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Abstract— During the past decade, robotic technology has
evolved considerably towards the development of cognitive
robotic systems that enable close interaction with humans.
Application fields of such novel robotic technologies are now
wide spreading covering a variety of human assistance function-
alities, aiming in particular at supporting the needs of human
beings experiencing various forms of mobility or cognitive
impairments. Mobility impairments are prevalent in the elderly
population and constitute one of the main causes related to
difficulties in performing Activities of Daily Living (ADLs)
and consequent reduction of quality of life. This paper reports
current research work related to the control of an intelligent
robotic rollator aiming to provide user-adaptive and context-
aware walking assistance. To achieve such targets, a large
spectrum of multimodal sensory processing and interactive
control modules need to be developed and seamlessly integrated,
that can, on one side track and analyse human motions and
actions, in order to detect pathological situations and estimate
user needs, while predicting at the same time the user (short-
term or long-range) intentions in order to adapt robot control
actions and supportive behaviours accordingly. User-oriented
human-robot interaction and control refers to the functionalities
that couple the motions, the actions and, in more general terms,
the behaviours of the assistive robotic device to the user in a
non-physical interaction context.

In this context, this paper presents current advances in
two directions, focusing towards the development of: 1) a
user monitoring system that can enable tracking, analysis and
classification of human gait patterns, based on non-intrusive
laser rangefinder data, and 2) a control system that can support
a ‘user-following’ behaviour; that is, enable the robotic rollator
to follow and comply to the walking characteristics of the user
without any physical interaction (i.e. without any force being
applied on the handles of the Rollator) and remain in close
vicinity to the user in case of need. This paper summarizes
the theoretical framework and presents current experimental
results obtained using real data both from patients (elderly
subjects with mild to moderate walking impairments) and
normal subjects. Results are promising demonstrating that
such a framework can be used efficiently and effectively to
provide user-adapted mobility assistance that can enhance the
functionality of such robotic devices.

I. INTRODUCTION

Elder care constitutes a major issue for modern societies,
as the elderly population constantly increases [1]. Mobility
problems are common in seniors. As people age they have
to cope with instability and lower walking speed [2]. It
is well known that mobility impairments constitute a key
factor impeding many activities of daily living important
to independent living, having a strong impact in productive

Fig. 1: Left: Typical passive assistive device for elderly.
Right: The robotic platform based on the rollator prototype
equipped with a Hokuyo Laser Sensor aiming to record user’s
gait data.

life, independence, physical exercise, and self-esteem [3],
[4]. Most people with mobility issues, patients or elders,
have to use walkers in their everyday activities and they
need the constant supervision of a carer. The social and
economic significance of solving these issue should not be
underestimated. Robotics seems to fit naturally to the role
of assistance since it can incorporate features such as pos-
ture support and stability enhancement, walking assistance,
navigation and cognitive assistance in indoor and outdoor
environments, health monitoring etc.

This paper reports research work conducted in the frames
of an EU funded research project MOBOT, aiming to develop
an intelligent robotic rollator aiming to provide user-adaptive
and context-aware walking assistance (see Fig. 1). The main
motivation behind this work derives from our vision of
developing and advancing robotic technologies enabling the
development and deployment of cognitive assistive devices
that can monitor and understand specific forms of human
walking activities in their workspace, in order to deduce the
particular needs of a user regarding mobility and ambulation.
The ultimate goal is to provide context-aware support [5],
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and intuitive, user-adapted assistance to users experiencing
mild to moderate mobility and/or cognitive impairments in
domestic environments. To achieve such targets, a large
spectrum of multimodal sensory processing and interactive
control modules need to be developed and seamlessly in-
tegrated, that can, on one side track and analyse human
motions and actions, in order to detect pathological situations
and estimate user needs, while predicting at the same time the
user (short-term or long-range) intentions in order to adapt
robot control actions and supportive behaviours accordingly.
User-oriented human-robot interaction and control refers to
the functionalities that couple the motions, the actions and,
in more general terms, the behaviours of the assistive robotic
device to the user in a non-physical interaction context.

