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Abstract— A robust and effective gait analysis functionality
is an essential characteristic for an assistance mobility robot
dealing with elderly persons. The aforementioned functionality
is crucial for dealing with mobility disabilities which are
widespread in these parts of the population. In this work
we present experimental validation of our in house developed
system. We are using real data, collected from an ensemble of
different elderly persons with a number of pathologies, and
we present a validation study by using a GaitRite System.
Our system, following the standard literature conventions,
characterizes the human motion with a set of parameters
which subsequently can be used to assess and distinguish
between possible motion disabilities, using a laser range finder
as its main sensor. The initial results, presented in this work,
demonstrate the applicability of our framework in real test
cases. Regarding such frameworks, a crucial technical question
is the necessary complexity of the overall tracking system. To
answer this question, we compare two approaches with different
complexity levels. The first is a static rule based system acting
on filtered laser data, while the second system utilizes a Hidden
Markov Model for gait cycle estimation, and extraction of
the gait parameters. The results demonstrate that the added
complexity of the HMM system is necessary for improving the
accuracy and efficacy of the system.

I. INTRODUCTION

A. Motivation

Elder care constitutes a major issue for modern societies,
as the elderly population constantly increases. Mobility prob-
lems are common in seniors. As people age they have to
cope with instability and lower walking speed, [1]. It is
known that certain pathologies are responsible for changes
in stride length and alterations in phases of walking, [2].
Most people with mobility issues, patients or elders, have
to use walkers in their everyday activities and they need
the constant supervision of a carer. Therefore, the use of
non-invasive methods for medical monitoring is very crucial.
Robotics seems to fit naturally to the role of assistance,
since it can incorporate features such as posture support and
stability, walking assistance, health monitoring, etc.

The motivation in this work is to use intelligent mobile
robotic mechanisms (e.g. a rollator, Fig. 1), which can
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Fig. 1: Right: Typical passive assistive device for elderly. Left: A
robotic platform based on the rollator prototype equipped with a
Hokuyo Laser Sensor aiming to record the experimental gait data
of the user (below knee level).

monitor and understand specific forms of human walking
activity in their workspace, [3], in order to deduce their
needs regarding mobility and ambulation, and to provide
context-based support, and intuitive assistance in domestic
environments.

In this paper we address the challenge of developing a
reliable pathological walking assessment system. The pro-
posed system utilizes a laser sensor that detects and tracks
the user (which does not interfere with human motion).
We subsequently test two different approaches, of different
complexity, for extracting the necessary gait parameters. The
first approach is based on using a static rule book on the
spatiotemporal information of the legs motions to compute
the gait parameters. The second approach is based on Hidden
Markov Model (HMM) for recognizing the different gait
phases. This information is then used to extract the gait
parameters.

B. Related Work

The automatic classification and modeling of specific
physical activities of human beings is very useful for many
technical and biomechanical applications. A number of re-
search groups worldwide, are actively pursuing research,
currently investigating problems related to the development
of smart walking support devices, aiming to assist motor-
impaired persons and elderly in standing, walking and other
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mobility activities, as well as to detect abnormalities and to
assess rehabilitation procedures, [4]–[7]. Many researchers
cope with gait analysis using machine learning algorithms,
aiming to detect pathological cases that require medical
treatment, using sparse representation for the detection of
pathological gait patterns that indicate Parkinson’s symp-
toms, [8], or fuzzy logic, [9].

For the extraction of gait motions, different types of
sensors have been used, from gyroscopes and accelometers to
cameras, [10]–[12], and inertial sensors on shoes, [13]. Other
approaches refer to human detection and tracking, or recog-
nition of human activity utilizing laser sensors, and in some
cases complementary with cameras, or force sensors (e.g.
[14]). Towards this direction, modeling human locomotion
by estimating the legs’ kinematic parameters with respect to
the mobility aid is essential. The detection and tracking of
humans is a common problem. Most research work focuses
on detecting and tracking human legs from static sensors,
as in pedestrian tracking (e.g. [15]), or from laser scanners
mounted on mobile robotic platforms for person following,
[16], [17]. In [18], [19], four laser rangefinders, placed at
the corners of a room, are used to track the user’s lower
limbs using a novel method for extracting leg trajectories.
Approaches for tracking users of robotic walkers can be
found in [20], [21], while [22] refers to a walker that
detects and tracks Parkinson’s patients. Several works use the
GAITRite System for validating their gait analysis results,
as in [23]. GAITRite System is commonly used for gait
impairments detection and analysis, [24], [25].

