
User-Adaptive Human-Robot Formation Control for an Intelligent
Robotic Walker using Augmented Human State Estimation and

Pathological Gait Characterization

Georgia Chalvatzaki, Xanthi S. Papageorgiou, Petros Maragos and Costas S. Tzafestas
School of Electrical and Computer Engineering, National Technical University of Athens, Greece

{gchal,xpapag}@mail.ntua.gr, {maragos,ktzaf}@cs.ntua.gr

Abstract— In this paper we describe a control strategy for
a user-adaptive human-robot system for an intelligent robotic
Mobility Assistive Device (MAD) using raw data from a single
laser rangefinder (LRF) mounted on the MAD and scanning
the walking area. The proposed control architecture consists
of three modules. In the first module, a previously proposed
methodology (termed IMM-PDA-PF) delivers the augmented
human state estimation of the user by providing robust leg
tracking and on-line estimation of the human gait phases.
This information is processed at the next module for providing
the pathological gait parametrization and characterization, by
computing specific gait parameters for each gait cycle. These
gait parameters form the feature vector that classifies the
user in a certain class related to risk of fall. Those are of
particular significance to the system, since the gait parameters
and the respective class are used in the third module, i.e.
the human-robot formation controller, in order to adapt the
desired formation of the human-robot system, by selecting
the appropriate control variables. The experimental evaluation
comprises gait data from real patients, and demonstrates the
stability of the human-robot formation control, indicating the
importance of incorporating an on-line gait characterization of
the user, using non-wearable and non-invasive methods, in the
context of a robotic MAD.

I. INTRODUCTION

In a robotic society, elderly people shall not be excluded
by the benefits of technological innovation, that could ame-
liorate their living standards. It is common knowledge that as
life expectancy increases, the elderly population keeps rising.
One important issue that elders face are mobility problems.
Ageing induces instability and lower walking speed and ge-
nerally affects basic gait parameters of normal subjects, while
also changes in stride length and gait patterns are caused by
certain pathologies [1]. The gait speed is associated with
the functional independence and mobility impairment of
the elderly [2], and is therefore closely connected to fall
incidents. Robotics fit naturally to the role of assistance,
since it can incorporate features such as posture support and
stability, walking assistance, health monitoring, etc.

These goals closely interweave; while the ethical goal is
to increase the user mobility, its constraint leads to user
dissatisfaction, anxiety and frustration, and finally rejection
of the system. Therefore, a common research topic in recent
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Fig. 1: The control architecture of a user-adaptive control frame-
work that was developed for the depicted robotic MAD, constructed
with financial support of EU project MOBOT, equipped with a LRF
aiming to record the gait data of the user (below knee level).

years is the development of robotic Mobility Assistive De-
vices (MADs) for elders that provide physical, sensorial and
cognitive assistance [3]. Our aim is to use intelligent MADs
(Fig.1), which can monitor and understand the patient’s
walking state and will autonomously reason on perform-
ing assistive actions regarding the patient’s mobility. For a
robotic MAD that aims to support patients of different mo-
bility status and also assist their rehabilitation progress, user-
adaptation is important, meaning that a deployable MAD
system should be able to assess the mobility state of the user
and adapt its strategies accordingly. A smart MAD should
also serve the purposes of medical monitoring, contributing
to rehabilitation progress and fall prevention.

In literature, there exist MAD control strategies such as
adaptive admittance control schemes [4]. In [5] an admittance
control is presented for a passive walker considering the
position and velocity of the user, utilizing measurements
from a Laser Range Finder (LRF). A control strategy that
used as inputs the linear/angular velocities and the orientation
of the human and the walker, using data from force/torque
sensors, a LRF mounted on the walker and a wearable IMU
on the user is presented in [6]. A formation control was
presented in [7] for safely navigating blind people, using as
input the torso point-cloud. An adaptive shared control for
a robotic MAD is presented in [8], using as input user-data
from force/torque sensors on the handles and the LRF that
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detects obstacles. In our previous work [9], we have provided
significant findings regarding the impact of different generic
control designs on the patient’s gait status, by experimentally
validating the affect of custom-made control designs on
the patient’s walking performance, relative to his medical
categorization (POMA score [10]). By estimating certain
gait parameters, we have shown that subjects with low
and moderate mobility function were affected negatively,
while subjects with higher mobility function did not seem
to present significant change in their gait. Therefore, we
have justified the necessity of incorporating a gait assessment
system on the MAD’s control strategy.

