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Abstract— During the past decade, robotic technology has
evolved considerably towards the development of cognitive
robotic systems that enable close interaction with humans.
Application fields of such novel robotic technologies are now
wide spreading covering a variety of human assistance function-
alities, aiming in particular at supporting the needs of human
beings experiencing various forms of mobility or cognitive
impairments. Mobility impairments are prevalent in the elderly
population and constitute one of the main causes related to
difficulties in performing Activities of Daily Living (ADLs)
and consequent reduction of quality of life. This paper re-
ports current research work related to the development of a
pathological gait analyzer for intelligent robotic rollator aiming
to be an input to a user-adaptive and context-aware robot
control architecture. Specifically, we present a novel method
for human leg tracking using Particle Filters and Probablistic
Data Association from a laser scanner, constituting a non-
wearable and non-intrusive approach. The tracked positions
and velocities of the user’s legs are the observables of an
HMM, which provides the gait phases of the detected gait
cycles. Given those phases we compute specific gait parameters,
which are used for medical diagnosis. The results of our
pathological gait analyzer are validated using ground truth data
from a GAITRite system. The results presented in this paper
demonstrate that the proposed human data analysis scheme has
the potential to provide the necessary methodological (modeling,
inference, and learning) framework for a cognitive behavior-
based robot control system.

I. INTRODUCTION

Elder care constitutes a major issue for modern societies,
as the elderly population constantly increases [1]. Mobility
problems are common in seniors. As people age they have
to cope with instability and lower walking speed [2]. It
is well known that mobility impairments constitute a key
factor impeding many activities of daily living important
to independent living, having a strong impact in product-
ive life, independence, physical exercise, and self-esteem
[3], [4]. Medical experts commonly use the Performance-
Oriented Mobility Assessment (POMA) tool to assess the
mobility status of patients, [5], in order to propose a proper
rehabilitation treatment. It is known that certain pathologies
are responsible for changes in stride length and alterations in
phases of walking [6], while it seems that basic gait paramet-
ers of normal subjects are affected with aging [7]. Medical
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Fig. 1: Left: Typical passive assistive device for elderly.
Right: The robotic platform based on the rollator prototype
equipped with a Hokuyo Laser Sensor aiming to record user’s
gait data.

studies for past-stroke patients establish the significance of
evaluating the gait parameters for rehabilitation purposes [8].

Most people with mobility issues, patients or elders, have
to use walkers in their everyday activities and they need the
constant supervision of a carer. The social and economic
significance of solving these issue should not be underestim-
ated. Robotics seems to fit naturally to the role of assistance
since it can incorporate features such as posture support
and stability enhancement, walking assistance, navigation
and cognitive assistance in indoor and outdoor environments,
health monitoring etc.

This paper reports research work conducted in the frames
of an EU funded research project MOBOT, aiming to develop
an intelligent robotic rollator aiming to provide user-adaptive
and context-aware walking assistance (see Fig. 1). The main
motivation behind this work derives from our vision of
developing and advancing robotic technologies enabling the
development and deployment of cognitive assistive devices
that can monitor and understand specific forms of human
walking activities in their workspace, in order to deduce the
particular needs of a user regarding mobility and ambulation.
The ultimate goal is to provide context-aware support [9],
and intuitive, user-adapted assistance to users experiencing



mild to moderate mobility and/or cognitive impairments in
domestic environments. To achieve such targets, a large
spectrum of multimodal sensory processing and interactive
control modules need to be developed and seamlessly integ-
rated, that can, on one side track and analyse human motions
and actions, in order to detect pathological situations and
estimate user needs, while predicting at the same time the
user (short-term or long-range) intentions in order to adapt
robot control actions and supportive behaviours accordingly.
User-oriented human-robot interaction and control refers to
the functionalities that couple the motions, the actions and,
in more general terms, the behaviours of the assistive robotic
device to the user in a non-physical interaction context.

