Loading...

ΒΙΒΛΙΟΝ IV

ΣΤΟΙΧΕΙΩΝ ΕΥΚΛΕΙΔΟΥ
ΣΤΟΙΧΕΙΩΝ Δ΄

Στοιχεῖα Εὐκλείδου δ΄

[Βιβλίον IV]


Ὅροι ζ΄ [7].

α΄ [1]. Σχῆμα εὐθύγραμμον εἰς σχῆμα εὐθύγραμμον ἐγγράφεσθαι λέγεται, ὅταν ἑκάστη τῶν τοῦ ἐγγραφομένου σχήματος γωνιῶν ἑκάστης πλευρᾶς τοῦ, εἰς ὃ ἐγγράφεται, ἅπτηται.

β΄ [2]. Σχῆμα δὲ ὁμοίως περὶ σχῆμα περιγράφεσθαι λέγεται, ὅταν ἑκάστη πλευρὰ τοῦ περιγραφομένου ἑκάστης γωνίας τοῦ, περὶ ὃ περιγράφεται, ἅπτηται.

γ΄ [3]. Σχῆμα εὐθύγραμμον εἰς κύκλον ἐγγράφεσθαι λέγεται, ὅταν ἑκάστη γωνία τοῦ ἐγγραφομένου ἅπτηται τῆς τοῦ κύκλου περιφερείας.

δ΄ [4].Σχῆμα δὲ εὐθύγραμμον περὶ κύκλον περιγράφεσθαι λέγεται, ὅταν ἑκάστη πλευρὰ τοῦ περιγραφομένου ἐφάπτηται τῆς τοῦ κύκλου περιφερείας.

ε΄ [5]. Κύκλος δὲ εἰς σχῆμα ὁμοίως ἐγγράφεσθαι λέγεται, ὅταν ἡ τοῦ κύκλου περιφέρεια ἑκάστης πλευρᾶς τοῦ, εἰς ὃ ἐγγράφεται, ἅπτηται.

ς΄ [6]. Κύκλος δὲ περὶ σχῆμα περιγράφεσθαι λέγεται, ὅταν ἡ τοῦ κύκλου περιφέρεια ἑκάστης γωνίας τοῦ, περὶ ὃ περιγράφεται, ἅπτηται.

ζ΄ [7]. Εὐθεῖα εἰς κύκλον ἐναρμόζεσθαι λέγεται, ὅταν τὰ πέρατα αὐτῆς ἐπὶ τῆς περιφερείας ᾖ τοῦ κύκλου.


Προτάσεις ις΄. [16]

α΄. [1]
Εἰς τὸν δοθέντα κύκλον τῇ δοθείσῃ εὐθείᾳ μὴ μείζονι οὔσῃ τῆς τοῦ κύκλου διαμέτρου ἴσην εὐθεῖαν ἐναρμόσαι.


β΄.[2]
Εἰς τὸν δοθέντα κύκλον τῷ δοθέντι τριγώνῳ ἰσογώνιον τρίγωνον ἐγγράψαι.


γ΄.[3]
Περὶ τὸν δοθέντα κύκλον τῷ δοθέντι τριγώνῳ ἰσογώνιον τρίγωνον περιγράψαι.


δ΄.[4]
Εἰς τὸ δοθὲν τρίγωνον κύκλον ἐγγράψαι.


ε΄.[5]
Περὶ τὸ δοθὲν τρίγωνον κύκλον περιγράψαι.


ς΄.[6]
Εἰς τὸν δοθέντα κύκλον τετράγωνον ἐγγράψαι.


ζ΄.[7]
Περὶ τὸν δοθέντα κύκλον τετράγωνον περιγράψαι.


η΄.[8]
Εἰς τὸ δοθὲν τετράγωνον κύκλον ἐγγράψαι.


θ΄.[9]
Περὶ τὸ δοθὲν τετράγωνον κύκλον περιγράψαι.


ι΄.[10]
Ἰσοσκελὲς τρίγωνον συστήσασθαι ἔχον ἑκατέραν τῶν πρὸς τῇ βάσει γωνιῶν διπλασίονα τῆς λοιπῆς.


ια΄.[11]
Εἰς τὸν δοθέντα κύκλον πεντάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι.


ιβ΄.[12]
Περὶ τὸν δοθέντα κύκλον πεντάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον περιγράψαι.


ιγ΄.[13]
Εἰς τὸ δοθὲν πεντάγωνον, ὅ ἐστιν ἰσόπλευρόν τε καὶ ἰσογώνιον, κύκλον ἐγγράψαι.


ιδ΄.[14]
Περὶ τὸ δοθὲν πεντάγωνον, ὅ ἐστιν ἰσόπλευρόν τε καὶ ἰσογώνιον, κύκλον περιγράψαι.


ιε΄.[15]
Εἰς τὸν δοθέντα κύκλον ἑξάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι.


ις΄.[16]
Εἰς τὸν δοθέντα κύκλον πεντεκαιδεκάγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον ἐγγράψαι.