In this paper, we summarise current research work, focus-
ing on recent advances and challenges in two directions:

1) First of all, we address the challenge of developing
a reliable pathological walking assessment system, that can
operate on-line and in real-time enabling the robotic assistive
device to continuously monitor and analyse the gait charac-
teristics of the user in order to recognise walking patterns that
can be classified as pathological requiring specific attention
and handling by the system. The proposed system uses an
onboard laser rangefinder sensor to detect and track user
legs (a non-intrusive solution that does not interfere with
human motion). A hidden Markov model (HMM) approach
is used to perform statistical modeling of human gait. This
paper presents the results of this gait modeling framework in
terms of segmenting the gait cycle and recognising different
gait phases, which can be subsequently used to extract gait
parameters. This paper presents preliminary gait characteri-
sation results for five patients, from a full-scale experimental
study conducted at the premises of the Bethanien Hospital
- Geriatric Centre of the University of Heidelberg, at the
frames of the EU-funded FP7 research project MOBOT.

2) Secondly, we focus on the development of a control
system that can support a ‘user-following’ behaviour; that
is, enable the robotic rollator to follow and comply to the
walking characteristics of the user without any physical inter-
action (i.e. without any force being applied on the handles of
the Rollator) and remain in close vicinity to the user in case
of need. This paper summarizes the theoretical framework
and presents current experimental results obtained using
real data both from patients (elderly subjects with mild to
moderate walking impairments) and normal subjects. Results
are promising demonstrating that such a framework can
be used efficiently and effectively to provide user-adapted
mobility assistance that can enhance the functionality of such
robotic devices.

This paper summarizes the theoretical framework and
presents current experimental results obtained using real data
both from patients (elderly subjects with mild to moderate
walking impairments) and normal subjects. With respect to
gait analysis and assessment, as opposed to most of the
literature available on the topic, the approach presented in
this paper is completely non-intrusive based on the use of
a typical non-wearable device. Instead of using complex

Fig. 2: Internal gait phases of human normal gait cycle.

models and motion tracking approaches that require expen-
sive or bulky sensors and recording devices that interfere
with human motion, the measured data used in this work is
provided by a standard laser rangefinder sensor mounted on
the prototype robotic rollator platform. In this paper, we per-
form an initial assessment of an HMM-based methodology
used for the statistical modeling and classification of human
gait patterns and for the extraction of clinically-relevant gait
parameters.

This paper also summarizes the methodological framework
enabling a user front-following behaviour for the robotic
rollator. The current methodology implements a kinematic
human-robot interaction control approach, essentially reg-
ulating a virtual pushing behavior. Experiments with real
users have shown that even though this control behavior is
successful, it inserts a cognitive load on the users who try
to steer the robot on the optimal path they would have taken
under normal conditions. As a result, the users deviate from
their normal gait pattern in their effort to control the robot.
Current research focuses on the development of a shared
control user-assistance behaviour. Our approach considers
user intent recognition by introducing the concept of dynamic
undecidability, and employs a dynamic window method for
local kinodynamic planning.

The experimental results presented in this paper are
promising, demonstrating that such a framework can be used
efficiently and effectively to provide user-adapted mobility
assistance that can enhance the functionality of such robotic
devices. The ultimate objective of this work is to design
a reliable pathological walking assessment system (that
embodies several walking morphologies, allowing inclusion
of new patients with different mobility pathologies) and
incorporate this tracking and monitoring system in a context-
aware robot control framework enabling a cognitive mobility
assistance robotic device to provide user-adaptive walking
support actions and intuitive assistive behaviours.

The paper is organised as follows. Section II describes
the proposed HMM-based gait analysis and characterisation
framework, while Section III summarises the user front-



following methodology adopted in current experiments. Sec-
tion IV describes the experimental results achieved regarding
both the gait analysis and the user-following control modules,
while Section V presents conclusions and summarises future
research work directions.