In this paper, we summarise current research work, fo-
cusing on recent advances and challenges regarding the
development of a reliable pathological walking assessment
system, that can operate on-line and in real-time enabling the
robotic assistive device to continuously monitor and analyse
the gait characteristics of the user in order to recognise walk-
ing patterns that can be classified as pathological requiring
specific attention and handling by the system. The proposed
system uses an onboard laser rangefinder sensor to detect
the user legs which are tracked using Particle Filters with a
Probabilistic Data Association framework (PDA-PF) (a non-
intrusive solution that does not interfere with human motion).
A hidden Markov model (HMM) approach is used to perform
statistical modeling of human gait. This paper presents the
results of this gait modeling framework in terms of seg-
menting the gait cycle and recognising different gait phases,
which can be subsequently used to extract gait parameters.
These parameters are commonly used for medical diagnosis.
This paper presents preliminary gait characterisation results
for three patients regarding their POMA score, from a full-
scale experimental study conducted at the premises of the
Bethanien Hospital - Geriatric Centre of the University of
Heidelberg, at the frames of the EU-funded FP7 research
project MOBOT.

In this paper, we experimentally validate the affect of
custom-made control designs on the patient’s walking per-
formance, relative to his medical categorization (POMA
score), through the estimation of appropriate gait parameters.
In this first study, we show that patients of different mobility
state (different POMA scores) do not always benefit from a
generic control setting of the mobility device. The results
of this study provide sufficient first evidence that a robotic
personal assistant should be user-adaptive, justifying the
necessity for a context-aware robot control architecture that
will take feedback from our in-house developed system
for real-time gait status estimation. This paper summarizes
the theoretical framework and presents current experimental
results obtained using real data both from patients (elderly
subjects with mild to moderate walking impairments) and
normal subjects. With respect to gait analysis and assessment,
as opposed to most of the literature available on the topic, the
approach presented in this paper is completely non-intrusive
based on the use of a typical non-wearable device. Instead of
using complex models and motion tracking approaches that

Fig. 2: Internal gait phases of human normal gait cycle.

require expensive or bulky sensors and recording devices
that interfere with human motion, the measured data used
in this work is provided by a standard laser rangefinder
sensor mounted on the prototype robotic rollator platform.
In this paper, we perform an initial assessment of an HMM-
based methodology used for the statistical modeling and
classification of human gait patterns and for the extraction of
clinically-relevant gait parameters and we elaborate on the
capability of the system to discriminate the different classes
of pathological gait regarding to the patients’ POMA score.

The experimental results presented in this paper are prom-
ising, demonstrating that such a framework can be used
efficiently and effectively to provide user-adapted mobility
assistance that can enhance the functionality of such robotic
devices. The ultimate objective of this work is to design
a reliable pathological walking assessment system (that
embodies several walking morphologies, allowing inclusion
of new patients with different mobility pathologies) and
incorporate this tracking and monitoring system in a context-
aware robot control framework enabling a cognitive mobility
assistance robotic device to provide user-adaptive walking
support actions and intuitive assistive behaviours.

The paper is organised as follows. Section II presents a
general description of the context-aware robot control we
designed. The normal human gait cycle is described in
Section III and Section IV describes the proposed HMM-
based gait analysis and characterisation framework. Section
V describes the experimental results achieved regarding the
gait analysis, providing also validation results using data
from a GAITRite mat while Section VI presents conclusions
and summarises future research work directions.

II. USER-ADAPTIVE CONTEXT-AWARE ROBOT
CONTROL ARCHITECTURE

An Adaptive Context-Aware Robot Control architecture is
being developed for the intelligent robotic assistant platform,
that will adapt and act according to the patient’s needs. The
system is driven by the sensory data of a 2D laser range



scanner that detects the walking motion (Fig.1). An important
step for performing behavior-based context aware control is
the preprocessing of the system’s input signal. This process
incorporates the detection and tracking of the user’s legs.
This framework takes as input the noisy laser data, detects the
patient’s legs and estimates their actual position and velocity
with respect to the robotic assistant. The estimated kinematic
state of the subject’s legs feed the cognitive context-aware
control system as the environmental input signal, that is used
to infer the context (i.e. state of the patient) and to perform
specific actions in the detected context.

