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Abstract— In this paper we build on, and extend our
previous work on automated nuclear search, by taking the
principle of a bidirectional interaction between perception
and the sensor management to the implementation level. In
the algorithm that we implement in hardware, a model of the
underlying physical process is used to guide measurement,
which then closes the loop by updating the model. Real-
ization of our “model-driven-measurement” concept leads
to a working robotic prototype, capable of confirming the
presence of weak radiation sources at the specified statistical
confidence level, within a bounded, two-dimensional area.
The contribution of this paper is in demonstrating that
automated nuclear search is feasible, can be performed with
commercially available robotic hardware and measuring
devices, and that experimental data are consistent with
existing theoretical and computational results.

I. INTRODUCTION

The world’s geopolitical situation has changed over the
past decade to the degree that requires a new approach
to the types of threats which we now face. Modern
threats are subtle and ephemeral, can be hidden across
large areas. Classical information extraction methods, in
which data are randomly collected, and then subsequently
filtered and analyzed by human operators in search of par-
ticular signatures, are no longer effective. Data collection
must be guided by querying world models that, unlike
the human mind, can have the span and resolution needed
for multi-scale problems. Physical models of real-world
threats will need continuous updating to follow unpre-
dictable human choices and chaotic physical outcomes.

Our response to this challenge is a new methodology
of dynamic interplay between model update and data col-
lection, facilitated by autonomous robots (Figure 1). Our
sensing and control architecture (illustrated in Figure 3)
introduces the concept of “Model-Driven-Measurement,”
which goes beyond the classical data collection and
assimilation.

Currently, searching for radiation sources is done man-
ually, usually by operators waving radiation counters in
front of them. When the target is a weak radiation source
like a speck of uranium, this process is highly unlikely
to yield any results at all. The strength of the signal in
nuclear search relative to noise falls as R−2 as distance
R to the source increases. For this reason, existing tech-
niques for autonomous mapping and searching that are
based on gradient following [3] will fail: there will be no
statistically significant gradient measurement to follow. A
new approach that combines random and guided search

is needed, to bring the sensor as close to the source as
possible [4]. Using mobile robots to carry the sensors
close to the source, and position it accurately for required
measurement collection, is a natural choice (Fig. 2).

Fig. 1. The Khepera II mobile
robot with the radiation sensor
attached. Coper tape is used to
shield the detector from ambient
noise.

Fig. 2. The miniature radiation
sensor that is interfaced with the
Khepera II mobile robot, and to-
gether navigates the area collect-
ing radiation data.

Fig. 3. Model-driven measurement: we must start asking our questions
of models, rather than measurements.

In our recent work [9], we automated nuclear search
using a strategy based on the classical sequential test-
ing theory which allows to quickly locate microscopic
specks of radioactive material scattered over large area. To
speed up the search task our motion controller maintains
a maximum scanning speed while the observed count
rate is consistent with our model of natural background
radiation. When the increase in the number of detected
counts is observed, the robot decelerates to a level where
the exposure time is sufficient to arrive at a definitive
conclusion, with very high confidence, as to whether a
source is present there. In a sequential search for a weak
radiation source, the space is typically divided in cells and
the sensor collects measurements at each cell for different
time periods. Once a statistically definitive decision is
made regarding the presence or absence of a source, the
sensor “jumps” to the next cell.

From the robotics perspective, the problem of locat-
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ing such a target is at the intersection of search and
exploration. Contrary to common approaches in robotic
mapping and exploration, here it is not the topology of the
environment that is of interest, but rather the distribution
of a physical quantity over an area. The conceptual
similarities between the two problems motivate a very
brief (and therefore incomplete) review of robotic ap-
proaches to robotic search and exploration, where existing
approaches differ depending on the a priori information
available about the environment. If the boundary of the
environment is known, a robot can follow a variety of
pre-specified paths to cover the entire space [1], [11],
[2]. But when the environment boundaries are not known,
exploring the area in minimum time is known to be an
NP-complete problem, even for the simplest, discretized
environments with graph structure. Since an efficient,
time-optimal exploration algorithm is unlikely to exist,
locally optimal “greedy” approaches and heuristics are
being used. One of the most sophisticated approaches is
that of [6], where a single robot decides the new search
directions by weighting the information gain against the
cost of moving along each particular direction.