II. HMM-BASED GAIT ANALYSIS

For gait recognition purposes we have used Hidden
Markov models (HMMs). An HMM has well suited sta-
tistical properties, and it is able to capture the temporal
state-transition nature of gait. In our previous work, we have
proposed and analyzed extensively the properties of an HMM
system and its applications for modelling normal human gait
[6], as well as for pathological gait recognition [7]. The
proposed model uses a seven-state representation that follows
the typical definition of stance and swing phase events for
normal human gait, which are depicted in Fig. 2.

This paper focuses on performing an initial assessment
of this framework in terms of extracting clinically-relevant
gait parameters that could be used for the characterisation
and classification of specific pathological walking patterns.
Gait Analysis literature uses specific gait parameters for the
quantification of each gait cycle, commonly used for medical
diagnosis, [8], [9]. In this work, we are using two temporal
parameters: a. stride time: the duration of each gait cycle,
b. swing time: the swing phase duration in a gait cycle,
and, one spatial parameter: c. stride length, i.e. the distance
travelled by both feet in a gait cycle. The rest of this section
summarises the methodological background of the proposed
HMM framework for gait analysis and characterisation.

A. User’s legs Detection and Tracking

The raw laser data are processed by the detection and
tracking system. Each time frame this system estimates the
position and velocity of the user’s legs with respect to the
robotic platform motion. Thus, we mainly utilize K-means
clustering and Kalman Filtering (KF) for the estimation of
the central positions and velocities of the left and right leg
of the user along the axes, [7].

Every time instant, a background extraction of the raw
laser data is performed for deleting outliers and then a simple
method for grouping laser points based on experimental
thresholds is applied. When we end up with two groups, we
perform the K-means clustering algorithm, in order to assign
each laser group the left/right leg label. Circle Fitting is then
used for computing the legs’ centers. Those centers are the
observation vector that enters a constant acceleration KF. The
KF tracks the central positions of the limbs by stochastically
estimating their position and velocity. We seed the next
detection frame with the prior information of the predicted
legs’ position and variability. When one leg is occluded by
the other while turning, we have a false detection case and
we do not use the corresponding laser information for the
observation vector. To overcome such situations, we only
apply the prediction step of the KF, as we do not observe
abrupt changes of the legs’ velocity frame-by-frame. The

estimated positions and velocities are the features used in
the HMM recognition system.

B. HMM Gait Cycle Recognition

The hidden states of the HMM are defined by the seven
gait phases, Fig. 2. As observables, we utilize several quan-
tities that represent the motion of the subjects’ legs, (relative
position w.r.t. the laser, velocities, etc.), which are estimated
using sequential signals from a laser sensor. The state and
observations at time t are denoted as st and Ot , respectively.
The seven states at time t = 1,2, ...,T , where T is the total
time, are expressed by the value of the (hidden) variable
st = i, for i = 1, . . . ,7, where 1 ≡ IC/TW , 2 ≡ LR, 3 ≡ MS,
4 ≡ T S, 5 ≡ PW , 6 ≡ IW , and 7 ≡ MW . The observations at
time t, are represented by the vector Ot = [o1

t . . .o
k
t ]

T , for k =
1, . . . ,9, where o1

t ≡ xR, o2
t ≡ yR, o3

t ≡ xL, o4
t ≡ yL, o5

t ≡ υR
x ,

o6
t ≡ υR

y , o7
t ≡ υL

x , o8
t ≡ υL

y , and o9
t ≡ Dlegs. The quantities

(xR,yR,xL,yL) are the positions and (υR
x ,υR

y ,υL
x ,υL

y ) are the
velocities of the right and left leg along the axes, and Dlegs
is the distance between the legs. The observation data are
modeled using a mixture of Gaussian distributions.

C. Gait Parameters Computation

For the computation of the gait parameters from the laser
data, we use the time segmentation given by the HMM
recognition system. Each recognised gait cycle provides the
stride time, while the swing time is the duration of the phases
from IW to MW. The stride length is computed by summing
the distances travelled by each leg in the direction towards
the robotic platform.

