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Abstract— Elderly and mobility impaired people need spe-
cial attention during bathing activities, since these tasks are
demanding in body flexibility. Our aim is to build an assistive
robotic bathing system, in order to increase the independence
and safety of this procedure. Towards this end, the expertise
of professional carers for bathing sequences and appropriate
motions have to be adopted, in order to achieve natural,
physical human - robot interaction. In this paper a Navigation
Function (NF) approach is proposed in order to reproduce the
way an expert clinical carer executes the bathing activities
by means of construction repulsive potential fields (“virtual
obstacles”) for an assistive bath robot. The produced vector
field, constructed based on the demonstration procedure, is used
for real-time motion behavior planning tasks, which exploits the
visual information from Depth sensors and the advantages of
the NF approach, to estimate the reference pose for the end-
effector of the assistive robotic system. The proposed method
guarantees globally asymptotic convergence to the learned from
demonstration washing motion, within the deformable and
moving body-part limits, while in addition, restricted areas on
the body surface are avoided. The proposed method is evaluated
using real experimental data, obtained from human subjects
during pouring water task demonstration.

I. INTRODUCTION

Activities of Daily Living, especially body care (bathing or
showering), dressing, eating, etc., are demanding procedures
in terms of effort and body flexibility, [1], [2]. Elderly people,
who have special and increased needs for attention during
those activities (clinical and in-house) will induce great
financial and social onus to the insurance systems and also to
their families. Robotic solutions have already been recently
proposed to help disabled and elderly people with special
needs, in these personal care activities. Most of them focus
on a specific body part, [3], or support people on performing
other personal care activities with rigid manipulators, [4].

Showering activities are highly demanding tasks in terms
of safety, since they are imposing direct physical contact
between the human and the assistive device. In case of an
assistive robotic system, the execution of the tasks should
handle successfully further constraints prescribed by the fact
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Fig. 1: The real experimental robotic bath system in a pilot study.

that the robot has to operate on curved, deformable human
body parts within dynamic environments, since non predict-
able body-part’s motion may occur during the execution of
the tasks. Natural and effective human - robot physical in-
teraction is a key characteristic from system safety and from
user acceptance point of view. Planning of human-friendly
washing actions in terms of motion and force exertion on
each body part is inherently difficult. Thus, proper washing
motions should be learned from demonstration of clinical
experts, in order to incorporate their skills into the system.

Skill learning from demonstration has been thoroughly
addressed in previous approaches [5]. Several generic models
and representations have been proposed in this context, such
as HMM [6] and GMM [7]. More recent approaches, use
dynamical systems [8], [9] in the form of Dynamic Move-
ment Primitives (DMP), which incorporate a spring damping
system to encode attractive behaviours to primitive actions,
whose variety is captured by a coupling force term. On the
other hand, in [10], the inverse problem of estimating a
repulsive field of unknown obstacles from knowledge of feas-
ible trajectories was investigated with application to grasping
based on a NF methodology. In this approach the authors
propose a gradient descent method to construct an obstacle
space, which, when navigated using a NF based approach,
produces trajectories similar to the learned trajectories. This
method can be used on trajectories that can be produced by
a limited set of obstacles, i.e. when a suitable convex target
function can be constructed, for the optimization scheme.

Washing action learning is an interactive task, which
combines the execution of a complex motion relatively to
the body part. Robotic interactive behaviour learning has also
based on motion primitives as presented in [11]–[13]. In [14]



a DMP a leader-follower framework has been developed,
which takes the environment’s motion into consideration.
However, planning robotic actions with DMPs does not
consider the presence of obstacles in the workspace. In pre-
vious works [15]–[17] the authors combined DMP approach
with Dynamic Potential Fields in order to achieve obstacle
avoidance. However, the appearance of local minima can
trap the agent before reaching its destination. Navigation
Functions (NF) have been proposed to overcome the local
minima problem, [18], [19]. In our previous work based on
a NF approach, [20], [21] we have proposed a vision based
motion planning framework, which achieve the adaptation
of motion primitives on moving, deformable surfaces, with
simultaneous obstacle avoidance. To this end, the robotic
system has to incorporate a suitable sensing subsystem. The
recent advances of computer vision algorithms with Deep
Learning approaches have presented promising results on
human perception and body-part’s segmentation, [22]–[24].