Among the first problems to be resolved for realizing
an automated sequential search using a mobile robot,
is how to modify the method to make it applicable
in a continuous-space/time framework; a robot can not
instantaneously “jump” from one cell to the next, and
measurements are collected continuously. We approach
this issue by regulating the velocity and acceleration
of the moving sensor, to approximate the execution of
the discrete algorithm as close as possible. We link the
robot motion controller to the statistics of the radiation
measurements, and let the latter determine if the robot
should accelerate or slow down. In this paper, we develop
an experimental platform with which we test our method-
ology, and present an application where radiation levels
are mapped using the Khepera II mobile robot (shown in
Figure 1) along one, and two dimensions.

II. PROBLEM STATEMENT

Low-rate counting of radiation from nuclear decay is
described by the Poisson statistics, where the probability
to register n counts in the detector in t seconds from the
source that is known to emit an average of μ counts per
second (cts/s) is

P (n, t) =
(μ · t)n

n!
e−(μ·t). (1)

The simplest way to find the radiation source is to search
the area uniformly, exposing each location for a fixed
duration of time. When no time constraints are present,
uniform search is the reasonable strategy to employ. The
width of Poisson distribution is defined as σ =

√
μ · t.

At known average expected background μb, signal μs

and exposure time (t), the threshold on the number of
observed counts can be set that satisfies the required
confidence level of the search outcome. However in real
life scenarios the time allowed for the search is limited.
We need methods that are optimized with respect to search
time.

The objective is to use a mobile robot to scan a two
dimensional area and confirm the presece of tiny, weak
radiation sources, at a very high level of confidence. The
robot is supposed to carry a radiation detector, capable
of registering gamma rays as they pass through it. Based
on the measured radiation, the robot should decide if a
source exists at its location.

III. SEQUENTIAL NUCLEAR SEARCH

Classical sequential testing theory [10] suggests the
“stopping rules” that allow for rejection of certain se-
quences of observations at early stages, providing for
optimized solution that we seek. Either positive or neg-
ative identification can be made based on the likelihood
ratio κk = P (Nk|S)/P (Nk|B), where P (Nk|S) is the
probability to observe Nk counts within time period
tk, given that the location contains source with aver-
age number of counts per unit time μs, P (Nk|S) =
(tk·μs)Nk

Nk! e−tk·μs , and the probability to observe Nk

counts assuming location k has only background is
P (Nk|B) = (tk·μb)

Nk

Nk! e−tk·μb . The stopping rule is de-
termined from the desired false negative and false alarm
rates

C =
PFN

1 − PFA
A =

1 − PFN

PFA
. (2)

For the probability ratio κk in location k, the condition
κk ≤ C rejects the hypothesis that the source is present,
while the condition κk ≥ A confirms the presence of the
source. When C < κk < A, longer exposure is required
to make a decision. An example of the stopping rules is
illustrated in Figure 4, where the straight lines represent
the limits of confidence intervals for certain statistical
hypotheses: when the radiation counts collected within a
certain time period are in the upper region, the presence of
a source is verified with a given confidence; if the counts
fall in the lower region, then they are most likely due to
background radiation; in between, no conclusion can be
confidently drawn until more measurements are collected.

IV. AUTOMATION OF SEQUENTIAL METHOD

We develop a (velocity) motion controller for a mo-
bile robot, which regulates sensor exposure time, and
implements the sequential search strategy described in the
previous section within a two-dimensional environment.
The search is performed by scanning an N × N plannar
grid, row by row (Figure 5), regulating the time the sensor
collects data from each cell by controlling the speed of
the robot.

