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Abstract— In this paper, we tackle the problem of adapting
the motion of a robotic assistant rollator to patients with
different mobility status. The goal is to achieve a coupled
human-robot motion in a front-following setting as if the patient
was pushing the rollator him/herself. To this end, we propose
a novel approach using Model-based Reinforcement Learning
(MBRL) for adapting the control policy of the robotic assistant.
This approach encapsulates our previous work on human
tracking and gait analysis from RGB-D and laser streams into
a human-in-the loop decision making strategy. We use Long-
Short Term Memory (LSTM) networks for designing a Human
Motion Intention Model (HuMIM) and a Coupling Parameters
Forecast model, leveraging on the outcome of human gait
analysis. An initial LSTM-based policy network was trained
via Imitation Learning (IL) from human demonstrations in a
Motion Capture setup. This policy is then fine-tuned with the
MBRL framework using tracking data from real patients. A
thorough evaluation analysis proves the efficiency of the MBRL
approach as a user-adaptive controller.

I. INTRODUCTION

The development of robotic mobility assistants is a major
research area with corresponding impact on society. The
constant increase of aged population during recent years
has created new challenges in the healthcare sector, causing
great difficulties for the existing care and nursing staff to
keep up with these evolving needs. Thus, the necessity
for robotic assistants that will help with elderly mobility
and rehabilitation is important. It has been now close to
twenty years since the first robotic rollators emerged [1], [2].
An intelligent robotic mobility assistant should serve many
purposes; postural support, gait analysis, sit-to-stand transfer,
navigation and cognitive assistance. Adaptation to user needs
is of great importance for seamless human-robot interaction
in such applications.

In this paper, we tackle the problem of adapting the motion
of a robotic rollator that moves along with an elder user while
being in front of him. The applied control should comply
with the user needs even if the user wants to walk supported
or unsupported by the rollator, whenever feeling confident,
i.e. leaving the handles and walking along with the robot in
front of them (Fig. 1). However, the robot should follow and
be in a close distance in front of the user, not only to provide
support, whenever needed, but also to prevent possible falls.
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Fig. 1: Robotic agent observes predicted human motion intention
and learns through Model-based Reinforcement Learning to adapt
its control actions, accordingly.

Fig. 2: Left and middle: Prototype robotic assistant rollator
equipped with a RGB-D sensor for capturing the upper body pose
and a 2D laser sensor for detecting the legs motion. Right: Example
of the MoCap markers on an elderly user and a passive rollator,
from which the data for imitation learning derived.

Motivated by this need, and taking into account the
variability in human walking, and especially in pathological
gait (e.g ataxic and freezing types of gait present different ve-
locities and stepping patterns), we propose a unified method
for continuous monitoring of each user and adaptation of the
robotic platform’s motion accordingly. We propose a MBRL
method for adapting the robot’s motion in front of the user.
Fig. 1 encapsulates an overview of the problem that we
aim to solve; the robotic assistant should infer the human’s
motion intention and learn a control policy using MBRL to
select control actions that will comply to the human’s way
of walking.

We build upon our previous work, regarding human track-
ing and gait analysis fusing 2D laser data capturing the legs
motion [3] and RGB-D streams of the upper body pose
estimation using the Open Pose Library [4], from sensors
mounted on a robotic rollator (Fig. 2), from which we can
also infer the human gait stability [5]. In this work, we
integrate the human detection and tracking approach into
a human-in-the-loop control framework using MBRL for



adapting the robot motion to each user.
Our main contribution is a novel MBRL approach for