III. USER FRONT-FOLLOWING

The problem of following from the front can be divided
into two general cases; following the human in free space
i.e. in an obstacle-free space and, following the human in a
structured environment e.g. in an office building, corridor etc.
The two problems have different complexity with the former
being substantially simpler than the latter. Specifically, in
free space following, the problem can be cast as a control
problem where the goal is to minimize some error measures
e.g. minimize the distance and orientation errors between the
human and the robot. This approach is singularly treated in
the current literature. In the structured environment case, the
task involves avoiding obstacles, either static of moving, as
well as deciding where the human actually wants to go; a
possibly undecidable problem. See for example Fig.1.

It is clear that the robot has no way of knowing where the
human wants to turn by examining solely the human motion.
This problem requires the addition of further information into
the control loop by letting the human show the robot to turn
left/right using some kind of feedback e.g. audio, posture,
gestures etc. Thus, the human must also steer the robot
and not just act as an observable for the robot. The control
strategy for this problem is radically different from the free
space following problem, and has received no attention in
the literature.



Fig. 3: Undecidability of the front-following problem in
structured environments

The front-following problem has received scarce attention
from the research community. Our survey has produced only
three papers dealing with subject. All three deal with the
free-space following problem. In [10] the authors use a Laser
Range Finder (LRF) to scan the human torso, which serves as
a more robust scanning target than the legs. Using a particle
filter employing a constant velocity model, they track the
pose of the human during motion. The control algorithm
uses a virtual target based on the human and robot poses.
The aim is for the robot to track the target, which lays
in the approximate direction of the human velocity vector.
[11] use an RGBD sensor (Microsoft Kinect) to track the
human position relative to the robot. Following, they use
the nonholonomic human model [12], [13] to calculate the
humans orientation, combined with an Unscented Kalman
Filter to provide a smooth estimate of the human orientation,
linear velocity and angular velocity. The controller is an ad-
hoc solution aiming to align the human-robot poses while
putting the robot in front. [14] combine readings from a
wearable IMU sensor on the human, along with LRF data of
the legs in order to provide an estimate of the human pose
and linear/angular velocities. They use an inverse kinematics
controller to exponentially stabilize a position and orientation
error between the human and the robot. In this setup, they
perform experiments in straight line tracking, as well as in
tracking the human along an 8-shaped path.

A. Human pose estimation

The first step towards human following is the detec-
tion/estimation of the human pose. A basic assumption is that
the human is detected by a LRF located on the robot, which
scans the user legs. Furthermore, the kinematic controller
only needs the position of the human, not the orientation
and velocity. This simplifies the control and is more robust
to estimation errors. To filter out environment artefacts and
obstacles, we borrow the idea of a Human Interaction Zone

(HIZ) from [14], which consists of a parallelogram of width
2m and length 2m, centered at the LRF. Based on the laser
scans inside the HIZ, a centroid is calculated by taking the
average in each x,y coordinates. Thus, if k scans lay inside
the HIZ, the centroid coordinates are,[

xH
yH

]
=

[
1/k ∑k xi

L
1/k ∑k yi

L

]
(1)

To enable more valid detection results, in order to exclude
false positives from walls, furniture etc. we have inserted
an adaptive algorithm based on the previous valid centroid
position. Specifically, in the beginning, the robot considers
only scans inside an initial window, similar to the HIZ
but with a width of 0.8m. This implies that the human
who is intended to be followed, approaches the robot in
a narrow region. Following, the algorithm estimates the
centroid coordinates [xi

H ,y
i
H ] at loop i. In the next loop

i + 1, the algorithm scans inside a small leg window, of
width 0.3m and height 0.2m. Thus the detection area is the
rectangle[xi

H ±0.3,yi
H ±0.2]. In this way, the algorithm tracks

the human as he/she moves inside the HIZ, and discards other
unrelated objects.

B. Kinematic controller

The proposed solution for the front-following problem, is a
virtual pushing approach through a kinematic controller. We
define an equilibrium distance x0 where the system is at rest.
If the human passes the equilibrium point and approaches
the robot, then the robot starts to move depending on the
human-robot distance.