The control scheme consists of the typical three-layer ar-
chitecture. The high level of this control scheme contains the
Gait Modelling and Classification module. This is an HMM-
based approach that can recognize sequences of gait patterns
and also it can classify them into normal pathological ones,
or non-walking activity. Given the spatiotemporal properties
of those sequences, we compute particular gait parameters
(such as step length, cadence), that are commonly used for
medical diagnosis [10], since differentiations in their values
are indicative of specific pathological states. In that way, an
impairment level assessment is performed, for completely
knowing the context of the patient’s walking motion (i.e.
recognition of the patient’s intention to walk, gait modelling,
estimation of the subject’s pathological status).

This context-awareness is used as input to the medium
level control module. Medium level control contains specific
behaviours and assistive actions, that are activated according
to the subject’s detected context. The robotic assistant should
adaptively track and follow the subject during its walking
motion. Also the platform should smoothly stop in front of
the subject in cases when the subject freezes and stops ab-
ruptly. Furthermore, the platform should smoothly approach
the user to provide possible support when instability in
gaiting is detected.

All this information is used as input to the typical low level
controller of the platform, in order to inherently translate the
decision of performing a specific assistive action into motor
commands.

III. HUMAN GAIT CYCLE ANALYSIS

The human gait motion analysis is based on the periodic
movement of each foot from one position of support to the
next [11]. There are two main periods in the gait cycle
[12]: The stance, when the foot is on the ground, and the
swing when that same foot is no longer in contact with the
ground and is swinging through, in preparation for the next
foot strike. The gait cycle can be successively divided into
eight events, Fig. 2. This segmentation is sufficiently general
to be applied to most types of human gait, including five
during stance phase and three during swing, which are (as a
percentage of the total duration of the gait cycle): 1. Initial
contact (0%) - [IC] -Heel strike initiates the gait cycle and
represents the point at which the body’s centre of gravity
is at its lowest position. 2. Loading response (0-10%) -
[LR] - Foot-flat is the time when the plantar surface of the
foot touches the ground. 3. Midstance (10-30%) - [MS]

- Midstance occurs when the swinging (contralateral) foot
passes the stance foot and the body’s centre of gravity is at
its highest position. 4. Terminal stance (30-50%) - [TS] -
Heel-off occurs as the heel loses contact with the ground and
pushoff is initiated via the triceps muscles, which plantar flex
the ankle. 5. Preswing (50-60%) - [PW] - Toe-off terminates
the stance phase as the foot leaves the ground. 6. Initial
Swing (60-70%) - [IW] - Acceleration begins as soon as
the foot leaves the ground and the subject activates the hip
flexor muscles to accelerate the leg forward. 7. Midswing
(70-85%) - [MW] - Midswing occurs when the foot passes
directly beneath the body, coincidental with midstance for
the other foot. 8. Terminal swing (85-100%) - [TW] -
Deceleration describes the action of the muscles as they slow
the leg and stabilize the foot in preparation for the next heel
strike. In this paper, we have used the seven gait phases of
walking in order to analyze the gait cycle, since the TW
phase is an equivalent trigger to the IC phase, and therefore
are treated as identical.

Specific gait parameters can be computed, which are
commonly used for medical diagnosis [10], [13]. In this
work, besides from detecting the sequence of gait events
according to Fig. 2, we are also experimentally validating
the following temporal gait parameters:

1) stride length: the distance traveled by both feet in a
gait cycle

2) stride time: the duration of each gait cycle,
3) stance time: the stance phase duration in one cycle,
4) swing time: the swing phase duration in one cycle,
5) gait speed: the mean walking velocity of all gait

cycles.