online motion adaptation of a robotic assistant rollator that
considers human motion intentions in a front-following sce-
nario (Fig. 1). In this framework, we start by developing
LSTM based prediction models for estimating human motion
intention using a history of motion tracking data. We then
train models which associate the human motion orientation
and the estimated stride length provided by gait analysis to
the desired coupling parameters for the robot’s heading and
position, i.e. the desired separation distance and bearing in
the human-robot frame. Further on, we use this information
to train a policy for suggesting robot control actions accord-
ing to the human motion intentions and expected desired
coupling. We developed an initial policy model trained with
IL from human demonstrations using data from motion
markers (VICON system), which were placed on the human
and a passive rollator frame in a series of data collection
experiments (Fig. 2). Although such a model behaves well
for the demonstrated cases and gives insight on how the user
wants the platform to be placed in front of him/her while
walking, this policy does not have experience for recovering
from drift cases or unexpected detection loss of the user. To
cope with such situations, the proposed MBRL framework
performs fine-tuning of the initial control policy (as seen
in Fig. 3), while using random sampling Model Predictive
Control (MPC) for planning [6]–[8]. Detailed experimental
results are presented in the paper showing the efficiency of
the proposed MBRL framework for the motion adaptation of
a robotic assistant rollator using data from real patients.

II. RELATED WORK

State-of-the-art research for robotic assistants mostly relies
on admittance control schemes [9], [10]. A control strategy
using as control inputs human velocity and orientation was
proposed in [11]. A formation control for a robot-human fol-
lowing scenario was presented in [12], for safely navigating
blind people. In our previous work [13], we have considered
a front-following problem with a kinematic controller adapt-
ing to users according to their pathological mobility class. A
Reinforcement Learning (RL) shared-control for a walking
aid with human intention prediction from force sensors is
presented in [14].

A lot of research focuses on social robot navigation [15],
i.e. robot motion planning among crowds [16], using RL.
Most methods for robot navigation require pedestrians mo-
tion predictions for the robot to learn how to navigate among
them in a compliant way [17]. An interaction-aware motion
prediction approach for pedestrians with an LSTM-based
model for learning human motion behavior was presented
in [18]. In [19], deep RL was used for navigating according
to social norms across crowds, while in [20], RL is used for
unfreezing the robot in the crowd by taking into account the
coordination between robots and detected humans. In such
cases the robot does not accompany humans, but it rather
learns how to move through and avoid collisions with them.

Regarding robotic companions, a method for human-robot

Fig. 3: Model-based Reinforcement Learning framework for policy
adaptation using human motion intention predictions.

navigation using the social force model and a Bayesian pre-
dictor for human motion is described in [21]. A model based
on social force and human motion prediction is presented in
[22], for making robots capable of approaching people with
a human-like behavior, while they are walking in a side-by-
side formation with a person, avoiding several pedestrians in
the environment. An MPC technique that accounts for safety
and comfort requirements for a robot accompanying a human
in a search and rescue scenario is presented in [23].

The use of deep RL is prevalent in modern research
aiming to plan robot motion [24] and control [25] for various
tasks. Robot navigation systems which have integrated such
RL decision-making schemes can be found in [26]–[28].
Approaches combining IL with RL for learning control
policies are presented in [29], [30]. Although, model-free RL
approaches have many successful applications, they require
large amount of training data, which are often simulated,
thus their applicability is limited. On the other hand, model-
based RL firstly learns a model of the system and then
trains a control policy using feedback [31]. MBRL has been
used for robot control both in simulated and real world
experiments [32]–[34]. MBRL relies on MPC for planning
control actions, thus using learned models along with MPC
as a control policy, is a matter in hand for RL and IL
research [8], [35], [36]. We were inspired by recent advances
in adaptive control using MBRL [7], [37]. In this work, we
propose a novel MBRL framework for learning and adapting
the control policy of a robotic assistant rollator to human
walking. To the best of our knowledge, this is the first
approach aiming to solve a front-following problem using
MBRL and human motion prediction models, either for a
robotic assistant or a robotic companion.