In this paper a NF approach is proposed in order to
capture the way an expert clinical carer executes the bathing
activities by means of construction “virtual obstacles”. The
bathing trajectories demonstration is realized in 3D space
and are transformed to a 2D spatially normalized space
by establishing appropriate transformations. In this space, a
set of virtual obstacles is calculated so that the trajectory
produced by a NF resembles the human trajectories, in
effect, the human trajectory is represented in the virtual
obstacles. Also, we propose an extension of our previous
planning framework, [20], in order to smoothly integrate
our learning method into the bathing system. The proposed
method is evaluated through real experiments in two different
showering scenarios. The demonstration trajectories were
visually captured by using a Kinect camera and a more
complex obtained from the publicly available KIT whole-
body human motion database [25], in order to demonstrate
the applicability of the proposed approach on real body parts.

II. PROBLEM STATEMENT

The motion behavior problem of a robotic manipulator’s
end-effector, which operates over a curved, deformable sur-
face (e.g. user’s body part), in a workspace equipped with
a depth-camera, is considered. Following [20] the control
problem is reduced to an equivalent problem in the 2D
Canonical space. Using this transformation, we shall use this
2D space for our control and learning schemes. In that space,
we assume that the robot can be kinematically described
by q̇ = u, where q is the vector of end-effector position
and orientation, and u is the vector of velocity inputs. Let
the admissible and feasible state space (workspace) for the
robot be denoted W ⊂ R2. The obstacle free subset of W
is denoted W f ree ⊆ W . Also, we define a NF ϕ : W → R
which models the environment, and with qd is the NF’s target
configuration. Let O ⊆W \W f ree be the set of all obstacles
in W . These obstacles correspond to real obstacle in the task
space that are visible by a depth camera, whose field of view
should include the workspace of the robot and may regard

Fig. 2: Problem Statement: Find the obstacle functions based on
the collected experimental human like trajectories q(tm), to ensure
that the new controller-based produced motion will always remain
within the problem’s domain.

Fig. 3: Point robot motion planning problem on a 2D workspace
that contains one cyclic obstacle.

Fig. 4: The relation between the the obstacle’s center on x-axis x1
and the distance of the resulted path from the y-axis x2.

restricted areas, on the user’s body (e.g. local injuries), which
should be avoided during the washing sequence.

We utilize a NF which is at least C2, admissible (uniformly
maximal on the boundary), Morse (non-degenerate critical
points) and Polar (unique global minimum at qd), as:

ϕ(q, t) =
γ(q, t)

[γκ (q, t)+β (q, t)]1/κ
(1)

where κ > 0, γ ,‖ q− qd ‖2 is the distance to the goal

function (attractive potential field), and β (q) ,
P
∏
i=0

βi, ∀i =
0,1, ...,P is the product of P obstacle functions, where for
i= 0 is the workspace boundary obstacle, coming from visual
feedback (repulsive potential field), [19].

The robotic shower system in Fig. 1, aims to support
elderly or people with mobility disabilities during showering
activities, i.e. pouring water, soaping, body part scrubbing,
etc. Assume that we have a set of Texp ∈N∗,N\{0} demon-
strated trajectories by nursing experts, En, n ∈ Nexp ,
{1,2, ...,Texp}. Each of them is a set En , {qn(tm)}m∈Nn ,
Nn , {1,2, ...,Tn}, n ∈ Nexp of Tn ∈ N∗ configurations
qn(tm) ∈ W ⊂ R2 recorded in subsequent time instants



tm ∈ [0,+∞), which are indexed in increasing order tm <
tm+1, ∀m ∈ Nn\{Tn}, ∀n ∈ Nexp. Assume that the desired
destinations qdn ∈ W , n ∈ Nexp are provided. The problem
is summarized in developing a motion planning framework,
which incorporates a proper learning strategy to learn human-
friendly washing actions from demonstration of experts and
adapts the learned motions to the user’s body parts.

