.[33]
Ἐὰν ἀριθμὸς τὸν ἥμισυν ἔχῃ περισσόν, ἀρτιάκις περισσός ἐστι μόνον.


λδ΄.[34]
Ἐὰν ἀριθμὸς μήτε τῶν ἀπὸ δυάδος διπλασιαζομένων ᾖ μήτε τὸν ἥμισυν ἔχῃ περισσόν, ἀρτιάκις τε ἄρτιός ἐστι καὶ ἀρτιάκις περισσός.


λε΄.[35]
Ἐὰν ὦσιν ὁσοιδηποτοῦν ἀριθμοὶ ἑξῆς ἀνάλογον, ἀφαιρεθῶσι δὲ ἀπό τε τοῦ δευτέρου καὶ τοῦ ἐσχάτου ἴσοι τῷ πρώτῳ, ἔσται ὡς ἡ τοῦ δευτέρου ὑπεροχὴ πρὸς τὸν πρῶτον, οὕτως ἡ τοῦ ἐσχάτου ὑπεροχὴ πρὸς τοὺς πρὸ ἑαυτοῦ πάντας.


λς΄.[36]
Ἐὰν ἀπὸ μονάδος ὁποσοιοῦν ἀριθμοὶ ἑξῆς ἐκτεθῶσιν ἐν τῇ διπλασίονι ἀναλογίᾳ, ἕως οὗ ὁ σύμπας συντεθεὶς πρῶτος γένηται, καὶ ὁ σύμπας ἐπὶ τὸν ἔσχατον πολλαπλασιασθεὶς ποιῇ τινα, ὁ γενόμενος τέλειος ἔσται.