III. PRELIMINARIES

In RL the goal is to learn a policy that will propose actions
for an agent, which will maximize the sum of the expected
future rewards [38]. Given the current state xt ∈X, the agent
executes an action ut ∈U and receives a reward rt = r(xt ,ut),
while transitioning to the next state xt+1 = f (xt ,ut)+wt with
initial state x0∼ p(x0), where f is a nonlinear function for the
system’s forward dynamics, wt a Gaussian noise process and
p(x0) an initial state distribution. In most cases, especially for



model-free RL [39], the reward function is estimated from
samples, which is a data expensive process. Model-based
RL attempts to address the problem of data inefficiency by
using observed data to learn the dynamics of the system.
The model is used for running internal simulations of the
agent’s dynamics, based on which the policy is learned. The
goal of MBRL is to learn an approximation of the true
dynamics f . Let f̂θ be the learned discrete-time function
parametrized by θ that approximates f . The objective is
to find the parametrized policy f̂θ in a finite horizon that
maximizes a long-term reward over a time horizon T by
optimizing the parameters θ .

Since MBRL aims to learn a global dynamics model,
generalization is an issue, especially for robotics applications
that have to affront stochastic environments and adapt to new
tasks. Thus, we resort to the option of planning through the
suggested policy actions to compensate for model errors.
MPC is a suitable finite horizon optimal control solution
which optimizes a cost function at each time step to pro-
duce a sequence of control actions. Classic MPC relies
on optimizing constrained quadratic costs, requiring first or
second order approximations of the dynamics for convexity,
which is sometimes difficult to meet when the dynamics
are approximated by neural networks. Thus, it is useful to
employ a random-sampling shooting method for MPC [6],
to perform rollouts through time and simulate trajectories in
a short time horizon T . In MBRL framework, MPC is used
for finding the trajectory with the minimum cumulative cost
over time horizon T , for which only the first action ut of the
optimal sequence is applied to the system, and then re-plan at
each time-step. Therefore, such an approach compensates for
model inaccuracies by preventing accumulating errors and
drifting from the desired trajectory. In the context of MBRL,
the reward maximization can be viewed as the equivalent cost
minimization problem through MPC.

IV. PROBLEM STATEMENT

Our problem concerns finding the optimal control pol-
icy for adapting the robotic assistant’s motion to the
needs of users with different mobility status. In par-
ticular, given an estimated current human state xH

t =
[ xH yH υH

x υH
y ]T , where pH

t = [ xH yH ]T is the
position and uH

t = [ υH
x υH

y ]T the velocity along the
axes, and the human-related robot coupling parameters, i.e.
the desired separation distance `t and relative human robot
bearing φt , we must find an optimal control action uR

t that
will guarantee the compliance to the human motion intention.
In other words, we aim to find a policy fθ (xR

t ,xH
t ) that will

propose robot control actions uR
t = [υt ωt ]

T , where υt and
ωt are the linear and angular velocities and xR

t = [ xR yR ]T

the robot position along the axes, following the objective of
joint human-robot navigation. Thus, the problem includes the
following optimization problem aiming to find the optimal
control sequence UT

t = {ut , ...,ut+T−1}, over a finite time

horizon T , by minimizing the following quadratic cost:

UT
t = argmin

ut ,...,ut+T−1

1
2

t+T−1

∑
τ=t

(xR
τ )

T ·C ·xR
τ + cτ

T ·xR
τ

s.t. xR
t+1 = g(xR

t ,u
R
t ) with uR

t ∼ fθ (xR
t ,x

H
t )

and ulb ≤ uR
t ≤ uub (1)

where C ∈ R2×2 is a diagonal positive definite weight
matrix, ct = −(pH

t + xd
t ) is the goal position with xd

t =
[ lt cos(φt) lt sin(φt) ]T being the desired coupling between
human and robot position along the axes in the local human-
robot frame. The optimization problem is subject to the robot
motion model g(xR

t ,uR
t ) w.r.t. the unknown policy fθ (xR

t ,xH
t )

and constrained by some upper uub and lower ulb bounds
over the linear and angular velocity commands. As transition
model g(xR

t ,uR
t ) we consider the well-known unicycle model.