A. Overview

To each region in Figure 4 we associate a robot mode
of operation (behavior). As soon as the robot can reach
a decision regarding the presense or absense of a source,
it keeps moving at a constant, nominal speed. This speed
is maintained as long as the counts received at the end of
each sampling period remain below a certain threshold. If
this threshold is exceeded, and counts begin to accumulate
at an increased rate, the robot decelerates to a slower
speed, allowing it to collect more measurements at that
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Fig. 4. By applying sequential testing theory to our search problem,
we calculate thresholds for a positive confirmation or rejection of the
source hypothesis (from (2)). The set of gates for positive (top set of
thin horizontal lines) and negative (bottom set of thin horizontal lines)
identification of 10cts/s source within 1cts/s background compared with
the set of gates obtained from numerical calculation (triangles). The
bold solid lines are the linear fit to the outer limit of the gates.

Fig. 5. The mobile robot moves the radiation sensor along the rows of
a planar grid. The collected measurements facilitate a decision on the
presence or absence of a radioactive source, at every cell scanned, and
at a given confidence level.

particular region, thus reducing the measurement uncer-
tainty, and enabling a more confident decision regarding
the possible existence of a source there.

Once in this mode, the robot slows down to provide
a total maximum exposure time of the sensor over the
given cell, approximately equal to Tt = 2.4 seconds. If
during this interval the number of counts collected from
this region falls below the negative detection (lower) line,
the hypothesis that a source is present is rejected and the
robot accelerates back to its nominal speed; if the number
of counts registers above the positive detection (upper)
line, the presence of the source is verified, the position is
marked and the robot accelerates to to nominal speed; and
if the number of counts is still in the region of uncertainty
at the end of the Tt exposure interval, the presence of a
source is rejected by default, and the robots accelerates
to nominal speed.

The robot dynamics is modeled in discrete time as
follows:

x[k + 1] = x[k] + v[k]ΔT +
1
2
a[k]ΔT 2 (3)

v[k + 1] = v[k] + a[k]ΔT, (4)

where x[k] and v[k] are the position and speed of the
robot at the end of the k sampling period, respectively.
The sampling time is ΔT and a[k] is the acceleration
input at step k computed based on observations made
during step (k − 1).

Let vo be the nominal, initial speed of the robot, and
let LS be the length of the sensor (Figure 2). If the robot
is moving with constant speed v[k], each point on the

robot’s path will be given a uniform exposure time of
Texp = LS

v[k] . During each sampling period ΔT , the counts
recorded by the radiation detector are added up. At the
end of each step, the sum is stored and the detector’s
buffer is cleared to begin recording the new sum. Let ci

be the sum of the detector counts during step i. The rate
of change (increase) of counts in the ith step is estimated
at the end of each time step as

Δc

Δt

∣∣∣
i
=

ci − ci−1

ΔT
. (5)

The line expressing the negative identification gate in
Figure 4 can be expressed in the form c = λt+ν, where λ
and ν are constants that can be calculated from the graph
of Figure 4, as the slope and intercept of each straight
line, respectively.

To determine whether the sample collected by the
detector during step i is actually drawn from a Poisson
distribution with a mean significantly larger than the
assumed background, we test the condition

Δc

Δt

∣∣∣
i
ΔT > λΔT + ν. (6)

If (6) is satisfied, (some of) the counts recorded could be
coming from a nearby source. To confirm whether this is
the case, we increase the exposure time to Tt. By then,
the sample size would either have increased enough to
cross the positive identification gate (upper line in Figure
4) and confirm the presence of the source with the given
confidence, or remain below that line, in which case it is
classified as noise by default.

B. Development of the motion controller

Let μs denote the average number of counts emitted by
the source at each second. Then the estimated time Tp,
for which the sensor has been collecting counts from the
source before (6) is satisfied, is

Tp =
Δc

Δt

∣∣∣
i
· ΔT

μs
.

Figure 4 suggests that within the first 0.2 seconds, it
is probable that the detector recorded no counts at all
coming from the source. Therefore, we restrict Tp to
satisfy 0.2 < Tp < 0.2 + ΔT . At the time when
(6) is satisfied, a decision is made to increase the total
exposure time to Tt, and therefore the detector has to
continue collecting measurements from the same location
for T = Tt − Tp additional seconds. Define

n =
⌈

T

ΔT

⌉
.