Gait analysis can be achieved by using Hidden Markov
Models (HMMs), which can model the dynamic properties
of walking. The versatility of HMMs makes them useful
in extracting human patterns. HMMs are currently used for
gait modelling employing data from wearable sensors, like
gyroscopes mounted on human’s feet, [26], but also for
discriminating human activities like walking/running, [27].
Data collected by IMUs mounted on human’s chests are also
modelled by HMMs for performing pedestrian activity and
gait-phase classification simultaneously, [28].

This paper presents an experimental validation study for
flexible and readily extensible pathological gait analysis and
assessment system. As opposed to most of the literature
available on the topic, the gait analysis and assessment ap-
proaches presented in this paper are completely noninvasive
based on the use of a typical non-wearable device. Instead
of using complex models and motion tracking approaches
that require expensive or bulky sensors, like motion capture
systems that are difficult to use because of their cost, setup
and calibration, and recording devices that interrupt human
motion, the measured data used in this work are provided by
a standard laser rangefinder sensor mounted on a robotic
rollator platform. The aim is that the users will not be
subject to wearing any special clothing or specific shoes
and they will walk freely in physical environments. Thus,
our method is suitable for domestic environments and can
detect gait abnormalities whenever the elder uses the robotic
walker, without having to walk on an electronic mat such as

Fig. 2: Internal gait phases of human normal gait cycle.

GAITRite. In this work, we aim to validate the extraction
of gait parameters based on two methodologies; a HMM-
based framework for gait modelling and a less complex
methodology based on static rule base. We validate the
results of both approaches using the ground truth data from a
GAITRite System. The objective of this work is to design a
reliable pathological walking assessment system as a subsys-
tem within a larger cognitive behaviour-based context-aware
robot control framework (that embodies several walking mor-
phologies, including turning and maneuvering motions). This
framework has the potential to be used for the classification
of various walking pathologies and related impairments. On
the same time, the design of our system is open, allowing
inclusion of new patients with mobility difficulties.

II. HUMAN GAIT CYCLE ANALYSIS

Traditionally the gait cycle has been divided into eight
events or periods, [29], as shown in Fig. 2, which are: 1.
IC - Initial Contact, 2. LR - Loading Response, 3. MS -
Midstance, 4. TS - Terminal Stance, 5. PW - Preswing, 6.
IW - Initial Swing, 7. MW - Midswing, 8. TW - Terminal
Swing. In this paper we have used the seven gait phases of
walking in order to analyze the gait cycle, since the TW
phase is characterized by heel strike that is an equivalent
trigger to the IC phase, and therefore those phases are treated
as identical.

Gait Analysis literature uses specific gait parameters for
the quantification of each gait cycle, commonly used for
medical diagnosis, [30], [31]. In this work, we are using
two temporal parameters: a. stride1 time: the duration of
each gait cycle, b. swing time: the swing phase duration in
a gait cycle, and, c. one spatial parameter: stride length, i.e.
the distance travelled by the same foot from IC of a stride
to a consecutive new IC.

III. GAIT PARAMETERS EXTRACTION BASED ON
SPATIAL-TEMPORAL INFORMATION

The subject’s legs are tracked using the laser data and
subsequently, the tracked leg positions are filtered. The rule
based gait parameter extraction function uses the filtered leg
trajectories.