V. PROPOSED MBRL FRAMEWORK

The proposed method for control policy learning for a
robotic assistant rollator that will adapt its motion to the
user’s gait, while keeping a desired relative coupling forma-
tion (distance and bearing), is depicted in Fig. 3. At each time
frame, we predict the human motion over a time horizon T
and forecast the evolution of the desired coupling parameters.
This information is used for sampling velocities from the
control policy network that approximates the dynamics of
the human-robot coupled motion, where the MPC selects
the optimal control sequence according to (1). The observed
human and robot states, along with the selected action, are
aggregated in a dataset for adapting the control policy.

Specifically, the proposed framework addresses two core
sub-problems. The first sub-problem is understanding the
human motion intention. This encapsulates not only the
prediction of the human future trajectory in a finite time
horizon given some past knowledge, but also a model for
forecasting the evolution of the desired separation distance
and bearing for the same time-horizon. Our second sub-
problem concerns learning an optimal control policy. This
policy is dependent on the human motion observation by
the robot, since we have to deal with a constant interactive
human-robot coupling problem. The robot should always
be in front of the human, keeping a desired separation
distance and orientation and adapting its control actions
according to the human’s current and predicted walking
states. Incorporating a human motion forecast model, helps
to better decide over the best long term cost of the control
actions through MPC. We rely on IL for training an initial
global approximator of the control policy network from
human demonstrations and use this trained model in the
MBRL framework for online adaptation. In the following,
we will describe the human motion intention prediction
models and the proposed control policy network and their
implementation within the proposed MBRL framework .
A. Human Motion Intention Prediction Models

Human motion intention prediction includes two main
goals, as shown in Fig. 4. The first one concerns the human



Fig. 4: Recurrent networks used for predicting future human states
(HuMIM network) and the desired coupling parameters.

motion prediction in a finite-time horizon given the past
human states. The second one refers to the estimation of
the coupling parameters of the robot w.r.t. human. Before
diving into details about the predictive models, we will
briefly describe what the human state includes and how it is
extracted. In our previous works, we have extensively studied
human motion detection and tracking from 2D laser data
along with real time gait analysis [3]. Recently, in [5] we
have also used the upper body pose detection from an RGB-
D sensor to perform a human Center-of-Mass (CoM) tracking
by jointly using information from the pose and the legs
motion (i.e. the gait velocity) to estimate the CoM motion.
In this work, we use this notion of human state xH

t , i.e. the
position and velocity of human’s CoM along the axes. We
exploit Motion Capture (MoCap) data to extract ground truth
states and initially train our models with those smooth data
and then fine-tune them with data from our tracking system.

Human Motion Intention Model (HuMIM): The HuMIM
is a deep-learning network based on LSTM units [40]. LSTM
constitutes a special kind of recurrent neural networks that
can effectively learn long-term dependencies that exist in
sequential data like in motion trajectories. This is accom-
plished by incorporating memory cells that allow the network
to learn when to forget previous hidden states and when to
update hidden states given new information. Our network
architecture for HuMIM is depicted in Fig. 4. The input
feature vector xH

t is the current human state.1 The network
comprises a Fully Connected (FC) (Fig. 4 - blue boxes) layer,
followed by a Rectified Linear Unit (ReLU) activation [41]
and two LSTM (Fig. 4 - yellow boxes) layers and a FC layer
that decodes the output, which is a prediction of the future
human states over a time horizon T : xH

t+1:t+T .
Coupling Parameters Forecast Model: Another problem

we need to solve, is to figure out the desired coupling
parameters in the human-robot frame, i.e. the relative dis-
tance and bearing that will ensure the coupled human-robot
motion. This is especially important for following mode
cases when the robot has to follow a human from front
but keeping a close distance in case assistance is needed.
Those parameters are crucial for robot-control as we have
already seen in Sec. IV. For computing them, we employed
information from demonstrations of real patients walking

1We have set the initial human position to be the global reference frame.