We quantize T as T = nΔT, n ∈ N . If the robot was
travelling with speed v[k] for the time period Tp, during
which the sensor was possibly exposed to the source, the
latter would have moved relative to the tip of the sensor
by a distance Sp = v(k)Tp. The part of the sensor which
has not yet been exposed to the source is S = LS − Sp.
Assume that the robot travels S1 distance in ΔT time
while decelerating,

S1 = v[k]ΔT +
1
2
a[k]ΔT 2,



and then covers S2 distance in (T − ΔT ) time, moving
at constant speed:

S2 = v[k + 1](T − ΔT ).

The sum of the distances (S1 + S2) should be equal to
the length of the unexposed part of the sensor, S, from
which

S = v[k]ΔT +
1
2
a[k]ΔT 2 + v[k + 1](T − ΔT )

= v[k]T +
1
2
a[k](2TΔT − ΔT 2).

The required acceleration input at step k is therefore

a[k] =
2(S − v[k]T )
2TΔT − ΔT 2

,

which can be further simplified and written in terms of
LS, v(k) and Tt:

a[k] =
2(LS − v[k]Tt)
ΔT (2T − ΔT )

. (7)

Obviously, if v[k] ≤ LS

Tt
, the robot does not need to

decelerate, because the exposure time is already more
than Tt seconds. We therefore assume that v[k] > LS

Tt
,

and consequently for the nominal speed it should hold
vo > LS

Tt
. The speed to which the robot decelerates if

more measurements are needed is given by (4). To allow
only forward motion, we need v[k + 1] to be positive,
which based on (7), and given Tp = Tt − T implies

v[k] <
LS

ΔT/2 + Tp
=

LS

ΔT/2 + ΔT + 0.2
.

The nominal speed should therefore be set so that

LS

Tt
< vo <

LS

3/2ΔT + 0.2
. (8)

After decelerating by a[k] for one sampling period,
the robot travels with a constant speed, v[k + 1] for the
next (n− 1) sampling periods. At the end of each of the
sampling periods k + 1 through k + n, the total number
of counts is cj =

∑k+j
i=k ci, j ≤ n. By then, the suspected

source is exposed for a total time of tj = (j + 1)ΔT .
Therefore, if

cj > λtj + ν1,

where c = λt+ν1 describes the positive identification line
(Figure 4), then the presence of a source is verified. The
robot marks the location and accelerates back to v[t+1] =
vo. The acceleration in the k + j + 1 sampling period is
given by a[k + j + 1] = vo−v[k+j]

ΔT .

V. EXPERIMENTAL RESULTS

A. Hardware Description

Experimental implementation of the sequential search
algorithm was performed using the Khepera II robot
with a custom- built turret to interface the CsI radiation
sensor (Figure 1). The Khepera II robot features a Mo-
torola 68331, 25MHz processor with 512Kbytes Ram and
512Kbytes Flash memory, running our embedded C code
that implements the sequential search motion controller.
We use three analog inputs provided by the I/O turret,

and communicate with it through RS232. Data acquisition
software is also developed, allowing for real-time 1-D and
2-D radiation mapping during experimentation. The added
weight of the sensor, digital board, and power supplies,
present a challenge to robot’s motors. To reduce friction,
a stainless steel ball caster wheel is added at the base of
the sensor. Odometry errors tend to cause the robot to
deviate from the reference path, if the latter is relatively
long (> 75 cm).