For extracting gait motions, different types of sensors
have been used [11], [12]. The development of a low-
cost pathological walking assessment tool was presented
in [13]. Gait analysis can be achieved by using Hidden
Markov Models for modelling normal [14] and pathological
human gait [15], and extracting gait parameters [16]. Gait
parameters are commonly used for medical diagnosis and
are also associated with fall risk prediction. Recently, we
have developed a new method for online augmented human
state estimation, that uses Interacting Multiple Model Particle
Filters with Probabilistic Data Association (IMM-PDA-PFs)
[17], which tracks the users’ legs using data from a LRF,
while it provides real-time gait phase estimation.

In this work, we propose an implementation of a user-
adaptive robot control architecture to meet the special needs
of people with variable motor inabilities, using data from
a single LRF that is mounted on the MAD of Fig. 1,
to track the user. The augmented human state estimation
method of [17], provides robust leg tracking and real-time
gait phases estimation. A pathological gait parametrization
and characterization is provided by an on-line system that
extracts gait parameters and employs them to classify the
subject to a pathological class, which is associated with risk
of fall. In such a framework the real-time gait status assess-
ment triggers assistive actions and behaviours. i.e. velocity
adjustment, approach of the patient due to changes in gait
patterns, etc. For the user-adaptive human-robot formation
controller, we use as input the kinematic state of the user’s
legs, the respective gait parameters of each gait cycle and
the pathological class to define the appropriate variables for
the human-robot system.

We present a thorough analysis of the methodological
framework for such a control strategy, that uses input from a
single LRF, i.e. a non-wearable sensor and thus, constitutes
a non-invasive method for a robotic MAD, that can be
used both in supporting and following modes of the robotic
assistant. We experimentally validate the efficacy of the
pathological gait parametrization and characterization in pro-
viding accurate pathological gait status classification of the
user. Moreover, we justify the stability of the human-robot
system, that adapts its variables according to the selected
pathological class of the user, by providing results from
simulations of the human-robot formation using recorded gait
data from real patients.

Fig. 2: On top: human gait cycle representation regarding Single
Leg or Double Leg Support (DS). Below: The gait IMM as a first-
order Markov chain that represents the possible transitions for the
human gait states.

II. CONTROL ARCHITECTURE

In Fig. 1 the architecture of the proposed control strategy is
presented for the depicted MAD, that aims to provide optimal
support and assist with rehabilitation. The data are provided
by a LRF mounted on the MAD, which scans the walking
area. The raw data are processed at a higher level by an
Augmented Human State Estimation module that uses an
IMM-PDA-PF framework to track the user’s legs and also,
provides gait phase estimation in real-time. This information
is used in the next module for the Pathological Gait Charac-
terization of the user by employing the information from the
gait phases estimation to segment gait cycles and provide
on-line computation of the gait parameters. Each time a
gait cycle completes, specific gait parameters are computed
and form the feature vector of a classifier that categorizes
the current gait cycle to a certain pathological gait class.
The higher and medium levels feed the last module that
comprises a human-robot formation controller. The desired
formation is associated with the pathological class, as also
the user’s augmented state estimates along with the extracted
gait parameters are used to define the appropriate control
input variables of the human-robot system to achieve user-
adaptive control of the MAD.

A. Augmented Human State Estimation using IMM-PDA-
PFs

For the augmented human state estimation, we have pro-
posed in [17] a novel framework for efficient and robust
leg tracking along with estimating the human gait state,
i.e. the respective gait phase at each time instant. This
approach uses two Particle Filters (PFs) and Probabilistic
Data Association (PDA) with an Interacting Multiple Model
(IMM) scheme for a real-time selection of the appropriate
motion model according to the human gait analysis and the
use of the Viterbi algorithm for an augmented human gait
state estimation. The gait state estimates also interact with the
IMM as a prior information that drives the Markov sampling
process, while the PDA ensures that the legs of the same
person are coupled.