IV. GAIT PARAMETERS EXTRACTION SYSTEM
BASED ON HIDDEN MARKOV MODEL

The sequential estimation of the gait parameters are ne-
cessary for the gait status assessment of the user. Those
parameters are extracted by employing the raw laser data,
provided by the laser sensor mounted on the robotic rollator,
Fig. 1. The laser data are the observations of a PDA-PF
leg tracking system based on two PFs, which are associated
probabilistically. PDA-PF sequentially estimates the relative
position and velocity of the patient’s legs w.r.t. the robotic
rollator. The posterior estimates of the legs’ states are fed into
an HMM, which recognizes the gait cycles and segments
them into the corresponding gait phases [12]. We, then,
extract the gait parameters corresponding to each gait cycle
[14], [15], which are used for the exploration of the control
effect on the users gait status.

A. PDA-PF Leg Tracking

The PF is commonly used for nonlinear filtering problems
[16]. The particles represent samples of the posterior density
distribution of the state space given some observations.
Each particle has a weight that results from the observation
likelihood. Our implementation incorporates two filters for
estimating the position and velocity of each leg separately
and associates them probabilistically.



The particles represent samples of the posterior density
distribution of the legs’ states xle f t

k and xright
k at each time

instant k for the left and right leg respectively. Each state
constitutes of the Cartesian position and velocity along the
axes. The implementation covers the basic particle filter
methodology [16], including initialization, propagation in
time,particles’ weights update, resampling and posterior es-
timation.

Initialization:

At the first time instant k=1, we initialize a set of N
particles for each leg. Let the position of the ith particle,
for i = 1, ..,N, be noted as: p f ,i

k = [ x y ] and its velocity
as: υ

f ,i
k = [ υx υy ], where f : {left,right} is the label of

each leg. Then, the particles’ states are denoted as:

x f ,i
k = [ p f ,i

k υ
f ,i

k ]T = [ x y υx υy ]T

Only for initialization, we implement a detection phase using
k-means clustering inside a rectangle observation window,
to detect the initial positions of the legs with respect to the
robotic rollator and to discriminate the left from the right
leg. The particles’ positions are initialized to be equal to the
detected positions, which are computed via circle fitting on
the initially detected left and right leg clusters. We also draw
N samples for the legs’ velocity from a zero-mean Gaussian
Mixture Model (GMM) distribution (we consider that both
legs are still in front of the rollator for initialization). The
particles’ weights ω

f ,i
k of each leg are initialized equal

to: 1/N, with i = 1, ..,N. The initial posterior estimate is
approximated by the Minimum Mean Square Error:

x f
k =

N

∑
i=1

ω
f ,i

k ·x
f ,i
k = [ p f

k υ
f

k ]T

Particles’ Propagation:

At each time frame k=2,..,T (where T is the total tracking
time) the particles’ states are propagated in time using the
following motion model. We draw N new velocity samples
for the particles of each leg from a GMM of two mixtures.
We have trained two GMMs that describe the velocity of
the two legs along the axes. Let υ

f ,i
k be the ith velocity

sample drawn the respective GMM at time instant k. Then,
the position of the ith particle is propagated in time according
to the equation:

p f ,i
k = p f

k−1 +υ
f ,i

k ·∆t

where p f
k−1, is the estimated position vector of each leg for

the k−1 time frame.

Particles’ Weights Update:

The particles’ weights have to be updated according to
the observations of each time instant k. The observations
are the Cartesian positions of the laser points in the sagittal
plane. In this implementation, we use an observation window
for each leg, which is an experimentally defined rectangular
area, centered around each particle, so that every sample
x f ,i

k is associated with a different cluster of laser points,

y f ,i
k . Because the prior distribution is equal to the proposal

distribution, the particle weights are equal to the observation
likelihood [16]: ω

f ,i
k = p(y f ,i

k |x
f ,i
k ).

Fig. 3: Example of the circular representation of the legs from
the laser points w.r.t. the laser scanner. Left: a cad presentation of
a subject walking with the rollator; Right: a presentation of the
detected laser points with black stars, with green an magenta are
the circular representations of the right and left leg respectively.
The labels R0, R1, R2, R3, R4 are the segmentation of the circle
into regions (boundaries depicted with orange lines) based on which
we have computed the observation likelihood for the particle filter
tracking system.