Fig. 4: Depiction of the Laser Frame and the Equilibrium
distance x0

The robot model used is the widely known Unicycle robot,
controlled by the inputs vR,ωR (linear and angular velocities
respectively). Rigidly attached to the robot is the laser frame,
in which the user centroid xH ,yH is calculated. The robot’s
linear velocity is given by,

vR = λ (yH)v(xH) (2)

where,



v =


0 ,xH > x0

k1(xH − x0) ,x2 ≤ xH ≤ x0

vwalk ,x1 ≤ xH ≤ x2

vmax − k2xH ,0 ≤ xH ≤ x1

k1 =
vwalk

x2−x0
,k2 =

vmax−vwalk
x1

(3)

The term λ is a velocity modulating term (see below for
a more thorough analysis). Equation (3) defines a piece-
wise linear velocity profile, consisting of three regions; the
approach region, the walking region and the collision region.

Fig. 5: Profile of the linear velocity input

The walking region is the set on the x-axis of the LRF
frame, within which the robot has a constant velocity, namely
the walking velocity vwalk. In this region the robot moves
synchronously with the user. If the human moves very close
to the robot, he/she enters into the collision region, in
which the robot accelerates up to a maximum velocity vmax.
Conversely, if the human falls behind (or enters the HIZ
from a distance greater than the Equilibrium distance x0), the
approach region is considered, where the robot accelerates
from halt up to the walking velocity. The second robot
input, the angular velocity ωR, is described by the following
equations,

ωR =

{
0 , |yH |< ε
kω sgn(yH)(|yH |− ε0) , |yH |> ε

kω = ωmax
HIZw/2−ε

(4)

Here ωmax the maximum angular velocity, HIZw is the
width of the HIZ and ε is a deadband about the x-axis.
The deadband is inserted in order to filter out natural
gait oscillations during walking, as well as noise from the
centroid estimator. In our experiments ε was set to 10cm.

Using Eq. (4), the robot essentially turns in such a way as
to always face the user. During experiments it was observed
that in corners the users place themselves on the outer
limits of the y-axis to make the robot turn fast enough.
This oversteers the robot and in order to correct its heading,
they must swiftly move on the other end of the axis. At

Fig. 6: Profile of the angular velocity input

the same time the robot is moving forward with a linear
velocity, making the reaction time rather short and leading
to unstable behaviors. To prevent this situation, we have
inserted a velocity modulating term λ (yh) in Eq.(1). The
term is given by,

λ =


1 , |yH |< ya
yb−|yH |
yb−ya

,ya ≤ |yH | ≤ yb

0 ,yb < |yH |
yb = ε +b(HIZw/2− ε)
ya = ε +a(HIZw/2− ε)

(5)

The parameters 0 < a < b < 1 are percentages with
respect to the deadband. A graphical depiction of λ can be
seen in below.

Fig. 7: Illustration of the λ function

The λ term reduces the linear velocity as the user increases
his/hers lateral displacement. On the outer regions, the robot
halts and turns on the spot to face the human. For our
experiments the parameters were set to a=0.3 and b=0.6.

IV. EXPERIMENTAL RESULTS

A. Assessment of HMM-based gait characterisation

1) Experimental setup and data description: The exper-
imental results presented in this section are based on data
collected during a full-scale experimental study conducted
at the premises of Agaplesion Bethanien Hospital - Geri-
atric Center (University of Heidelberg) at the frames of
the EU-funded FP7 research project MOBOT. Patients with
moderate to mild impairment, according to pre-specified
clinical inclusion criteria, took part in this experiment. The



Fig. 8: Snapshots of a subject walking assisted by the robotic
platform, during one stride.

Subject Stride Time
[sec]

Swing Time
[sec]

Stride Length
[cm]

1 1.02±0.04 0.38±0.03 74.6±4.6
2 1.04±0.02 0.39±0.04 88.7±2.9
3 1.06±0.02 0.41±0.04 73.7±1.6
4 1.17±0.06 0.45±0.01 72.0±1.1
5 1.17±0.03 0.41±0.03 59.6±2.3

TABLE I: Gait parameters (means and standard deviations)
computed by the proposed HMM-based methodology for five
subjects.

patients were wearing their normal clothes (no need of
specific clothing). We have used a Hokuyo Rapid URG laser
sensor (UBG-04LX-F01 with mean sampling period of about
28msec), mounted on the robotic platform of Fig. 1 for the
detection of the patients’ legs (scanning was performed at
a horizontal plane below knee level). A GAITRite system
was also used to collect ground truth data, which will be
used in future work for a formal clinical validation study.
GAITRite provides measurements of the spatial and temporal
gait parameters and is commonly used for medical diagnosis
[15].