The IMM is inspired by human gait analysis [18], incorpo-
rating the two main periods in each gait cycle, the stance and
swing phases. The stance period can be subdivided into three
internal time intervals, Fig. 2: the initial Double Support
(DS): begins with Heel Strike (HS) and is the time when
both feet are on the ground; the single leg support: when
only one leg is at stance while the opposite leg is swinging;
the terminal DS: begins with the HS of the opposite foot.

The gait cycle can be seen as an interacting model. Thus,
the gait IMM is the first-order Markov model of the human
gait states, Fig. 2, i.e. the discrete states si, i = 1, ..,4 and
the possible transitions ai j from si to s j for i, j = 1, ..,4,
where LDS: “Left Double Support”, LS/RW: “Left Stance/
Right Swing”, RDS: “Right Double Support” and RS/LW:
“Right Stance/ Left Swing”. Each state si refers to both
legs and imposes a different motion model, i.e. it alters
the motion models of the PFs. The legs are tracked, and
a maximum likelihood estimation of a human-centered state
vector to belong to a gait state is computed. The gait state
estimate drives the Markov sampling from the IMM for the
next time frame. A thorough analysis of the IMM-PDA-PF
methodology is provided in [17].

B. Pathological Gait Parametrization & Characterization

The ultimate goal is to adapt the MAD’s controller to the
user’s needs and pathological condition. Towards this end,
we employ the results of the IMM-PDA-PFs methodology
regarding the human gait phase estimation, to segment in
real-time gait cycles and extract specific gait parameters
used for medical diagnosis [19]. Having the recognized gait
cycles and their internal phases (each gait state is related to
a certain time instant, assisting in the temporal segmentation
of the gait cycles), defined in Fig. 2, along with the legs’
kinematic states from the IMM-PDA-PF, we can compute
gait parameters, like the spatial parameters stride length, step
length, gait speed and temporal parameters like stride time,
stance/swing time and step time.

Due to our goal to classify the patient’s mobility status
and also extract those parameters that are important to the
human-robot formation control, we choose to compute the
following parameters that also serve as the feature vector for
an appropriate classifier: 1) stride length, 2) gait speed, 3)
stance time, 4) ratio of stance to stride time, 5) ratio of swing
to stride time, 6) ratio of left step to right step length and 7)
Double Support time.

In this work, we aim to categorize the subjects into two
classes regarding their risk of fall, in order to use this
information as an indicator that will help us decide over the
appropriate control parameters of the human-robot system.
The subjects’ grouping into those classes is associated with
their POMA scores, which was provided by clinical evalu-
ation of the medical experts. According to literature [20],
subjects with POMA score less than 18 present high risk of
falling, while a POMA score between 19 and 23 indicates a
moderate risk of fall. Therefore, for this binary classification
problem, we use the simple yet effective in such cases SVM
classifier [21], for the feature vector of gait parameters that

Fig. 3: Human-Robot Formation and parameters.

was described previously. Each pathological class triggers the
selection of different control variables for the human-robot
formation control, thus adapting the system to the specific
needs of the user.

C. Human-Robot Formation Control

We assume that the human and robot’s kinematics can be
abstracted as a unicycle. Let xn = [xn,yn,θn]

T ∈ SE(2) be
the state vector of human/robot, where n = {H,R} denoting
human and robot respectively, (xn,yn) are the position coor-
dinates and θn the orientation. The kinematics are given by:
ẋn = υn cosθn, ẏn = υn sinθn, θ̇n = ωn, where υn,ωn are the
linear and angular velocity respectively of the nth agent.

Inspired by the leader-follower formation control, we
develop a framework consisting of a feedback controller for
the human-robot system. The formation control incorporates
the control of relative positions and orientations of the human
and the robotic assistant, while allowing them to move as
a whole. The leader defines the motion and the follower
is controlled to follow the leader’s motion by keeping a
desired separation and a desired relative bearing. In our case,
the leader, i.e. the one imposing the motion, is the human
and the follower is the robot, forming a front-following
formation problem. Let `d be the desired separation and φ d

the desired relative bearing. The relative bearing is defined
as the clockwise angle from the heading of the human
to the straight line connecting the human to the robot’s
reference frame. The human-robot system, shown in Fig.
3, is transformed to new coordinates according to a global
reference frame OG, and the human state is the input of the
system. The kinematic equation that describes the human-
robot formation is:

ẇ = A(w,β ) ·uR +B(w) ·uH

β̇ = ωH −ωR

(1)

where w =
[
` φ

]T is the system’s state, β is the rela-
tive orientations, uH = [ υH ωH ]

T is the human velocity
vector, and uR = [ υR ωR]

T is the input to the robot. The
matrices A and B are defined as follows:

A =

[
cos(ψ) b · sin(ψ)

− 1
` sin(ψ) b

` cos(ψ)

]
B =

[
−cos(φ) 0
1
` sin(φ) −1

]
(2)

where ψ = β + φ , and b is a positive bias. The control
velocity vector uR is estimated by applying input-output
feedback linearization in (1), which delivers:

uR = A−1 · (q−B ·uH) (3)



where q is an auxiliary vector such that:

q = K · (wd −w) (4)

where K =

[
k1 0
0 k2

]
, with k1,k2 > 0 are positive gains.

Also, matrix A is invertible as long as b/l > 0, which is
always true. The closed-loop linearised system is:{

ẇ = q = K · (wd −w)

β̇ = ωH −ωR

}
(5)

Under suitable assumptions the human-robot system is sta-
ble, meaning that in (5) the output w converges exponentially
to the desired wd . The stability analysis of this system is
proved in [22].

This human-robot system is closely connected to the gait
parametrization and characterization for the identification of
the control variables. Each time a gait cycle completes, the
extracted gait features are used for the real-time classification
of the user. Each class induces a different desired separation
distance ld , that is related to the class stride length average
measures. We aim to assure that the human-robot formation
adapts to changes in gait when for example a subject feels
more confident and speeds up their gait, or another subject
alternates their gait due to fatigue.

The human linear velocity υH is the estimated gait speed
that results at the end of each gait cycle. As human position
we regard the midpoint of the estimated left and right leg
positions and is renewed according to the LRF’s frame rate.
For the computation of the human angular velocity ωH , we
compute the angle change of the human position w.r.t. the
LRF in the relative human-LRF coordinate system. It is true
that the human-robot system renews its inputs with different
frame rates. On the one hand, the position, orientation and
angular velocities are renewed according to the LRF’s frame
rate, on the other hand the human velocity and the decision
of the desired separation distance is connected to the stride
time, which also varies from stride to stride. To accommodate
the different timings of feeding information to the system,
we also applied an Unscented Kalman Filter (UKF) [23] for
a human-centred tracking, i.e. a higher level tracking of the
human-centred state above the IMM-PDA-PFs.

UKF Human-centred tracking: The tracking framework
comprises the well-known UKF, described in [23]. We ap-
ply the standard methodology using as state variables the
position of the human along the axes xH ,yH , the orientation
θH (from which we can compute the angular velocity via
differential equation; in the future we will fuse information
from the torso rotation to better estimate turning intentions),
and the linear velocity υH . The state equations are:

xt
H = xt−1

H +υ
t−1
H · cos(θ t−1

H ) ·∆t
yt

H = yt−1
H +υ

t−1
H · sin(θ t−1

H ) ·∆t
θ t

H = θ
t−1
H +η t

θH

υt
H = υ

t−1
H +η t

υH

(6)

where t is the discrete time and η t
θH
,η t

υH
are the orientation

and linear velocity noises modelled as zero-mean white
Gaussians with standard deviations σθ = π/6 and συ = 0.02

m/sec. While the observations for the xH ,yH , θH variables
arrive at each laser frame, the velocity observation is held
constant for the duration of one gait cycle, therefore till
a new velocity observation comes to correct our velocity
estimate, we assume the one derived from the prediction
step of the UKF as the current velocity prediction. The
observation model is linear and the measurement noises for
all state variables are also modelled as white Gaussians with
standard deviations 0.1 m in position for both axes, π/30 in
orientation and 0.09 m/sec in velocity measurements.