Fig. 5: Network architecture of the proposed control policy.

with a passive rollator, while wearing motion markers (Fig.
4). We have found that the human-rollator distance, while
walking, is correlated to the human stride length. Since we
can apply real-time gait analysis from [3], we can compute
stride lengths and use them in a prediction network that
will forecast their evolution over a time window. For relative
bearing we predict the human self orientation evolution in
the local human frame. Therefore, given as input the current
parameters `t ,φt , a simple network with two LSTM layers
along with a FC layer (Fig. 4), can provide the next time
step predictions.
B. Control Policy training via Imitation Learning

We train an initial control policy for the robotic rollator
following the concept of IL [42]. We benefit from the
demonstrations of real patients for imitating the way they
interact with the rollator while walking. The goal is to learn
control actions for the robot as if the human was pushing the
rollator in front of him. To this end, we have implemented
the control policy network of Fig. 5. Following the narrative
of Sec. IV, this network will serve as the approximator f̂θ of
the true dynamics fθ , that will propose velocity commands
for the robot given the information about the human motion
intention.

The proposed policy network is an LSTM-based sequence-
to-sequence model using as input features the predicted
human states xH

t:t+T for a time-window T transformed w.r.t.
the current robot state xR

t (Fig. 5). We use two FC layers
with a ReLU and a Dropout layer [43] (with probability p =
0.4) between them. The scope of the FC layers is to encode
the initial features using static transformations independently
of the time dependencies modelled by the LSTM units. The
main encoding-decoding is implemented by the two LSTM
layers. The output is decoded by the final FC layer, that gives
the control action for time t, i.e. the robot velocity vector:
uR

t = [υt ωt ]
T .

C. Control Policy Adaptation via Model-based Reinforce-
ment Learning

Although IL can provide good results on predicting the
control actions w.r.t. the ground truth ones, its capacity is
limited to the demonstrated data. Therefore, we use the
learned policy via IL as as initial approximation which will
be adapted to unseen human motion patterns through RL.
Fig. 3 and Algorithm 1 show an overview of the proposed
MBRL scheme for policy adaptation. In this setting, we
resort to the HuMIM network and the coupling parameters
forecast model described in Sec. V-A to predict in a time
horizon T the human states xH

t:t+T and the desired coupling



Algorithm 1 Model-based RL for coupled HR motion

Require: Training data and empty dataset D for aggregation
Require: Aggregation frequency K ∈Z, MPC horizon T ∈Z
Require: Pre-trained control policy f̂θ

1: for i = 1, ... do
2: if i mod K = 0 then
3: for t:1,..,T do
4: get future human states xH

t:T+T via HuMIM net
5: get desired coupling parameters lt:t+T ,φt:t+T
6: sample Ns velocities from policy uR

t ∼
f̂θ (xR

t ,xH
t:T+T ) and add exploration noise

7: perform MPC rollouts to find the optimal control
sequence UT

t using (1)
8: execute first action uR

t from selected sequence UT
t

9: add (xR
t ,xH

t:T+T ,uR
t ) in dataset D

10: else
11: perform fine-tuning on policy of Fig. 5 using the

aggregated data D

parameters lt:t+T ,φt:t+T deriving from the current estimated
stride length and human self orientation. Those parameters
will be used to form the desired coupling state xd

t for the
MPC controller in (1) as described in Sec. IV. At each time
step we use the predicted human states provided by HuMIM,
transformed in the respective robot frame, to sample Ns
new velocities from the policy. We use the dropout layer to
apply Monte Carlo Markov Chain sampling on the network’s
outputs to take advantage of the network’s uncertainty [43].
We also apply extra random exploration noise on the sampled
velocities in order to widen the sample distribution.

Moreover, we apply random white noise on the esti-
mated robot state xR

t to simulate possible errors in real
case scenarios like localization errors, drifting, etc. Our
aim is to learn policies for recovering the robot from false
states by applying the best possible control action. The Ns
velocity samples are used for the MPC rollouts by simulating
trajectories over a finite time horizon T for each sample.
The simulated trajectory with the minimum cost computed
by (1) (i.e. highest reward in the RL narrative) is selected,
while only the first action from the selected control sequence
is applied to the robot. Through re-planning at each time
step, we compensate for possible model errors. The robot
state along with the applied control action and the current
human state xR

t ,xH
t:T+T ,uR

t (Fig. 3, Alg. 1) are aggregated in
a new, initially empty, dataset D intending to be used for
policy adaptation by fine-tuning the network every K ∈ Z
time steps. The on-policy data aggregation and retraining
of the model adapts the policy to new state-action tuples
possibly previously unseen to the network by augmenting
the respective distributions and improving the controller’s
performance.