The study presented in this paper uses the data from
five patients with moderate mobility impairment (aged over
65 years old). Each subject walked straight with physical
support of the robotic rollator over a walkway. The HMM
was trained by using the recorded data from twelve different
patients. All patients performed the experimental scenarios
under appropriate carer’s supervision. The subjects were
instructed to walk as normally as possible. This results in
a different walking speed for each subject, and in different
gait parameters.

Fig. 8 shows a sequence of snapshots of a subject perform-
ing the experimental scenario, captured by a Kinect camera
that was also mounted on the robotic rollator (Fig. 1).

2) HMM Results: As discussed, the goal of the work
presented in this paper is to perform an initial performance
assessment of the HMM-based methodology regarding the
extraction of gait parameters. We have first isolated the laser
data corresponding to the strides performed by each subject
on the walkway. These data were then processed to extract
the gait parameters using the HMM methodology described
in Section II.

Table I contains the statistics of the gait parameters com-
puted as the outcome of the HMM-based gait segmentation
and characterisation.

For better demonstrating and assessing the experimental

Fig. 9: Experimental Results: Example of an exact gait
phase recognition sequence for Subject #2, as estimated by
the HMM-based approach. The grey line (axis on the left)
depicts the gait phase transition. The blue and orange lines
(axis on the right) show the displacement of the left and right
leg, respectively, on the sagittal plane.

results obtained, we present as an example the exact gait
phase recognition sequence provided by the HMM-based
approach for the full duration of the strides performed by
one subject (Subject #2). These results are depicted in Fig.
9, where the blue and orange lines show the displacement
of the left and right leg in the sagittal plane, respectively,
during the five strides (axis on the right), while the grey line
depicts the gait phase segmentation extracted by the HMM
(axis on the left).

By analysing these results it can be concluded that the
gait characterisation performed by the proposed HMM-based
methodology manages to provide a reliable outcome in terms
of clinically-relevant gait parameters, as can be deduced by
the consistency in the extracted gait parameters between
consecutive strides within each subject (also related to the
standard deviation results). An initial evaluation with ground-
truth data demonstrates that the HMM approach provides
reliable and valid gait characterisation results, that could be
eventually used for further classification of gait properties.
Initial comparison with other approaches (e.g. a rule-based
methodology based on raw data spatiotemporal filtering) also
demonstrates that the added complexity of the HMM ap-
proach, w.r.t more basic tracking methodologies, is necessary
for improved accuracy. These results are very promising
clearly depicting the capacities of the proposed HMM-based
methodology to successfully segment the gait cycle and
recognize the specific gait phases, extracting comprehensive
information about the specific action of each leg, which can
be very useful for medical diagnosis. Nevertheless, the results
demonstrate that there is significant space for increasing
the accuracy of the system. Further comparative analysis
and full-scale validation of this methodological framework
constitutes one of the main objectives of current research
work.

B. User Following

The user front-following control scheme presented in the
previous section, has been implemented on a Pioneer 3DX
differential drive robot, with a Hokuyo UBG-04LX-F01 laser



Fig. 10: Traces of the baseline experiments (green). The
subjects started on the right and progressed to the left.

Fig. 11: Traces of the following experiments (Human-red,
Robot-blue). The subjects started on the right and progressed
to the left

range finder. The experiments considered here, aim to assess
the gait pattern of the users with and without the robot
following them from the front. Ten healthy subjects were
asked to walk naturally from an initial predefined position,
around a corner and stop at a designated target position.
Each subject performed two runs, thus in total 20 paths
were collected as a baseline. The subjects were tracked with
the laser scanner on top of the robot, which in turn was
placed statically at the head of the corner, overseeing the
experimental field. In post processing, using the detection
algorithm, the centroid traces were extracted, as seen in
Figure10.