III. EXPERIMENTAL ANALYSIS & RESULTS
A. Experimental data & Evaluation Strategy

The data used in this work derived from real patients
who participated in two large scale experiments, conducted
in Agaplesion Bethanien Hospital - Geriatric Center, under
ethical approval by the ethics committee of the Medical
Department of the University of Heidelberg. All subjects
had signed written consent for participating in the experi-
ments. The participants presented moderate to mild mobility
impairment, according to clinical evaluation. In this work
we present two evaluation studies. The first concerns the
Pathological Gait parametrization & Characterization Fig.
1, i.e. the pathological gait status classification, while the
second one refers to the evaluation of the proposed user-
adaptive human-robot formation control strategy. The data
used in both studies, were collected by a Hokuyo rapid laser
sensor, mounted on the robotic platform of Fig. 1, for the
detection of the patients’ legs.

For the first experimental evaluation, the subjects have
participated in an experiment, where they walked straight
for about 3 m in order for medical experts to assess amongst
others their POMA scores. The data were collected by the
LRF of Fig. 1. Twenty four patients have been categorized
in the two classes that we are interested in. We use the gait
data from these twenty four patients, that resulted in a dataset
of more than 200 strides, in order to train an SVM classifier
and validate the classification performance using the features
described in Section II-B.

For the formation control evaluation, we simulate a hy-
pothetical unicycle robot, to evaluate the performance of
the proposed control architecture given real pathological gait
data. For this study, we present data from fourteen patients
with unknown POMA scores (their inclusion criterion was
only to be of mild/moderate mobility impairment). Those
patients were supported by a passive rollator (data collection
experiments) equipped with the same type LRF sensor and
they had to walk in a free area while making right and left
turning manoeuvres.

We provide the analytical formation error results as the
average separation distance error, the average relative bearing
error and the Euclidean norm of the formation error: E(t) =
PH(t)− ld · [ cos(φ d) sin(φ d)]T , where PH(t) = [xH ,yH ]

T

is the position of the human along the axis at time instant
t, [7]. The control gains in this work are selected after
experimentation and are set to be k1 = 40 and k2 = 30. The
desired separation for Class 1 was `d = 0.55 m and the bias
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Fig. 4: Pathological gait classification results.

b = 0.1 m, while for Class 2 `d = 0.75 m and b = 0.1 m.
Those parameters have been set using intuition from Table I
allowing also a small margin compensating the difference of
estimating the step length in the knee level from the actual
step length on the foot level, [16]. The initial separation
distance regardless of the subject’s class was set at 0.6 m.
For both studies the IMM-PDA-PF methodology have used
a robust implementation of 200 particles [17].

B. Validation of the Pathological Gait Parametrization &
Characterization

For justifying the need of the pathological characterization
of the users of the intelligent MAD, Table I presents the
average measures and standard deviations of the extracted
gait features from the whole dataset for each of the two
pathological gait classes, which were provided by the med-
ical experts. It is evident that the two classes have very
different average measures. For example the average stride
lengths differ for about 20 cm, while the average gait speed
for Class 1 is almost 25 cm/s less than the respective of
Class 2. The stance time is larger in Class 1, while it is
interesting that it presents greater variability than in Class
2. Furthermore, the ratios of stance and swing time w.r.t.
the stride time are closer to normal for Class 2 (in literature
[18] this ratio is 60% stance and 40% swing), while in Class
1 more time is dedicated to stance time, i.e. the subjects
of Class 1 are more reluctant in entering the swing phase;
following these comments it is natural to also observe a larger
DS time in Class 1, a feature that is closely associated with
risk of fall. Given these indications regarding the gait features
of each class, we proceeded with the training of the SVM
classifier, having separated the initial dataset into training
and testing sets using a random 70%−30% partition.

To train the SVM classifier model we have used the well-
known k-fold cross-validation method, for avoiding over
fitting problems, over the training dataset using a linear

kernel. The cross-validation resulted in a loss, i.e. mean
squared error of observations w.r.t. predictions, of about
4%. In Fig. 4a the confusion matrix of the cross-validated
SVM over the testing dataset is presented. The classification
accuracy in this case was 98%. Furthermore, in Fig. 4b a plot
of the features stride time and stride length for both classes
is depicted. Marked with red are the features belonging to
Class 1, with light blue the ones in Class 2 and the black
circles denote the support vectors that define the separation
hyperplane of the two classes. It is evident from this plot
that the two classes can be linearly separated by an SVM.
Although 98% accuracy is high, one can claim that a 2%
error is rather high for such an application. However, this
error cannot be considered fatal since the classifier runs
at the end of each gait cycle, i.e. the class is re-estimated
at most every 1.5 sec, while also most of the times these
events happen when the features are really close to the
separation hyperplane of the classifier. We intend to apply
in the future some smoothing on the classifier in order
to prevent the abrupt changes of classes and also apply a
more sophisticated control approach that will consider certain
constraints imposed by the extracted gait parameters.