VI. EXPERIMENTAL RESULTS

A. Experimental setup & data

The data used in this work were collected in Agaplesion
Bethanien Hospital - Geriatric Center in Heidelberg with the

(a) (b)

Fig. 6: (a) Example of a predicted human path with the HuMIM
network. (b) Example of predicted robot’s linear velocity from the
IL policy network.

participation of fourteen patients. The participants presented
moderate to mild mobility impairment, according to clinical
evaluation. The subjects had to perform several everyday life
scenarios using a passive robotic rollator, used for the pur-
pose of data collection, while wearing motion markers from
a MoCap setup (Fig. 2). The subjects had to perform several
experimental scenarios in a special hospital room, walking
supported (i.e. holding on the rollator) or unsupported (i.e.
the rollator was “following” the human from a close distance
without physical interaction). The data were collected by a
Kinect v.1 sensor and a Hokuyo UBG-04LX-F01 laser sensor
that were mounted on the rollator (Fig. 2). For the purpose
of this work, we have employed 20.000 frames of MoCap
data (synchronized to the laser frame rate, i.e. 0.028sec/scan),
and a dataset of approximately 5.000 frames of human CoM
tracking data from four patients from the supported mode
scenarios used for fine-tuning/testing our models and for
training MBRL. An extra dataset of 2.000 tracking data were
kept for the experimental testing of the MBRL framework.
In the following, we provide detailed results that demonstrate
the efficiency of the proposed models and the performance
of the proposed MBRL method.

B. Evaluation of Human Motion Intention Prediction Models

Implementation of HuMIM network: We have trained
HuMIM using the MoCap and tracking data with a 80%-
20% partition for training and testing respectively, for 500
epochs with learning rate 10−4 and weight decay 10−4. For
training we have used Stochastic Gradient Descent optimizer
with the Mean Squared Error (MSE) loss (L2-loss) computed
between the predicted xH and the ground truth, x̂H of the
output features.

Evaluation: To evaluate the HuMIM network we compute
the MSE loss for the training and testing datasets, which
gives an indication of the overall prediction performance of
our models. More specifically, the MSE training loss was
4 ·10−4 while the testing loss for a T = 10 prediction horizon
was 2 ·10−3, meaning that our model provides a very good
fit on the data and accurate future predictions for the human
motion intention. Fig. 6a depicts an example of a predicted
path w.r.t. to the ground truth human path, where the dashed
line shows an example of the forecast path for ten time steps.

Implementation of the Coupling Parameters forecast
models: From our analysis we have found that the stride
length and actual human-robot distance data are correlated,
with correlation coefficient ρ = 0.972 and a mean difference



Arch. 1LSTM 2 FC 1FC + 2LSTM 2FC+1LSTM 2FC+2LSTM
hidden states 512 [1024, 512] [2048,1024,512] [2048,1024,512] [2048,1024,1024,512]
Train Loss 0.186 0.184 0.045 0.052 0.029
Test Loss 0.158 0.156 0.057 0.065 0.043

TABLE I: Evaluation results for various architecture designs for
the Control Policy Network of Fig. 5 in the IL setting.

between them δ` = 0.15 m. In following cases, δ` is used
as a constant bias added to the predictions of the desired
separation as a safety distance. For implementation we have
used the same training parameters and loss function as for
HuMIM.