1Stride is the equivalent of gait cycle, i.e. two sequential steps define one
stride, [29].
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A. Tracking

The tracking procedure is divided into two steps. First,
using the relative similarities between two subsequent laser
data frames, a rough estimate of the motion of the tracked
objects is computed. Then, the sensed laser data are clustered
using the motion estimation of the objects to compute the
new position of the tracked objects, i.e. the legs.

1) Segmentation: For each scanning frame the laser points
are segmented into groups, [32]. Groups with small cardi-
nality are discarded (i.e. most likely noisy measurements or
outliers). These groups are not necessarily the subjects legs.
For example when one leg is occluded the segmentation
will produce one large object. A necessary condition for
initialization of the algorithm is to find two groups, in the
initial frame and mark them as the legs to be tracked.

2) Object Association: The initial estimate of the updated
position of the tracked objects is computed as a linear
combination of different vectors. For the first vector, the laser
data of frame n+1 are clustered around the position of the
objects on frame n. The first vector connects the centroid of
the clusters on frame n to the centroids of the aforementioned
new clusters. For the second vector, each tracked object
on frame n is associated, using an appropriately computed
association function (a 2D Gaussian similarity metric, with
larger variance in the walking direction) with the objects
produced by the segmentation of the laser data of frame n+1.
Finally, a third vector is introduced, as repulsion between the
tracked objects. This models the actual behavior of the legs
and is used to avoid degenarations due to occlusions.

Using this computed centroid position, nearest neighbor
assignment of the laser points belonging to the next frame is
executed. The points assigned to this centroid represent the
observed position of the object in the next frame.

3) Motion Estimation: For each object, the result of the
tracking step is two sets of points in successive frames. The
motion parameters causing this movement are retrieved via
non-rigid point matching method, [33].

The new (estimated) position of the object results from
applying the non-rigid transformation to all of its laser points
in frame n. In this way, we track the position of each laser
point through all the frames.

B. Filtering

The filtering procedure smooths and fuses the noisy point
trajectories for a single leg, to provide a single estimate about
its centroid position, and it is performed on a time window,
rather than sample-wise. The trajectories of all laser points
belonging to a tracked object are filtered using Savitzky-
Golay FIR filter, [34]. Then, the smoothed trajectories are
fused via weighted average and median operators, to compute
the trajectory of the objects center. Finally, a Savitzky-Golay
is applied to the center’s trajectory.

C. Gait Parameters Extraction

The computation of the gait parameters is based on the
extracted smooth estimates of the user’s leg position. We use
the relative distance of the two legs ∆x = xR− xL, where xR

and xL are the position of right and left leg in x-axis, which
spans along the patient’s walking direction, as depicted in
Fig. 5. A heel strike, in the ∆x waveform, is close to a peak,
which is difficult to pinpoint exactly. Instead, for segmenting
the gait, we use the “zero-crossing” moments, when the
moving leg is passing in front of the still leg (MS or MW,
Section II).

Graphically, the gait parameters are shown in Fig. 5.
The stride length is computed by the distance between a
peak and a valley. The stride duration is computed by the
time between two zero-crossings with same slope sign. The
swing time is computed by the time interval when ∆x(t) ∈
[∆xvalley + ds thr, ∆xpeak− ds thr], with t ∈ (t∆xpeak , t∆xvalley),
where ds thr is a threshold to define the double support time.
This threshold can be tuned using a healthy user corpus,
where the double support time is 20−25% of the gait cycle,
[29].

IV. GAIT PARAMETERS EXTRACTION BASED ON
HIDDEN MARKOV MODEL

Hidden Markov Models are well suited for gait recognition
because of their statistical properties and their ability to
reflect the temporal state-transition nature of gait. In our
previous work, we analyze extensively the properties of our
HMM system and its applications for modelling normal
human gait, [35], as well as for pathological gait recognition,
[36]. The scope of this paper is to present validation data
for our system. Therefore, we will only briefly discuss the
specific details.

A. Detection and Tracking

The observations for the HMM gait cycle recognition are
provided at each time frame by a detection and tracking
system of the user’s legs, exploiting the raw data collected by
the laser range scanner mounted on the robotic rollator (the
measurements are relative to the robotic platform motion),
Fig.1. This system uses K-means clustering and Kalman
Filtering (KF) for the estimation of the central positions and
velocities of the left and right leg of the user along the axes,
[36].