We treat each particle as a possible leg center and we
expect the observations to be on the circular circumference
of this center. Thus, the observation likelihood that will
provide the weight of the particles is computed based on
the following three factors:

1. The distribution of the laser points in the circular
contour given the center (i.e. the respective particle): In
Fig. 3 an example of the circular representation of the legs
from the laser points w.r.t. the laser scanner is presented.
On the right of the figure there is a representation of the
detected laser points with black stars, while the green and
magenta circles are the circular representations of the right
and left leg respectively. The labels R0, R1, R2, R3, R4
represent the segmentation of the circle into regions (the
regions’ boundaries are depicted with orange lines) based on
which we have computed the observation likelihood for the
particle filter tracking system. We have divided horizontally
the circle into two semicircles. Laser points in the upper
semicircle R0 do not contribute to the observation likelihood.
The lower semicircle is split into four regions (R1,..,R4) of
equal angle range. We have calculated the normal distribution
of the Euclidean distances of the laser points of each region
w.r.t. the corresponding center. Let dRm be the vector of
distances of the laser points w.r.t. the corresponding circle
center for the Rm region, with m∈ 1, ...,4. Thus, each region
Rm is described by a normal distribution of the distances
N (dRm |µRm ,ΣRm), with µRm the mean distance and ΣRm is
the covariance matrix.

2. The number of laser points inside each observation
window: Through experimentation we have defined a normal
kernel distribution, noted as λi for every particle with i =
1, ..,N, which describes the likelihood of the number of laser
points that are detected on the circular contour that represents
the leg.



3. An association probability that accounts the Euclidean
distance between the two legs. The human legs are two
interacting moving targets, and thus we introduce an associ-
ation probability βi, modeled by a Gamma distribution. This
probability regulates the observation likelihood of the one leg
w.r.t. the other, by evaluating a likelihood of the Euclidean
distance of the two legs.

Therefore, every particle is considered to be a possible
leg center. We set the observation window centered on
the ith particle and we associate it with the corresponding
observations, i.e. the laser points y f ,i

k detected inside the
window. Then, we consider the ith particle to be a possible
leg center and we compute the observation likelihood using
the following function:

p(y f ,i
k |x

f ,i
k ) = βi ·

[
λi ·

4

∑
m=1

πRm ·∏
Rm

N (dRm |µRm ,ΣRm)

]
We assume as πRm , the importance weights of the four
regions, which were set experimentally so that the extreme
regions R1 and R4, which often contain many outliers
have less importance than the inner regions R2 and R3.
All parameters have been experimentally defined. Thus, the
ith weight is equal to: ω

f ,i
k = p(y f ,i

k |x
f ,i
k ). All weights are

normalized for all particles j = 1, ...,N according to:

ω̂
f ,i

k = ω
f ,i

k /
N

∑
j=1

ω
f , j

k

Resampling:

It commonly occurs many particles to have infinitely small
weight and only a few of the particles will have a signific-
ant weight, called weight degeneracy. The solution to this
problem is the use of a Sequential Importance Resampling
method (SIR) [16], [17], for eliminating particles with small
weights and replacing them with particles of higher weights.
However, this resampling method illustrates the particle
impoverishment problem, where there are many replicates
of the higher-likelihood particles, causing the samples to
lose their diversity. To deal with this problem, at each
time frame we check whether the effective sampling size

Ne f f = 1/
N
∑

i=1
ω̂

f ,i
k is less than the threshold Nthr = N/2. If

so, we apply a random walk on the current particles’ state
providing new particles ∗x f ,i

k . Then, we evaluate the weights
of the new particles, according to the methodology described
in Particles’ Weights Update section, which provides the
new weights: ∗ω̂ f ,i

k . Having the old pairs of particles and
their weights (x f ,i

k , ω̂ f ,i
k ) and the new ones (∗x f ,i

k ,∗ω̂ f ,i
k ), we

apply the Metropolis-Hastings algorithm [18]. Based on this
algorithm we can decide whether or not we have to replace
the ith pair (x f ,i

k , ω̂ f ,i
k ) with the new samples (∗x f ,i

k ,∗ω̂ f ,i
k ).