C. Evaluation of the Human-Robot Formation Control

Table II presents the absolute mean and standard deviation
of the formation errors for the separation distance (mm),
the relative orientation (deg) and the mean and standard
deviation of the norm of the formation error in (mm) of the
human-robot system. The results show the convergence of
the proposed controller, since the average separation distance
error for all patients is approximately 4 mm and the relative
bearing error close to 2.5 deg. The mean norm of the
formation error ||E|| is 26 mm and the standard deviation
is 17 mm. Furthermore, we present graphical results for two
subjects for demonstration purposes.

In Fig. 5 the formation results for subject #1 are presented.
In Fig. 5a the trajectories performed in the 2D plane by
the subject (red) and the robot (blue) are depicted. The
human and robot started at an initial position and performed
a trajectory that included right and left manoeuvres along the
way and stopped after walking for about 6 m. The green stars
indicate the turns along the path performed by the human. In
Fig. 5b the evolution of the actual separation distance w.r.t.
to the desired one is depicted. It is evident that the controller
converges to the desired output, as it is also shown in Table
II, where the subject presented average separation distance
error of 4 mm. We can also mention after inspecting this
figure that the subject was classified at Class 1 for the whole
walking activity (the desired distance was constantly set at
0.55 m).

In Fig. 5c the evolution of the relative bearing (deg) w.r.t.
the desired value is presented. Cross-examining this figure
with the generated human-robot trajectories of Fig. 5a, we
can notice that the deviations of the relative bearing from the
desired value happen in cases of turning manoeuvres, as for
example during time frames from about 30 to 230 that the
human makes consecutive right and left turns. However, the



TABLE I: Gait Classification features

Class
Feature stride length (m) gait speed (m/s) stance time (s) stance/stride time swing/stride time left step/right step length DS time (s)

Class 1 0.49±0.09 0.39±0.09 0.80±0.23 0.63±0.07 0.37±0.07 0.94±0.24 0.20±0.05
Class 2 0.69±0.07 0.64±0.09 0.61±0.06 0.57±0.03 0.43±0.03 1.01±0.13 0.15±0.04

Average measures and standard deviations of the gait features for Class 1 and Class 2.

TABLE II: Formation Error Results

Error
Subject 1 2 3 4 5 6 7

distance (mm) 3.9±4.0 4.8±5.5 3.9±7.0 3.8±3.7 5.0±6.9 3.3±3.2 3.6±4.7
bearing (deg) 2.46±1.74 1.84±1.35 1.89±1.75 1.94±1.70 3.03±2.33 2.49±1.55 3.23±2.37
||E|| (mm) 31±17 20±11 24±20 21±15 29±21 26±12 25±19

Error
Subject 8 9 10 11 12 13 14

distance (mm) 2.8±6.7 4.4±6.6 3.4±6.3 3.3±3.2 4.3±9.7 3.5±3.3 8.6±8.3
bearing (deg) 1.86±1.25 1.50±1.06 2.14±1.76 2.97±1.96 2.53±1.41 2.39±1.57 4.35±3.16
||E|| (mm) 20±12 17±9 22±15 29±18 28±11 22±13 35±24

Average absolute errors and standard deviations for the separation distance, the relative orientation and the norm of formation error E of
the human-robot system.

system converges close to the desired bearing for the time
frames from about 250 to 400, when the human and robot are
walking a straight path, and then again the bearing presents
deviations when the human attempts a left turn at the end of
the path. Turning manoeuvres can be seen as perturbations
to the human-robot system, which the system manages to
overcome and converge to the desired value. Even these
deviations are admissible for our problem, since they are
measured closely to the desired one; subject #1 presented
average relative bearing error 2.46 deg, while the affect on
the formation error is considered small, since the mean norm
of the error ||E|| for subject #1 is only 31 mm, i.e. a distance
that constitutes only the 5% of the desired separation distance
for this subject.