III. PROPOSED APPROACH
A learning strategy is proposed separately for the periodic

and the discrete actions. For the latter, which constitute the
main part of the motion, the proposed solution is to produce
a suitable vector field, the motion under which replicates the
demonstrated data. This approach is clearly advantageous,
as the incorporation of the learned data in a vector field
allows their immediate combination with real time obstacles
detected by the system. The problem can be stated as in Fig.
2. We intent to use the experimental data E , {En,qdn}Nexp

in order to find the obstacle function β ∈C2(En,R), so that
the produced trajectory from the following controller:

q̇ =−∇qϕ(q) (2)

is similar to the experimental trajectories, defined by an
appropriate similarity measure. Since it is not a simple path
similarity problem, we propose to use the Fréchet distance
[26], as the distance metric between two trajectories in
the state space. This is a measure of similarity between
two curves, that takes into account the flow of two curves,
because the pairs of points whose distance contributes to the
distance sweep continuously along their respective curves.
This metric is defined as the maximum distance between two
agents moving forward on the two trajectories and actively
trying to keep their distance to a minimum and it is more
“naturally” way of estimating the distance of two curves, in
a setting such as ours. In layman terms, the output of the
controller should approximate the experimental trajectories.

Consequently, we need a measure on how much two given
trajectories “resemble” each other. One distance measure
possibility consists in approximating each curve by a set of
points and then using the Hausdorff distance. However, the
Hausdorff distance only takes into account the sets of points
on both curves and does not reflect the course of the curves.

The Fréchet distance can be illustrated as: suppose a man
is walking his dog and that he is constrained to walk on a
curve and his dog on another curve. Both the man and the
dog are allowed to control their speed independently, but are
not allowed to go backwards. Then, the Fréchet distance of
the curves is the minimal length of a leash that is necessary.

Definition 1: Let S a metric space. A curve A ∈ S is a
continuous map from the unit interval into S, i.e. A : [0,1]→
S. A reparameterization α is a continuous, non-decreasing,
surjection α : [0,1]→ [0,1]. Let A and Λ be two given curves
in S. Then, the Fréchet distance between A and Λ is defined
as the infimum over all reparameterizations α, λ ∈ [0,1] of
the maximum over all t ∈ [0,1] of the distance in S between
A(α(t)) and Λ(λ (t)). The Fréchet distance F is defined as:

F(A,Λ) = inf
α,λ

max
t∈[0,1]

{d (A(α(t)),Λ(λ (t)))} (3)

where d is the distance function of S. �
This measure takes the value 0 when the trajectories are equal
and grows positively as the curves become more dissimilar.

A. Obstacle Function Resolution Formulation

The main goal is to formulate an appropriate equation,
the resolution of which will produce the unknown obstacle
function β (the repulsive field). The proposed problem for-
mulation guarantees that the produced potential field, based
on the constructed NF, models the carer’s motions during
the washing tasks. In other words, this approach creates the
learning by demonstration procedure of washing models.

Let the NF of (1), and we can take it’s derivati-
ve: ∇qϕ(q,qd) =

∂ϕ

∂γ
(γ,β ) ·∇qγ(q,qd)+

∂ϕ

∂β
(γ,β ) ·∇qβ (q).

Therefore, it holds that: ∂ϕ

∂γ
= β ·A, ∂ϕ

∂β
= − γ

κ
·A, ∇γ =

2 · (q−qd), where A = (γκ +β )−(
κ+1

κ ). Also, based on the

obstacle function definition: ∇β = β ·
P
∑

i=0

∇βi
βi

. In this work,

we form an obstacle function structure βi, for i = 1, ...,Q,
with Q < P, where P is the total number of obstacles, for
simplicity as ellipsoid function and thus, the main goal is to
compute the necessary parameters in order to construct these
“virtual obstacles”, i.e. centers and length of the principal
axes.

In [10], the solution is based on a gradient descent method,
that produces the obstacle function. Moreover, the authors
use the gradient of the experimental trajectories in order to
compute the cost function to be optimized. This resolution
is feasible for convex case studies, otherwise the gradient
descent method maybe trapped in local minima.