Posterior Estimation:

For the posterior state estimate p(x f
k |y

f
k ), we find the

particle with the highest weight and then collect the “best”
particles, i.e. those which have a weight greater or equal than

TABLE I: Demographics

Subject 1 2 3 4 5 6

Age 89 83 83 71 82 82
Sex F F F F F M
POMA 7 11 19 20 26 27
Falls yes yes yes yes yes yes

Demographics for the subjects that participated in the experiments.

80% of the maximum weight:

s = argmax
i

[ω̂ f ,i
k > 0,8 ·max(ω̂ f ,i

k )]

where s is the index of the “best” particles, i.e. s ∈ S ⊆
{1, ...,N}. In that way, we have a dynamic system, that leaves
out particles that may track outliers and could contaminate
the posterior estimation, and therefore provides smoother
estimates. The posterior state estimate is then approximated
by the weighted mean of the ”best” particles:

p(x f
k |y

f
k ) =

(
∑
s

x f ,s
k · ω̂

f ,s
k

)/(
∑
s

ω̂
f ,s

k

)
B. HMM Gait Cycle Recognition

We consider seven hidden states according to the seven
gait phases of human gait [12], as shown in Fig. 2. These
seven phases can define the hidden states of the HMM, which
detects the gait cycles [14], [15]. The states of the HMM at
time k = 1,2, ...,T , where T is the total time, are the values
of the (hidden) variable sk = i ∈ S, for i = 1, . . . ,7, where
1≡ IC/TW , 2≡ LR, 3≡MS, 4≡ T S, 5≡ PW , 6≡ IW , and
7≡MW . As observables we utilize the posterior estimates of
the legs’ states provided by the PDA-PF tracking system, i.e.
the legs’ positions and velocities along the axes and also the
distance between the legs. The observation data are modeled
using a GMM. This model can provide temporal segmenta-
tion of the time sequence of the legs’ states (observations),
by estimating an optimal gait phases sequence. Following the
HMM notation, the transition probability matrix is defined
as A = {ai j}, where ai j = P[sk+1 = j|sk = i], for 1≤ i, j≤M
and M is the number of states, i.e, the (i, j) element of the
matrix represents the transition probability from the ith state
at a given time step to the jth state at the following time
step. In the normal gait cycle the gait phases follow each
other sequentially. Thus, a gait cycle HMM is a left-to-right
model. This means that the only feasible transitions from
a state i will be either to remain in the same state or to
jump to a following state. The transition probability matrix,
as well as the prior probability vector (i.e. the vector of
probabilities πi of the system being at state i at the initial
time t1), are estimated using the standard and well known
Viterbi algorithm [19].

C. Gait Parameters Computation

The recognized segmentation of gait phases is used to
compute the gait parameters from the range data. We are



computing the gait parameters: 1) stride length, i.e. the
distance traveled by both feet in a gait cycle, 2) stride time:
the duration of each recognized gait cycle, 3) stance time:
the stance phase duration in one cycle, i.e. the time between
the gait phases IC and PW (Fig. 2), 4) swing time: the time
between the gait phases PW and the next IC, 5) gait speed:
results as the velocity through the stride, i.e. it was computed
as the ratio of the stride length to the stride time.

These gait parameters are used for the statistical analysis
of walking and the potential classification of the gait status
of patients with variant POMA scores.

V. EXPERIMENTAL ANALYSIS & RESULTS

A. Experimental setup and data description

The experimental data used in this work were collected in
Agaplesion Bethanien Hospital - Geriatric Center. Patients
with moderate to mild impairment, according to clinical
evaluation of the medical associates, took part in this exper-
iment. The patients were wearing their normal clothes (no
need of specific clothing). We have used a Hokuyo rapid
laser sensor (UBG-04LX-F01 with mean sampling period
of about 28msec and accuracy of 10mm), mounted on the
robotic platform of Fig. 1 for the detection of the patients’
legs. A GAITRite System was used to collect ground truth
data. GAITRite is an electronic mat, of length 4.6 meters,
equipped with pressure sensors placed at 1.27 cm each, used
for gait analysis. GAITRite provides measurements of the
spatial and temporal gait parameters and is commonly used
for medical diagnosis [20]. The HMM was trained by using
the recorded data from twelve different patients (without any
GAITRite recording) [14].