In Fig. 6 the formation results for subject #14 are pre-
sented. The trajectories executed in the 2D plane by the
subject (red) and the robot (blue) are depicted in Fig. 6a. This
subject performed a longer path, walking almost 8 m in the
horizontal direction, while performing more turns along the
way (indicated by the green stars). In Fig. 6b, the evolution
of the actual separation distance w.r.t. to the desired one
is depicted. The significant remark is that this subject has
alternated gait throughout the path. Until the first ∼ 150 time
frames the subject was classified at Class 1, while for the
time frames of about 150 to 320 the subject is classified at
Class 2. This time interval corresponds in Fig. 6a at the travel
from 2 m to 4 m in the x-direction. It is evident that the user
sped up the gait, thus the subject was classified at Class 2,
but then again the subject changed the walking performance
and was classified at Class 1. Despite the changes between
Classes 1 & 2, and the respective alterations in the desired
distance separation, the controller converges to the desired
output each time, having an average separation distance error
of 8.6 mm, which is an admissible error for our application.

In Fig. 6c the evolution of the relative bearing (deg) w.r.t.
the desired value is presented. Once more, we cross-examine
this figure with the generated human-robot trajectories of
Fig. 6a. As this subject performed many turning manoeuvres
along the way, there are more deviations of the relative

bearing from the desired value. While the system attempts to
converge at the desired zero relative bearing, the consecutive
perturbations induced by the respective turns, disrupt the
system’s response. This results in a mean error of 4,35 deg,
which is also an admissible error for our case, since the
affect on the formation error is considered small, having a
mean norm of the error ||E|| of about 35 mm, i.e. a distance
that constitutes approximately 6% over the average desired
separation distance (measured at 0.62 m) for the particular
subject. In our future work, we will incorporate information
regarding the upper body pose and also define certain fall
criteria with the help of medical experts.

To our knowledge, the only work in literature that consid-
ers a human-robot formation is found in [7], where they used
this framework to provide feedback to a tactile sensor worn
by blind people. In this implementation, the authors tracked
the human torso from a camera point cloud and have set
a desired separation distance at 2.3 m. They stated that the
mean of the norm of the formation error was 0.52 m, i.e. the
error is the 23% of the desired distance, while in our case
the errors are much smaller, having a respective percentage
error only 4.7%.

IV. CONCLUSIONS AND FUTURE WORK
This paper presents a strategy for user-adaptive human-

robot formation control of a robotic MAD, using data from
a single LRF mounted on the platform, that scans the walking
area. The proposed framework incorporates a robust leg
tracking and on-line gait phases estimation using IMM-PDA-
PFs, a pathological gait parametrization and characterization
module for extracting gait parameters and classifying the
user to a class that is associated with risk of fall. Each
class defines different control variables for the control of the
human-robot system. The proposed controller is inspired by
the leader-follower formation control theory. The experime-
ntal results presented in this paper show the significance of
adapting the human-robot system to the particular pathologi-
cal gait class of the user and their respective gait parameters,
since it is proved to be stable using data from real patients
who presented variable gait performance.
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(b) Evolution of actual separation
w.r.t to desired.
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bearing w.r.t to desired.

Fig. 5: Formation results: trajectories, separation distance & relative bearing vs. the desired values for subject #1 (Table II).

(a) Human-Robot
performed trajectories.

0 100 200 300 400 500 600

# time frame

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

s
e
p
a
ra

ti
o
n
 d

is
ta

n
c
e
 (

m
)

desired

actual

(b) Evolution of actual separation
w.r.t to desired.
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bearing w.r.t to desired.

Fig. 6: Formation results: trajectories, separation distance & relative bearing vs. the desired values for subject #14 (Table II).

In our future work, we aim to apply some constraints
on the human-robot system regarding some crucial gait
parameters that are closely associated with risk of fall. We
are also planning to incorporate an obstacle avoidance control
module, and also employ information of the force/torque
sensors of the handles in cases of supporting mode of the
MAD. Finally, our goal is to test our control strategy with
the robotic MAD and patients to evaluate the real-time
performance of our framework.
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