Following, the subjects were asked to perform the experi-
ment again, but with the robot following them from the front.
Each subject did two test runs in order to get acquainted
with the robot behavior. Then, they performed the experiment
twice. The total collected paths are again 20.

To analyze the paths, we have divided the plane into a
grid of 48 × 26 square cells with an edge of 20 cm each.
Then, for each path we collected the binary mask consisting
of those cells that the path has traversed. By counting the

Fig. 12: Histogram of the baseline paths

Fig. 13: Histogram of the users’ paths (following)

number of masks each cell appears in, we have produced a
2D histogram of those masks. Apparently, since we have 20
paths in each case, the count of each cell goes from zero up
to twenty. The three histograms are,

HB(i, j) : Baseline paths
HU (i, j) : User paths
HR(i, j) : Robot paths
i ∈ [1,48], j ∈ [1,26]

(6)

The histograms are presented in figures 12-14.
From the three histograms we can produce two new sets

of distributions. By dividing the count of each cell with the
total number of paths, we produce the probability of each
cell being traversed by a path, viz.

TB(i, j) = HB(i, j)/20
TU (i, j) = HU (i, j)/20
TR(i, j) = HR(i, j)/20

(7)

Fig. 14: Histogram of the robot paths (following)



TABLE II: Measure of the extent of the ”User” and ”Robot”
groups with respect to the ”Baseline” group

Count() % rel. diff.
TB 186 -
TU 318 70.96%
TR 253 36.02%

Thus a cell with high such a probability means that it
is traversed by most of the paths. Note that these are not
probability distributions as they don’t sum up to one. Another
set of distributions can be produced by dividing each cell
with the total count of its respective histogram, i.e.

PB(i, j) = HB(i, j)/∑i, j HB(i, j)
PU (i, j) = HU (i, j)/∑i, j HU (i, j)
PR(i, j) = HR(i, j)/∑i, j HR(i, j)

(8)

These express the probability of a user/robot being on a
specific cell and are probability density functions. Equations
(6),(7),(8) are similar up to a scaling factor (for each group
”B”, ”U”, ”R”), thus all three have the same shape. To
compare the three groups, we resort to the Hellinger distance
which is a measure of statistical distance between two
distributions P, Q given by,

H(p,q) =
1√
2 ∑

k
(
√

pk −
√

qk)
2

The Hellinger distance ranges from zero to one, with zero
being identical distributions and one completely disjoint. The
distances of PU to PB and PR to PB are,

H(PU ,PB) = 0.6265,H(PR,PB) = 0.4907

We see that the Robot path distribution is more similar
to the Baseline distribution than the User’ distribution. This
means that the users actually tend to ”drive” the robot to the
path they consider ”optimal” i.e. the one that they would
take under normal conditions (the baseline paths). Doing
so, they deviate from their normal gait patterns. A measure
of dispersion of the histograms is the relative differences
between count(TR)-count(TB) and count(TU )-count(TB), since
the count function measures the number of cells a distribution
contains. Thus the relative difference is a measure of the
extent of a group with respect to the baseline group.

From Table II we see that the users cover almost 71% more
cells trying to steer the robot, than when walking normally,
which is almost twice the cells the robot covers. This can be
regarded as a measure of cognitive load since it shows that
the users walk through a wider area.

1) Current research direction: Our current research ef-
forts focus on extending the following behavior in unstruc-
tured environments. The control has been split into three
tasks; undecidability detection, intent identification and local
planning. As mentioned earlier, the robot can encounter areas
in which there are more that one “distinct” directions e.g.
in a T-junction. The robot must be able to discern these

Fig. 15: Equivalence classes for path sets in a T-junction.
Red is the “Right” class and Green is the “Left” class

Fig. 16: Dynamic window of constrained input

cases and go into intent identification mode, in order to
resolve the conundrum it is faced with. Knepper et al. [16],
have presented an algorithm based on an extended notion of
path-homotopy, in order to produce “equivalence classes” of
feasible paths. Formally, two paths are homotopic is there is
a continuous deformation which send the one to the other.
Strictly speaking, the paths must have the same start and
end points. By relaxing the definition, one can speak of
“equivalent” paths, that is, paths that have the same starting
point and can be continuously deformed to one another.
In [16], the algorithm produces feasible paths of a certain
length i.e. ones that satisfy the differential equations of the
robot, with varying curvature κ(s). The paths are checked
for collision against a costmap and are grouped into classes
based on their Hausdorff distance.