The Khepera II is equipped with a CsI radiation sensor.
Gamma-rays that pass through the CsI crystal have a
probability of depositing some or all of their energy. The
deposited energy goes into excitement of the electrons
into higher energy levels that decay with characteristic
lifetime and emit visible light. The 4 cm long and 1.2 cm
in diameter cylindrical CsI crystal was encapsulated into
the Al casing with the Hamamatsu S3509 pin photodiode
mounted on it to detect light induced in the crystal by
passing photons. The sensor was assembled for us by the
Alphaspectra, Inc. The pulse generated by the diode is
very weak and needs to be amplified. We used the A250
preamplifier with external FET from Amptek. The pulse
is then shaped through a four-stage shaping amplifier
based on operational amplifiers. On the output of the
amplifier we get almost Gaussian pulse the hight of which
corresponds to the energy that was deposited by the
gamma-ray in the active region of the detector (Fig. 10).
The pulse is processed using digital board that is based
on low power, high speed, 8bit National Semiconductor
ADC08200 and Altera Cyclone 2910 FPGA. The FPGA
can beprogrammed to perform all necessary pulse post-
processing. We have developed FPGA code to perform
peak finding and pulse counting. We estimated the total
power consumption of the electronics to be below 200
mAh at 6V, that allows us to power them for several
hours with four rechargeable digital camera batteries. The
pin photodiode is in reverse bias and consumes negligible
amount of power (nAh at 25V).

B. Tests

The first experimental run is one dimensional, and the
robot is driven over a 75 cm straight line. A smooth
surface is needed to ensure accurate path trajectory so a
1 m2 white board was used. The experiment is performed
using a 10 nCi Na-22 source. The source is so weak
that we observed an increase in count rate only when
the source was directly under our detector. The average
count rate from cosmic gamma-rays was approximately
1.8 counts/s, while we measure an average of 6.1 counts/s
from the source. The sampling period for the control loop
is set at ΔT = 0.6 sec, and the maximum exposure time
allowed for each point is set at Tt = 2.5 sec. The nominal
speed of the robot is set at vo = 32 mm/s. During the
deceleration phase, where the presence or absence of a
source cannot be verified, the speed of the robot is set
to 0 mm/s, since the current experimental setup required
the source to be directly under the detector, obscuring the
path of the robot. After the maximum exposure time, the
radiation source is removed from the path of the robot



and the robot accelerates back to its nominal speed.
Figure 6 shows the counts (background plus source)

recorded at each time step. The peak between t = 14 s
and t = 16 s, indicates the presence of a source.

Figure 7 depicts the cummulative counts versus time,
in order to highlight the significant jump in the increase
rate around t = 16 s, which takes the data sample to
the region of uncertainty, and triggers the transition to
deceleration mode. During the next sample period, the
robot decelerates to zero velocity to increase the exposure
time, which decreases the uncertainty of the presence
of a source. In this sampling period the robot confirms
the presence of a source, accelerates back to its nominal
speed, and resumes the search.
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Fig. 6. The counts (source and
background) collected at each time
step during the one-dimensional
search.
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Fig. 7. The total number of counts
(source and background)collected
as time progresses in the one-
dimensional search.
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Fig. 8. The distance travelled by
the robot as a function of time.
Deceleration times correspond to
peaks in the number of measured
radiation counts.
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a function of time.

Fig. 10. Example of the en-
ergy spectrum recorded with
our CsI sensor.
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Fig. 11. A portion of a two dimensional
radiation map created by the robot after
scanning three rows.

Figure 8 shows how the robot decelerates in response
to the increased rate of count collection. Each sudden
increase in radiation count measurements in Figure 6
triggers a transition to the deceleration mode. Increased
exposure time allows the robot to make a decision regard-
ing the presense or absense of a source, and proceed with
its search at nominal speed. This is evident in Figure 9,

where the speed profile of the robot is ploted versus time.
During the second run, the robot is driven over a 75 cm

× 12 cm area creating a 2-D radiation map. Each cell is
considered to be a 2 cm × 4 cm area. All parameters are
kept the same as in the first experiment. The 10 nCi Na-
22 source is placed in turns at three different locations:
(32, 3) cm, (32, 7) cm, and (45, 11) cm. The robot is
scanning the 2-D region following a pattern similar to
that shown in Figure 5. The resulting map is shown in
Figure 11. The mapping indicates that during the search
the robot decelerated 13 times, of which 10 were triggered
by background, and 3 by the sources. All three sources
were identified at there respective locations and at no time
was a false alarm recorded.