In this work, we present data from six patients with
moderate mobility impairment (aged over 65 years old).
Each subject walked straight with physical support of the
robotic rollator over the walkway defined by the GAITRite
mat. The subjects presented mobility impairments with an
average POMA score of 18.34±7.99 and high risk of falling,
with 100% of the subjects having had fallen once or twice
in the last year. Table I provides analytical demographic
information about the participants. It can be seen that the
subjects have been arranged according to their POMA score.
Patients with POMA score <= 18 present high risk of falling,
while a POMA score between 18 and 23 indicates a moderate
risk of falling [21]. The subjects with POMA score over 24
present better mobility performance.

All patients performed the experimental scenarios under
appropriate carer’s supervision. The subjects were instructed
to walk as normally as possible. This results in a different
walking speed for each subject, and in different gait para-
meters.

In Fig. 4, snapshots of a subject are presented, while
performing the experimental scenario, captured by the Kinect
camera that was also mounted on the robotic rollator (Fig.
1). Also, in Fig. 5 the sequence of the detected footprints by
the GAITRite System for the same subject are depicted.

Fig. 4: Snapshots of a subject walking on the GAITRite walkway
assisted by the robotic platform, during one stride.

Fig. 5: The captured footprints of the subject by the GAITRite
System.

B. Experimental Results and Discussion

For the evaluation of our in-house developed pathological
gait analyzer, we present in Table II, the mean values and
standard deviations of the gait parameters as those were
computed by the HMM-based methodology in contrast to
their Ground Truth (GT) values. The data are presented in
ascending order with respect to the patients’ POMA score.
The last line of table II presents the Mean Absolute Error
(MAE) of the estimated to the ground truth value of each gait
parameter. To help us better understand the results of Table
II, we present the evolution of the gait parameters w.r.t. the
POMA score in the diagrams of Fig. 6. In each diagram,
the blue line represents the estimated gait parameters from
the HMM-based approach and the red line the ground truth
values from the GAITRite system.

Inspecting the results of Table II we can say that regarding
the temporal parameters, the time segmentation provided by
the HMM-based results are very close to the ground truth
values. Regarding, however, the stride length and therefore
the gait speed we notice a standard error of the estimated
parameter w.r.t. the ground truth provided by the GAITRite
system. This results mainly from the fact that the GAITRite
system measures the heel to heel distances, while the laser
range scanner measures distances approximately at the knee
height. Furthermore, the laser scanner measurements depend
on the subjects height, and also the movement of the lower
limb, the motion of its hypothetical center is not aligned with
the heel center movement, making the extraction of the gait
parameters even more difficult.

The graphs of Fig. 6 can however show the potential of
the HMM-based system to discriminate the different classes
of patients, especially regarding the spatial parameter stride
length in Fig. 6a and the gait speed in Fig. 6d, where the
aforementioned standard error does not seem to affect the
behavior of the system, since the evolution of both the stride
length and the gait speed w.r.t. the patients’ POMA score
from the HMM approach follows the same pattern as the
graphs of the ground truth data. Fig. 6b and Fig. 6c ascertain
the accuracy of the HMM time segmentation, from which we
estimate the stride time and stance time, as this is also shown
in Table II.