The raw laser data are preprocessed using a background
extraction and a simple method for grouping laser points
based on experimental thresholds. We aim to end up with two
groups, which are labelled as left/right leg by the K-means
clustering algorithm. Circle Fitting is then used for com-
puting the legs’ centers. Those centers are the observation
vector that enters a constant acceleration KF. The KF tracks
the central positions of the limbs by stochastically estimating
their position and velocity. The predicted positions are fed
back to the preprocessing stage as a prior information of the
expected positions of the legs for the next time frame. If
one leg is occluded by the other (common problem while
turning) or there is interference of the carers legs close to
the patient’s legs, we have a false detection case. In false
detection we do not account any observations. To overcome
such situations, we only apply the prediction step of the KF.
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B. HMM Gait Cycle Recognition

The seven gait phases can define the hidden states of the
HMM, Fig. 2. As observables, we utilize several quantities
that represent the motion of the subjects’ legs, (relative
position w.r.t. the laser, velocities, etc.), which are estimated
using sequential signals from a laser sensor. The state and
observations at time t are denoted as st and Ot , respectively.
The seven states at time t = 1,2, ...,T , where T is the total
time, are expressed by the value of the (hidden) variable
st = i, for i = 1, . . . ,7, where 1≡ IC/TW , 2≡ LR, 3≡MS,
4≡ T S, 5≡ PW , 6≡ IW , and 7≡MW . The observations at
time t, are represented by the vector Ot = [o1

t . . .o
k
t ]

T , for k =
1, . . . ,9, where o1

t ≡ xR, o2
t ≡ yR, o3

t ≡ xL, o4
t ≡ yL, o5

t ≡ υR
x ,

o6
t ≡ υR

y , o7
t ≡ υL

x , o8
t ≡ υL

y , and o9
t ≡ Dlegs. The quantities

(xR,yR,xL,yL) are the positions and (υR
x ,υ

R
y ,υ

L
x ,υ

L
y ) are the

velocities of the right and left leg along the axes, and Dlegs
is the distance between the legs. The observation data are
modeled using a mixture of Gaussian distributions.

C. Gait Parameters Extraction

The recognized sequence of gait phases is indicative of
the subject’s underlying pathology, since it differs from the
normal gait phase sequences. Using this segmentation we
can compute the gait parameters from the range data.

Each recognised gait cycle is used for the gait parameter
extraction. The stride time equals the duration of the recog-
nised gait cycle. Given the time segmentation by the HMM,
we have isolated the stance and swing phase of the gait
cycle, and then we have computed the swing time between
the gait phases IW and MW. The summation of the absolute
distances travelled by each leg during the gait cycle provides
the stride length.

V. EXPERIMENTAL ANALYSIS & VALIDATION

A. Experimental setup and data description

The experimental data used in this work were collected in
Agaplesion Bethanien Hospital - Geriatric Center. Patients
with moderate to mild impairment, according to clinical
evaluation of the medical associates, took part in this exper-
iment. The patients were wearing their normal clothes (no
need of specific clothing). We have used a Hokuyo rapid
laser sensor (UBG-04LX-F01 with mean sampling period
of about 28msec and accuracy of 10mm), mounted on the
robotic platform of Fig. 1 for the detection of the patients’
legs. A GAITRite System was used to collect ground truth
data. GAITRite is an electronic mat, of length 4.6 meters,
equipped with pressure sensors placed at 1.27 cm each, used
for gait analysis. GAITRite provides measurements of the
spatial and temporal gait parameters and is commonly used
for medical diagnosis, [24].

We have used data from five patients with moderate
mobility impairment (aged over 65 years old). Each subject
walked straight with physical support of the robotic rollator
over the walkway defined by the GAITRite mat. The HMM
was trained by using the recorded data from twelve different

Fig. 3: Snapshots of a subject walking on the GAITRite walkway
assisted by the robotic platform, during one stride.