B. Non-Convexity of the Inverse Problem

When W contains obstacles in its interior, the NF becomes
highly entangled w.r.t. the position and obstacles’ general
form. Due to this aspect, the estimation of the appropriate
set of parameters for the obstacles that generated a NF with
the desired form equates into solving a problem that is non
convex. The proof of this statement is presented next.

Assume the problem of a point robot motion planning
on a 2D workspace. Let for simplicity, the initial and
desired configurations of the robot lies on the y-axis, anti-
symmetrically of the x-axis. The optimum path to resolve this
motion planning problem is for the robot to follow a path
that lies on the y-axis (following the line x = 0). As one
simple cyclic obstacle appears in the workspace, the motion
planning resolution of this case depends on the relative
position of the obstacle. Assuming that x1 is the obstacle’s
center on x-axis and x2 is the distance of the resulted path
from the y-axis, we can distinguish four general cases for
the obstacles relative position w.r.t y-axis, as described in
Fig. 3. As the obstacle is away from the y-axis there are two
cases, when the obstacle region is in negative side of y-axis
(I), and when it is in the positive side of y-axis (IV), Fig. 3.
In these cases the resulted optimal path remain on the y-axis
and therefore the distance x2 = 0. In the other two cases of
Fig. 3, it holds that for case (II) the distance x2 > 0, while
for case (III) it switches x2 < 0. Thus, the relation between



Fig. 5: The Demonstration trajectories are performed in physical space by professional nursing personnel. The demonstration data
are projected into the 2D canonical space, in which are post-Processed. In the Learning phase virtual obstacles are learned using the
demonstration data and the proposed NF approach. During the trajectory Reproduction phase a NF controller is employed to reproduce
the washing action. The learned trajectory (red) is then adapted on the visually segmented back region (PointCloud view) of a subject, via
the image space. Top: A simple showering sinusoidal trajectory is visually recorded, learned and reproduced. Bottom: A more complex
showering trajectory is obtained from the KIT whole-body human motion database [25], learned and reproduced.

x1 and x2 is described in Fig. 4. This figure demonstrates
the highly non-convex character of the optimization problem.
On that figure, a point on the left side of the diagram (with
negative x2 deflection) cannot move, using gradient descent
to the right side of the diagram (positive x2 deflection). If
the initial position of the obstacle is point Initial, Fig. 4, a
gradient descent will push away the obstacle towards point
Final, i.e. will push the obstacle further away to the left. It
is not possible for a gradient descent method to converge to
point Target, i.e. an obstacle to the right of the y-axis. A
gradient descent algorithm will result in the obstacle being
“pushed away”. Therefore there is no way to resolve this
problem with a simple gradient descent method.

C. Non-Convex Inverse Problem Resolution

The recorded experimental data are usually very noisy,
as it can be realized from the second column of Fig. 5. A
numerical differentiation scheme would result in excessive
noise added to the system. Thus, we propose to resolve the
optimization problem in the entire recorded trajectory, by
using the Fréchet distance metric (Definition 1).

Another important issue is that the problem is highly
non-convex, as it is described in the previous subsection.
The optimization procedure, in order to resolve the inverse
problem, that is based on a simple gradient descent method
cannot result to a feasible solution and requires the use
of some kind of heuristic approaches. Thus, we used a
Genetic Algorithm (GA) solution as the form of the problem
is naturally suited for such an approach. In particular, the
parameters of the obstacles are naturally suited genes for a
GA, since, to an extent, the positions of the obstacle, the size
and its form have a differential effect on the form of the NF
trajectory and to the cost of the optimization function.

In order to augment the GA search, a gradient descent
method [27] is used, as local optimization scheme for
every member of each generation, as: x( j+1) = x( j) − ω ·
∇C, minimizing the cost function C, where x j denotes the
obstacle parameter values at the jth iteration of minimization
procedure and ω is the design space cost functional gradient

step. Obviously, this augmentation will have the detrimental
effect described above for some sets of solutions (will drive
the obstacles away from the correct positions).