Evaluation: For the desired coupling parameters, we
acquired equally good model fittings and MSE losses. For the
relative bearing parameter φt the training loss was 2.2 ·10−3

rad and testing loss 2.8 ·10−3 rad, while for the relative sep-
aration (trained both on demonstrated data and the extracted
stride lengths from our tracking framework), the train loss
was 6 · 10−3 m and test loss 10−2 m. Those results show
that our trained models can effectively predict human motion
intentions in a robot-human joint walking framework.
C. Evaluation of IL Control Policy

Implementation: For training the control policy network
of Fig. 5 with IL, we have used the MoCap data, from
which we have computed the human states and the robot’s
ground truth velocities. For the IL training of the network
we have not used HuMIM for human predictions, but we
rather packed the training data into time-overlapping feature
vectors xH

t:t+T . The network was trained using mini-batches
of 512 clips, with initial learning rate 10−3, momentum 0.9
and weight decay 10−4. The learning rate is divided by
10 after half the epochs. We used Adam optimizer and for
imitation loss we have employed the L1-loss, i.e. the mean
absolute error between the predicted ûR

t and the actual uR
t

robot velocities.
Evaluation: Table I provides the training and testing L1

losses for the predicted control velocities w.r.t. the ground
truth ones for the IL setup. It is evident that the LSTM
layers are a requisite for decoding the sequences of human
motion. Moreover, the combination of FC and LSTM layers
seems to provide the necessary encoding-decoding scheme
for translating a predicted human trajectory (considering that
humans move in an holonomic way) into linear and angular
velocities for the robotic assistant. We choose the architecture
with the 2 FC and 2 LSTM layers since it is the one having
the smallest prediction error. An example of the performance
of the proposed policy network is depicted in Fig. 6b, where
we compare the predicted linear velocity w.r.t. ground truth
from the testing dataset of the IL policy.

D. Evaluation of the MBRL approach:
Implementation: For the fine-tuning process of the con-

trol policy network of Fig. 5 according to the MBRL
framework (Fig. 3), we use the Adam optimizer and the
Huber loss, which is less sensitive to outliers in data:

Lε =

 1
2 ∑

∥∥∥ ˆuR
t −uR

t

∥∥∥2
, for

∣∣∣ ˆuR
t −uR

t

∣∣∣≤ ε

ε

∣∣∣ ˆuR
t −uR

t

∣∣∣− 1
2 ε2, otherwise

(2)

where ε > 0 is a small value. Below we evaluate different
design decisions regarding the MBRL setup. For the MBRL
training we have employed 5000 frames of tracking data
from four patients, while for testing the controller’s perfor-
mance we have kept 2000 data from one patient unseen to
the training set.

Evaluation of MBRL training: For the MBRL training
procedure we have explored different design parameters for
acquiring the best possible solution to our problem. Fig. 7
presents the learning curves, which represent the cumulative
costs for the task of human-robot coupled motion, for differ-
ent design parameters. Since we are considering costs, the
lower the cumulative cost, the better the performance by the
corresponding MBRL setting. The best outcome from this
evaluation will be considered for testing with a new patient.

Specifically, in Fig. 7a the impact of different number
of samples Ns used for the MPC rollouts is presented, for
a range of 5-100 samples. The outcome seems reasonable,
since for less samples (i.e. 5-20) the limited exploration by
the controller leads to accumulating larger errors and thus
costs. Interestingly, the learning curve of 50 samples behaves
the same as the curve for 100 samples, while both parameter
settings converge very quickly at a steady performance. The
slopes of the curves for 50 and 100 samples show that after
250 aggregation steps we have a stabilized performance.
We choose to use 50 samples as a computationally cheaper
solution.

For selecting the number of epochs used at each aggrega-
tion step for adapting our policy we have experimented with
20, 50 and 100 epochs. Fig. 7b shows the cumulative costs
for 200 aggregation steps and 50 samples for the MPC. It is
obvious that 100 epochs of training has the best performance,
however the 50 epochs setting follows closely, thus we will
select those for computational reasons.

In Fig. 7c we present the evaluation results for different
aggregation frequencies K (Algorithm 1). From experimen-
tation, we have found that aggregating and adapting the
control policy every 10 time steps yields better performance
to the proposed algorithm. It is important to note, that those
timings have been chosen to resemble timings in human
gait. Specifically, we know from previous work [3], that
approximately every 10 time frames a human performs a leg
swing for stepping through and about every 50 time frames a
gait cycle is completed. Therefore, we notice that adaptation
for each stepping yields lower cumulative costs.