C. Comparison to Uniform Search Algorithm

In this section we compare the proposed Sequential
search algorithm, with the Uniform search algorithm. We
use both algorithms to map arbitrary radiation levels over
an area, rather than just confirm the presence of a source.

Uniform search consists of scanning the area cell by
cell along each row, spending a constant fraction of time
at each cell. At the end of the scan, the maximum value
for the variance over all cells is compared to the threshold
value, and if found larger, the scan is repeated. The search
stops when the variance of all the cells of the workspace,
is less than the threshold value.

The sequential search algorithm can be thought of as a
variation of the uniform search, in which the time spent
in each cell is adjusted to allow sufficient integration time
for the sensor, and enough measurements to collected, so
that the cell variance drops below the threshold V 0

a . Once
this is achieved, the robot moves to the next cell in the
row and repeats the process. The exploration terminates
once the variance in all cells drops below the threshold
value; in this case however, each cell is visited only once.

The area to be scanned is a 60 cm x 60 cm surface,
decomposed into a 15 x 15 grid. The initial robot position
is at cell (10, 10). We assume a distribution of radia-
tion levels over this area, with a given mean expected
count rate λa which is well described by the Poisson
distribution, represented in upper left of Figure 12. This
distribution is unknown to the system, and the goal of the
experiment is to reconstruct it up to a certain confidence
level Va, using measurement data.

There is no initial information about the λa distribution
available to the system, so a reasonable prior is a uniform
distribution, both for λmn

a and for V mn
a , where (m, n),

∀m, n ∈ {1, . . . , 15} an arbitrary cell, as shown in the
lower left and upper right of Figure 12, respectively. The
desired confidence level for the constructed map is set at a
value corresponding to a variance of V 0

a = 0.5. The robot
therefore has to explore the map until the variance value
over the whole area is decrease below this threshold.

The initialization of the experimental test is showed
in Figure 13. The picture shows the robot in its initial
configurations on the grid.

Figures 14 through 15 present experimental results for
the uniform search, and figures 16 through 17 present
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Fig. 13. Experimental set-up.
The robot is in its initial cell on
the grid.
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rithm. Upper left: real distribution
of λa. Upper right: updated values
of the distribution of λa, as the
robot is moving and the sensor
is collecting radiation data. Lower
left: updated values of variance,
during the experiment.
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Fig. 15. Uniform search algo-
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intermediate step. More than one
scan of the total area is needed to
achieve the certainty level.
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Fig. 17. Sequential search algo-
rithm, in which the robot is moving
cell by cell along each row, and it
is staying there until the variance
is decreased below the threshold.
Variance’s values at an intermedi-
ate step, with further explored area.

experimental results for the sequential search, for the
same mapping scenario. The two search algorithms are
compared in terms of completion time. Results indicate
that the Sequential search is faster than Uniform. In a
typical run, the Sequential search requires approximately
600 time steps (seconds), and the Uniform search roughly
3, 000 time steps, to complete the map at the same level
of confidence. Another interesting difference between the
search methods is the final maximum error (in absolute
value terms) between the true (originally assumed, but
unknown to the system) distribution of λa, and the distri-
bution estimated by means of measurement: typical values
for this error are recorded 1.38 for the uniform algorithm,

and 2.11 for the sequential search. These numbers could
indicate that there could be a trade-off between search
time and map accuracy, however proper statistical analysis
over a large sample set of test runs is needed for a
definitive conclusion on this issue.

VI. CONCLUSIONS

We present an experimental implementation of a se-
quential nuclear search strategy in two dimensions, using
a commercially available desktop mobile robot, fitted with
a CsI radiation sensor. Our approach to implementing
the sequential nuclear search, is to regulate the speed
of the robot (and therefore control the exposure time
of the sensor) over each segment of the search area,
in real-time, according to the radiation counts collected
by the sensor. Further steps include extensions to three-
dimensional searches, the use of prior knowledge about
the search area, as well as the introduction of Bayesian
statistics for the on-line update of the world model. The
latter, will enable us to map arbitrary radiation levels over
an area, rather than just confirm the presense of a source,
using navigation strategies inspired by [8].
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