Then, it is necessary to formulate the optimization cost
function C for the discrete samples, as following: C, 1

Texp
·

∑n∈Nexp F(R,En), where F is the Fréchet distance defined by
(3), En is an experimentally measured trajectory, while R is
the estimated trajectory composed by the candidate obstacle
function β . Each estimated point (µ+1) of the trajectory R is
computed based on the previous point (µ) by the equation:
q(µ+1) = q(µ) + ∆t · q̇, where ∆t is the time step between
the points and q̇ is calculated as in (2). The C code for the
Discrete Fréchet implementation was adopted from [28]. The
GA [29] was adopted and programmed in C/C++ from [30].

IV. PERCEPTION-BASED ROBOT BEHAVIOR
ADAPTATION USING DEPTH SENSOR DATA

The main task of the proposed approach is to learn
by demonstration appropriate washing actions e.g. pouring
water. The demonstration is performed in the physical space,
hence a post-processing procedure followed in which the
demonstration examples were projected in a 2D spatially
normalized space denoted as canonical space, following the
notation of our previous work [20]. In this simplified space
the demonstration paths are denoised and the discrete part is
separated from any periodic motion, as in the second column
of Fig. 5. In this form the demonstration data are used in the
learning procedure described in Section III, in which a set of
virtual obstacles is generated forming a repulsive landscape,
which encodes the demonstrated washing skill.

The “virtual obstacle” function β is then used in the repro-
duction phase. At this stage an initial and goal configuration
is provided to the system and fed into the following controller
to generate a washing action, which satisfies the constraints
imposed by the health-care specialist and the constraints
imposed by the region of action. For brevity, we only present
the definition of the behavioral based motion controller.

Proposition 1: The system q̇ = u under the control law
u = −∇qϕ(q(t)), with ϕ as defined in (1) is globally



asymptotically stable, almost everywhere. Proof in [31].
Based on this motion controller the next desired position

is extracted in the 2D canonical space and propagated to the
3D task space for execution from the assistive robotic device.
More specifically, each generated point is projected using
anisotropic scaling and proper rotation into the 2D image
space. On this space, image segmentation techniques (either
simple cartesian and color filters or more sophisticated ap-
proaches [22]–[24]) can be applied, which provide a detailed
image mask containing only the corresponding to the body-
part pixels. From this output mask, we are able to calculate
the center and the extends of the body-part area and hence to
associate each path point to these geometric characteristics.
Then, the point from the image space is projected, through
the camera projection transformation, in order for the robot
to be able to navigate on any point of the surface that needs
to be washed (e.g. the back of the user). It is able to locally
calculate the geometric attributes of the body-part’s surface,
from the Depth data captured by the camera, as described
in [20], in order to provide the proper reference pose to
a robotic manipulator, that will execute the washing task.
The described transformations can also work as a feedback
to the controller. In case of obstacle area detection in the
task space (e.g. injuries on the body part, represented by the
black area in the top right part of Fig. 5), the aforementioned
transformations project them to the canonical space, in order
to incorporate them to the NF controller. The learned from
demonstration behaviour could be modified in a way that the
restricted areas of the body part to be avoided, as shown in
the top of Reproduction phase of Fig. 5.

V. EXPERIMENTS

A. Setup Description

In order to test and analyze the performance of the
proposed approach, an experimental setup is used that in-
cludes a Kinect-v2 Camera providing depth data for the
back region of a subject. For the demonstration procedure
simple sinusoidal trajectories were visually captured by the
camera. The carer holds a marker and he/she performs a
pouring water like motion on the specific body part. The
subject is seated and he/she is free to move their back as
he/she wants (twist, slight turn, etc.). The only constraint is
to remain seated during the recordings and to avoid extreme
movements, in order to keep the body part region inside
the camera’s field of view, top of Fig. 5. A more complex
demonstration example obtained from the publicly available
KIT whole-body human motion database [25], as in bottom
of Fig. 5. Thus, during this validation study the main goal is
to imitate the way that the expert clinical carer executes the
task. Therefore, our goal is to reproduce this execution no
matter how effective the carer’s motion is or how complex
and comprehensive this activity is (e.g. coverage percentage).