Fig. 4: The captured footprints of the subject by the GAITRite
System.

Fig. 5: Gait parameters w.r.t. ∆x waveform along the walking
direction, as computed by the rule based approach.

patients (without any GAITRite recording), [36]. All pa-
tients performed the experimental scenarios under appropri-
ate carer’s supervision. The subjects were instructed to walk
as normally as possible. This results in a different walking
speed for each subject, and in different gait parameters.

In Fig. 3, snapshots of a subject are presented, while
performing the experimental scenario, captured by the Kinect
camera that was also mounted on the robotic rollator (Fig.
1). Also, in Fig. 4 the sequence of the detected footprints by
the GAITRite System for the same subject are depicted.

B. Validation Strategy

As discussed, this work has two main objectives. Firstly,
to validate the HMM-based methodology and the rule based
approach on the extraction of gait parameters using ground
truth data. Secondly, to assess whether the added complexity
of the HMM approach is necessary, by comparing the results
of the two schemes. We have isolated the laser data corre-
sponding to the same strides per subject, i.e. the same three
strides per patient. These data were processed according to
the two approaches, in order to extract the gait parameters, as
described in subsections III-C and IV-C. The gait parameters,
as extracted by the GAITRite System are utilized as ground
truth data to validate the results.

The validation of the results comprises both quantitative
and qualitative comparisons. Table I contains the statistics
of the gait parameters, as computed by the two methods
used. Also, we present the maximum absolute percentage
error between the ground truth data and the estimated gait
parameters, Table II.
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TABLE I: Extracted Gait Parameters

Subject Parameter Unit HMM-based Rule-based GAITRite

1
stride length m 0.737±0.036 0.725±0.037 0.746±0.012
stride time s 1.062±0.016 1.074±0.032 1.096±0.007
swing time s 0.414±0.041 0.437±0.014 0.417±0.019

2
stride length m 0.720±0.010 0.649±0.023 0.698±0.006
stride time s 1.170±0.056 1.305±0.074 1.183±0.019
swing time s 0.447±0.014 0.427±0.006 0.479±0.014

3
stride length m 0.887±0.029 0.886±0.016 0.864±0.055
stride time s 1.040±0.016 1.046±0.043 1.062±0.033
swing time s 0.387±0.041 0.436±0.014 0.388±0.013

4
stride length m 0.596±0.023 0.572±0.007 0.573±0.029
stride time s 1.168±0.034 1.201±0.042 1.197±0.026
swing time s 0.412±0.026 0.415±0.008 0.472±0.036

5
stride length m 0.746±0.046 0.764±0.044 0.810±0.082
stride time s 1.017±0.041 1.046±0.016 1.029±0.052
swing time s 0.378±0.027 0.419±0.006 0.387±0.038

Gait parameters means and standard deviations computed by the
HMM-based methodology and the rule based approach, along with
the ground truth measured parameters of the GAITRite System for
the five subjects.

TABLE II: Maximum Absolute Percentage Error

Parameter Unit HMM-based Rule-based

stride length % 7.98±5.22 10.13±6.75
stride time % 5.12±1.70 7.48±6.50
swing time % 10.93±6.28 16.93±5.72

Maximum absolute percentage error’s means and standard devia-
tions of the HMM-based methodology and the rule based approach
with respect to the ground truth data per parameter for all subjects.

C. Validation Results and Discussion

For the demonstration of the experimental results we
present the example of Subject #1. In Fig. 6, the subject’s
gait parameters, as estimated by the rule based approach,
are depicted. In the same figure, the segmentation of each
stride along with the computed gait parameters for the first
stride are presented. For the same subject the exact gait
phase recognition based on the HMM-based approach, is
depicted in Fig. 7. The blue and red lines are presenting the
displacement of the left and right leg in the sagittal plane,
respectively, during about the three strides (axis on the right).
The grey line depicts the gait phase segmentation that was
extracted from the HMM (axis on the left).