In the same way, we have explored different time-horizon
settings for our MPC (we have changed the settings of
our prediction and policy networks accordingly for this
experiment). Longer time-horizons than T = 10 accumulate
greater errors. Longer horizons mean larger prediction errors
from the human motion intention models, hence leading to
greater errors for the policy estimation. Evidently, adaptation
in a frequency relative to the gait’s swing phase is more
appropriate.

According to the above evaluation, we have decided to
employ the implementation of MBRL using Ns = 50 samples
for the MPC rollout, 50 epochs for policy fine-tuning, K =
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Fig. 7: Learning curves for the MBRL method presenting the cumulative costs for various design parameters: (a) Number of sampled
trajectories Ns. (b) Number of epochs used for fine-tuning the policy. (c) Aggregation frequency K. (d) Prediction horizon T .

10 time-steps aggregation frequency and T = 10 prediction
horizon. This implementation had an average Root MSE
(RMSE) 0.068 cm regarding the coupling error w.r.t. the
actual one and average Huber loss for fine-tuning was 0.031.
Evaluation results for human-following: For the task of

human front-following, we evaluate the MBRL approach
with tracking data from a new patient, i.e. unseen to all the
training procedures described above. We aim to investigate
how the control policy can adapt to a new patient with
medium mobility impairment, while following from front as
if the user was pushing the robotic rollator. Fig. 8 presents
graphs comparing paths, linear velocities and separation
distances from the MBRL approach w.r.t. the actual data
provided by the MoCap analysis.

In Fig. 8a we are comparing the paths performed by the
tracked human for 500 time frames, the one derived by the
MBRL process for the robot and the actual one derived
by the MoCap data when the patient pushed the rollator
during the data collection experiments. It is evident that the
MBRL method provides a trajectory very close to the actual
one. This can also be demonstrated by the results in Fig.
8b, where we compare the linear velocities for the patient,
the ones proposed by MBRL and the actual rollator. The
MBRL velocity decisions follow closely the human velocity
patterns. It is interesting to mention that in contrast to Fig.
6b presenting the IL results where the policy followed the
actual rollator velocities, now we can see that the policy has
adapted to the actual motion pattern of the patient. There
is however a small lag, of approximately 20 time frames
in detecting turning points, which might also be inherited
by the HuMIM network performance. Finally, we compare
the separation distance in the human-robot coupling. Yet
again, the MBRL policy follows the actual pattern, meaning
also that using the stride length as inference for the desired

separation distance is a valid assumption. Concluding this
analysis we provide results over all 2000 tracking frames for
the task of patient following. The average RMSE between
the MBRL proposed robot path and the actual one is 0.18m,
the RMSEs for velocities are 0.15 m/sec for linear and 0.24
rad/sec for angular velocity. The average RMSE for human-
robot separation distance w.r.t. the actual one is 0.22m.

VII. CONCLUSION & FUTURE WORK

We proposed a novel approach using Model-based Re-
inforcement Learning for adapting the motion of a robotic
assistant rollator to the walking patterns of elderly and
patients with various mobility inabilities. The aim is to
develop a control policy that will propose optimal control
actions for coupling the robot’s motion with each user, as
if the user was pushing the rollator. In this setting, we
consider the problem to be a front-following human-robot
coupled motion. To this end, we have designed LSTM-based
networks for predicting future human motion intentions and
forecasting the desired coupling parameters in the robot-
human setting. An initial control policy that suggests control
velocities given the human kinematic state evolution in a
short time-horizon was trained through IL. In the MBRL
framework we adapt this policy employing a MPC planner
and using tracking data from patients. Through extensive
experimentation with real data, we provide evidence that
prove MBRL to be efficient as a decision making approach
for a user-adaptive controller in a robotic assistant rollator. In
our future work, we plan to test different planning methods
in the MBRL framework and a combination with model-free
methods.
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