Our current approach is similar to [16], albeit simpler.
Firstly, we introduce the notion of dynamic undecidability.
This is based on the fact that, as the robot moves, the feasible
paths are constrained by the kinodynamic bounds of the
system. For example, if the robot is moving fast, as sharp turn
might be unfeasible. Thus, in a T-Junction, it might be the
case that only one direction is actually feasible. Following the
widely used Dynamic Window Approach in local planning,
we produce paths of constant curvature, sampling from a
dynamic window of the input space (v,ω).

The curvatures are checked for collision against a moving
costmap centered around the robot, which is created by laser
range scans. Following the free paths are clustered together



based on their curvature separation (simple 1D clustering).
Given the available clusters, if there is more that one avail-

able directions, the robot enters into the intent identification
mode, slowing down and observing the human. It uses the
kinematic controller and produces a set of control inputs
(vH ,ωH ), resulting to a curvature κH . When the human gets
close to robot, under a predefined distance, the controller
selects the closest cluster to κH , and and feeds the median
free path to a local planner, as a “global path”. This ensures
a collision-free trajectory of the robot, which moves towards
the human direction.

V. CONCLUSION AND FUTURE WORK

This paper presents current research work that aims at the
development of an intelligent robotic rollator to provide user-
adaptive and context-aware walking assistance. To achieve
such targets, a large spectrum of multimodal sensory process-
ing and interactive control modules need to be developed and
seamlessly integrated. This paper focuses on user-oriented
human-robot interaction and control, by which we refer to
the functionalities that couple the motions, the actions and,
in more general terms, the behaviours of the assistive robotic
device to the user in a non-physical interaction context. The
paper summarizes recent research advances and scientific
challenges aiming towards two complementary directions: 1)
the first one addresses the development of a reliable gait
tracking and classification system, for which we propose
an approach based on HMMs, which can operate online
by processing raw sensorial data provided by an onboard
laser rangefinder sensor, and 2) the second one regards the
development of a control system that can support a ‘user-
following’ behaviour, that is, enable the robotic rollator to
follow and comply to the walking characteristics of the user
without any physical interaction (i.e. without any force being
applied on the handles of the Rollator) and remain in close
vicinity to the user in case of need.

This paper summarizes the theoretical framework and
presents current experimental results obtained using real data
both from patients (elderly subjects with mild to moderate
walking impairments) and normal subjects. In particular,
we perform an initial assessment of the gait characterisa-
tion performance achieved by the proposed HMM-based
methodology, and demonstrate that this approach manages to
provide a reliable outcome in terms of extracting clinically-
relevant gait parameters. These results are very promising
clearly depicting the capacities of the proposed HMM-based
methodology to successfully segment the gait cycle and
recognize the specific gait phases, extracting comprehensive
information about the specific action of each leg, which can
be very useful for medical diagnosis. Nevertheless, the results
demonstrate that there is significant space for increasing
the accuracy of the system. Further comparative analysis
and full-scale validation of this methodological framework
constitutes one of the main objectives of current research
work. Furthermore, we demonstrate the applicability of a
user front-following interactive control behaviour based on a
virtual force field that enables the robotic rollator to provide

adaptive assistance to the walking user. The main scientific
challenge here is to detect the user intention and develop a
shared control framework that can provide intuitive mobility
assistance while reducing the cognitive load of the user.

Combining work in all these research directions, our
ultimate goal is to develop assistive robotic technologies
that can both monitor user actions (in order for instance to
detect in real time specific gait pathologies and automatically
classify the patient status or the rehabilitation progress) and
provide effective, user-adaptive and context-aware, active
mobility support.
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