TABLE II: Extracted Gait Parameters

Subject POMA Stride Length (m) Stride Time (s) Stance Time (s) Swing Time (s) Gait Speed (m/s)
HMM GT HMM GT HMM GT HMM GT HMM GT

1 7 0.47±0.03 0.58±0.04 1.63±0.05 1.58±0.08 1.00±0.05 0.95±0.10 0.62±0.04 0.63±0.14 0.29±0.02 0.37±0.02
2 11 0.65±0.09 0.79±0.15 1.83±0.07 1.86±0.15 1.08±0.10 1.32±0.21 0.75±0.10 0.54±0.14 0.35±0.06 0.43±0.09
3 19 0.62±0.04 0.7±0.02 1.14±0.03 1.11±0.04 0.71±0.05 0.69±0.04 0.44±0.03 0.42±0.03 0.54±0.04 0.63±0.04
4 20 0.64±0.01 0.77±0.01 1.39±0.01 1.38±0/02 0.91±0.01 0.89±0.03 0.47±0.01 0.48±0.04 0.46±0.01 0.56±0.01
5 26 0.74±0.09 0.94±0.08 1.04±0.04 1.04±0.06 0.68±0.02 0.65±0.02 0.36±0.03 0.39±0.04 0.71±0.06 0.90±0.03
6 27 0.80±0.05 1.02±0.03 1.07±0.02 1.10±0.02 0.66±0.03 0.65±0.01 0.41±0.03 0.45±0.03 0.74±0.06 0.93±0.04

MAE 0.15 0.02 0.06 0.05 0.12

Gait parameters means and standard deviations computed by the HMM-based along with the ground truth measured parameters of the
GAITRite System for the six subjects, along with the MAE for each parameter.

(a) Evolution of the average stride length as it was estimated by
the HMM-based system w.r.t. Ground truth data according to the
POMA score of the patients.

(b) Evolution of the average stride time as it was estimated by
the HMM-based system w.r.t. Ground truth data according to the
POMA score of the patients.

(c) Evolution of the average stance time as it was estimated by
the HMM-based system w.r.t. Ground truth data according to the
POMA score of the patients.

(d) Evolution of the average gait speed as it was estimated by
the HMM-based system w.r.t. Ground truth data according to the
POMA score of the patients.

Fig. 6: Comparison of the gait parameters evolution regarding their HMM-based estimation and their ground truth values
w.r.t. the POMA scores of the participants.

VI. CONCLUSIONS AND FUTURE WORK

The main aim of our research program is the development
of a completely non-invasive pathological walking analysis
and assessment system, as a subsystem of a context-aware
robot control for an intelligent robotic walker. Towards this
end, we present current results of our ongoing work regarding
the validation study of a human pathological gait analysis
and assessment system. Specifically, we test a rule based
approach and a Hidden Markov Model (HMM) to recognize
the gait phases of the legs and extract specific gait parameters

that are used for medical diagnosis. Our system is based on
sensor data provided by a typical laser rangefinder sensor,
thus constituting a completely non-invasive approach using a
non-wearable device. We present a novel approach of human
gait tracking using two Particle Filters with probabilistic data
association.

Our pathological gait analyzer is validated using ground
truth data provided by a GAITRite System, and we provide
evidence that our approach can successfully extract the gait
parameters in most cases. The experimental results clearly



show that the HMM gait recognition system can be used
to provide classification of the users according to their gait
parameters. There is significant room for further accuracy
increase. Furthermore, the HMM-based approach, because
of its statistical learning properties, is quite flexible and
readily extensible to different gait models, thus presenting
a strong potential to support a behaviour-based cognitive
robot control framework. The data presented here are an
initial part of a broad ongoing study with more subjects that
will be reported upon conclusion of the study. We plan to
test different HMM schemes for improved accuracy. As the
accuracy of the system is heavily influenced by the training
data, we plan to utilize ground truth training data to increase
the systems accuracy.

Our main research goal is to use the HMM-based method-
ology to classify specific gait abnormalities according to
pathologies, allowing a variety of abnormal gaits (corres-
ponding to specific motor impairments) to be characterized
by different models. Furthermore, within our future plans
is to model more gait patterns based on HMM, regarding
turning motions during indoor ambulation, as well as more
complicated and maneuvering motions that appear in daily
activities. We are working to incorporate a more sophistic-
ated detection and tracking system based on particle filtering
to cope with these situations. The aim is to create a system
that can detect in real time specific gait pathologies and
automatically classify the patient status or the rehabilitation
progress, thus providing the necessary information for ef-
fective cognitive (context-aware) active mobility assistance
robots.
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