The means and standard deviations of gait parameters for
the validation set (five subjects) are presented in Table I. Each
of the three gait parameters is computed by the HMM-based
methodology (fourth column) and the rule based approach
(fifth column), along with the ground truth measured param-
eters of the GAITRite System (sixth column). Firstly, both
the proposed methodologies manage, in general, to extract
the gait parameters. Most of the times the deviation between
the results of the proposed approaches and the ground truth
data is not significant, even though the fact that the GAITRite
system measures the heel to heel distances, while the laser
range scanner measures the lower limbs. Furthermore, the
laser scanner measurements depend on the subject’s height,
and also the movement of the lower limb, while the motion
of its hypothetical center, is not aligned with the heel center
movement, making the extraction of the gait parameters even

Fig. 6: Experimental Results: Subject’s #1 gait parameters during
the first stride, as estimated by the rule based approach.

Fig. 7: Experimental Results: Subject’s #1 gait phase recognition
and gait parameters during the first stride as estimated by the HMM-
based approach, according to grey line (axis on the left). The blue
and red lines are the displacement of the left and right leg in the
sagittal plane, respectively (axis on the right).

more difficult.
Moreover, the results clearly show that the added com-

plexity of the HMM approach is necessary for improved
accuracy, as shown in Table II. This table presents the means
and standard deviations of the maximum absolute percentage
error for both the HMM-based methodology and the rule
based approach with respect to the ground truth data per
parameter, where it is obvious that the HMM-based approach
outperforms the rule based one. This is a result of the HMM-
based methodology capability to successfully recognize the
exact gait cycle and the specific gait phases. The rule-based
approach is effective as long as the walking subject is close
to normal. On the other hand, the HMM-based approach
extract comprehensive information about the specific action
of each leg, and therefore can be very useful for medical
diagnosis. Finally, the results clearly demonstrate that there
is significant space for increasing the accuracy of our system.

VI. CONCLUSIONS AND FUTURE WORK

The main aim of our research program is the development
of a completely non-invasive pathological walking analysis
and assessment system, as a subsystem of a context-aware
robot control for an intelligent robotic walker. Towards this
end, we present a validation study for a human pathological
gait analysis and assessment system using methodologies
of different complexity. Specifically, we test a rule based
approach and a Hidden Markov Model (HMM) to recognize
the gait phases of the legs and extract specific gait parameters
that are used for medical diagnosis. Our system is based on
sensor data provided by a typical laser rangefinder sensor,
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thus constituting a completely non-invasive approach using
a non-wearable device.

The two methodologies are validated using ground truth
data provided by a GAITRite System, and both can success-
fully extract the gait parameters in most cases. The experi-
mental results clearly show that the HMM gait recognition
system is more reliable than the rule based approach, as it can
better estimate the gait parameters. There is significant room
for further accuracy increase. Furthermore, the HMM-based
approach, because of its statistical learning properties, is
quite flexible and readily extensible to different gait models,
thus presenting a strong potential to support a behaviour-
based cognitive robot control framework.

The data presented here are an initial part of a broad
ongoing study with more subjects that will be reported upon
conclusion of the study. We plan to test different HMM
schemes for improved accuracy. As the accuracy of the
system is heavily influenced by the training data, we plan
to utilize ground truth training data to increase the system’s
accuracy.

Our main research goal is to use the HMM-based method-
ology to classify specific gait abnormalities according to
pathologies, allowing a variety of abnormal gaits (corre-
sponding to specific motor impairments) to be characterized
by different models. Furthermore, within our future plans
is to model more gait patterns based on HMM, regarding
turning motions during indoor ambulation, as well as more
complicated and maneuvering motions that appear in daily
activities. We are working to incorporate a more sophisti-
cated detection and tracking system based on particle filtering
to cope with these situations. The aim is to create a system
that can detect in real time specific gait pathologies and
automatically classify the patient status or the rehabilitation
progress, thus providing the necessary information for ef-
fective cognitive (context-aware) active mobility assistance
robots.
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