B. Validation Strategy and Results

The experimental data consists of trajectory data from
demonstration by professional clinical carers for pouring

water sequence in the 3D task space that have been trans-
formed for learning purposes in the 2D canonical space.
These trajectories in the canonical space are depicted with
blue scaled colours in Fig. 5 (second column).

After the proposed learning from the demonstration data
approach in the canonical space (i.e. the “virtual” obstacles
have been incorporated), the NF controller estimates the feas-
ible, optimal trajectory in the canonical space, by providing
to it, just the initial and destination position and by taking
into account the users body structure and restrictions (i.e. the
real obstacles that have been recognized in the task space and
they have been also transformed to the canonical space). The
evaluation procedure imposes the decision of random initial
and destination positions in the canonical space.

For testing purposes we decide to use the recorded data
in order to compare the NF-based produced trajectory w.r.t.
the carer’s demonstration in the canonical space. In Fig.
6, both trajectories are plotted. The red lines represent the
controller-based trajectory while with the blue lines are the
demonstrated washing task execution. The discrete Fréchet
distances is zero when the two trajectories are equal and
grows positively as the curves become more dissimilar. Based
on these results, these trajectories are very similar (based on
the Fréchet distance metric), since this metric take values
0.052 and 0.198, respectively. Another qualitative conclude
is that the resulted trajectories are very smooth, highly
appropriate for execution by any assistive robotic device.

In Fig. 5 (Reproduction), a learned trajectory is adapted on
a 3D deformable back region of a subject, which is visually
perceived by the camera (PointCloud view). The estimated
local perpendicular vectors (blue) are also demonstrated in
several segments of the executed path. Based on them, the
ability of the proposed approach to apply any learned tra-
jectory in the canonical space to any 3D subject’s body part
surface with unknown curvature, motion and deformation is
demonstrated. In Fig. 5 (top), a learned trajectory is adapted
on a 3D deformable male’s subject back region, which is
visually perceived by the camera, and also compensates a
real obstacle (e.g. a restricted area) of a subject’s body part.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents an efficient NF approach for learning
from demonstration the behavior of an expert clinical carer
during the execution of bathing activities by means of
constructing repulsive potential fields (“virtual obstacles”).
The constructed vector field, based on the learning procedure,
is used for real-time motion behavior planning tasks, which
exploits the visual information from Depth sensors, in order
to calculate the reference position for the end-effector of the
assistive robotic system, whose task is to interact in a friendly
way with moving and variably curved body parts.

The proposed method is validated through real carer’s
demonstration recorded data. The experimental results show,
that the planning system is able to learn the expert’s skills
by producing similar paths (based on the Fréchet distance
metric) with the respective demonstrated trajectories, provid-
ing very smooth, highly appropriate for execution by any



Fig. 6: Comparison of the NF-based produced trajectory w.r.t. the
carer’s demonstration in the canonical space.

assistive robotic devices carer’s-like paths. This approach is
very suitable for adapting the variable subject’s preferences
w.r.t. to time and way of washing tasks execution.

An explicit comparison between our work and a DMP
based approach is not straightforward, as it requires a com-
plex DMP to incorporate all the constraints of our problem
and the quality of the DMP implementation is a key element
to the quality of the results. Despite the fact that, in our
previous work [21] we have shown smooth integration of our
planning framework with DMPs, we are working on an DMP
approach for comparison purposes in the learning procedure.

Also, for further research, we aim to improve this metho-
dology for efficient encoding of periodic actions. Since the
latter are inherently attractive actions, a different learning
strategy has to be adopted. In the learning procedure the
GA in essence simply “decides” if the trajectory passes
right or left from an obstacle. We plan to use an iterative
algorithm which uses a branch procedure and computes all
such possible obstacle trajectory combinations, effectively
augmenting the GA. In the current version, the number of the
obstacles is set by the user, while a GA approach could use
an open number of obstacles, the efficacy of such a procedure
would be low. An approach in which the number of obstacles
is estimated by an algorithm would be beneficial.
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