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Abstract— In this paper, we present a methodology that
ensures a priori that all possible unknown dynamics of the
system within a compact set of operation will be excited. A
controller is used to make sure that the system with unknown
dynamics will follow the reference trajectory and Radial Basis
Function (RBF) neural networks are employed to estimate the
unknown nonlinearities. The persistency of excitation condition
is guaranteed as a prerequisite to achieve accurate estimation
of the unknown nonlinear terms and efficient learning. A
simulation example clarifies the proposed approach and verifies
the aforementioned assertions.

Index Terms— Prescribed Performance Control, System
Identification, Persistency of Excitation, RBF Neural Networks.

I. INTRODUCTION

The concept of learning is met for over half a century
in the control literature and many related papers focused on
finding learning methods motivated by the need to estimate
or approximate parameters or unknown nonlinear functions,
which are involved in unknown system dynamics. In partic-
ular, the development of learning techniques was motivated
by the need of identifying/tuning the appropriate controller
parameters in an attempt to achieve efficient control under
certain specifications and improve closed-loop system perfor-
mance and robustness. Moreover, learning about environment
or learning new design goals and constraints were other usual
goals of learning techniques.

Initial approaches towards this direction tried to invent
learning techniques by which, the system with unknown
dynamics is excited in an open-loop architecture by applying
various (mostly arbitrary) inputs [1]. Then, by analyzing
system outputs and using common pattern recognition meth-
ods an estimation of the unknown parts of the system
was established. Even though these efforts showed some
significant results in the literature, they are characterized by
the weakness to excite the system sufficiently well in the
region of interest, as they are open-loop and unable to handle
open-loop unstable dynamics. Consequently, the learning is
not achieved in a satisfactory way and it is only achieved in
a range of values depending on the applied excitement. The
adaptive control techniques [2] used later boosted the effi-
ciency of learning methods and improved the performance as
the system follows a desired trajectory, or by adjusting con-
trol parameters when the operating conditions were changed.
Although the introduction of adaptive techniques enhanced
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the learning methods [3], no novel excitation method was
applied till very lately, as a mechanism to produce various
possible system dynamics (e.g., a range of possible system
states in a certain area of interest). Nevertheless, there are
some recent works [4], [5], [6], [7], which tried to produce
a kind of orbits, in an attempt to excite as many as possible
of the system dynamics in a predefined certain area, without
ensuring a priori that all possible system dynamics of this
area can be excited, but only a certain percentage of them,
resulting in a rather satisfactory result of learning.

Despite the significant learning results that have been
achieved in the above-mentioned efforts, the problem of
successful learning all possible system dynamics in a certain
predefined area is still open in the system identification
literature. Further steps are needed to be made in this field of
research, posing challenges to control engineering commu-
nity. Building upon [8], this paper presents a methodology for
uncertain MIMO Lagrangian systems (representing almost
all mechanical systems) that proposes a reference trajectory
involving state representatives of possible system function-
ality in a predefined compact set inside which, the learning
is aimed to be done. Motivated by this issue and also by the
prescribed performance control technique [9], we propose
a reference trajectory that traverses all neuron centers of
possible system functionality in a way (ergodic condition)
that the satisfaction of persistency of excitation is verified
[10], [11]. Moreover, a controller based on the prescribed
performance technique is developed, which guarantees that
system states follow accurately the reference signal to satisfy
a priori the persistency of excitation condition. Furthermore,
an online neural network identifier constructed out of RBFs
in its regressor vector is designed, and as the controlled
system tracks the desired trajectory it achieves learning of
the system nonlinearities successfully. RBF centers coincide
with the nodes given in a certain lattice, which represents
the desired compact set of system functionality, in which the
target of learning is aimed to be achieved. The stability of the
controller and the identifier is based on Lyapunov analysis,
ensuring that the closed-loop signals are bounded and that
the neural network weight estimates are not only bounded,
but they converge to their actual optimal with, respect to
modeling error, values as well.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this work, we consider MIMO nonlinear Lagrange
systems described by the following model:

M(x)ẍ+ C(x, ẋ) +G(x) = u (1)
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where x = [x1, . . . , xn]
T , ẋ = [ẋ1, . . . , ẋn]

T denote the
displacement and velocity states respectively, M(x) is the in-
ertia matrix, C(x, ẋ) is the matrix of centripetal and coriolis
torques/forces, G(x) includes the gravitational torques/forces
and u ∈ Rn denotes the applied torques/forces (i.e., control
inputs). Alternatively, the aforementioned dynamics may be
rewritten in canonical form as follows:

˙̄x1 =x̄2

˙̄x2 =f(x̄1, x̄2) + g(x̄1)u
(2)

where x̄1 = [x1, . . . , xn]
T denotes the vector of displace-

ments and x̄2 = [ẋ1, . . . , ẋn]
T represents the vector of

velocities with f(x̄1, x̄2) = −M−1(x̄1)[C(x̄1, x̄2) +G(x̄1)]
and g(x̄1) = M−1(x̄1).

The objective of this work is to learn the nonlinear
functions f(x̄1, x̄2), g(x̄1) locally in a chosen compact set,
by designing a closed-loop system identification scheme
that extracts local accurate approximations of the nonlinear
functions over the compact set. Finally, to solve the afore-
mentioned problem, we assume that there exists an unknown
positive constant g∗ such that λmin(g(x̄1)) ≥ g∗ > 0,∀x̄1 ∈
Rn, which implies that the dynamics are fully actuated.

A. RBF Neural Networks and Persistency of Excitation
RBFs belong to a category of linearly parameterized

networks that are represented by:

fNN (x) =

p∑
i=1

wizi(x) = WTZ(x) (3)

where x ∈ Rn is the input vector, fNN (x) ∈ R is the output,
W = [w1, . . . , wp]

T ∈ Rp is the weight vector, p > 1 is the
neural vector node number and Z(x) = [z1(x), . . . , zp(x)]

T

is a p-dimensional regressor vector:

Z(x) = [z1 (∥x− c1∥) , . . . , zp (∥x− cp∥)]T (4)

where zi(·) denote the radial basis functions and ci, i ∈
{1, . . . , p} are distinct points in state space (termed cen-
ters). In this work, the regressor terms involve radial basis
functions (RBFs) with fixed centers and widths. A widely
used RBF is the Gaussian function z(x) = exp

(
−∥x−c

s ∥2
)

where c and s are the center and width of the receptive field,
respectively. It has been proven in [11] that an RBF network
with sufficiently large node number p and appropriately
placed node centers and variances can approximate any
continuous function h(x) : Ωx → R over a compact set
Ωx ⊂ Rn to arbitrary accuracy according to:

h(x) = W ∗TZ(x) + ϵ(x), ∀x ∈ Ωx (5)

where W ∗ denotes the ideal constant weights and ϵ(x) the
approximation error in a way that:

sup
x∈Ωx

{|h(x)−W ∗TZ(x)|} ≤ ϵ.

The ideal weight vector W ∗ is an artificial quantity required
for analytical purposes and it is defined as the value of W
that minimizes ϵ for all x ∈ Ωx ⊂ Rn, that is:

W ∗ ≜ argmin
W∈Rn

{
sup
x∈Ωx

|h(x)−WTZ(x)|
}
. (6)

Hence, based on the above equations it is concluded that
if the number of regressors p is sufficiently large and the
regressor terms are appropriately selected, then there exists
a weight vector W ∗ such that the RBF-NN can approximate
any sufficiently smooth function h(x) to any degree of
accuracy in a given compact set Ωx.

The property of Persistency of Excitation (PE) is widely
used in adaptive systems as it provides sufficient conditions
leading to the parameter estimates convergence to their actual
values. Especially in the field of RBF networks, persistency
of excitation is widely used giving conditions under which
the successful identification of nonlinear systems is achieved.
It has been shown in [12] that if the inputs to an RBF
network coincide with the network neuron centers, then the
corresponding regressor vector satisfies the Persistency of
Excitation condition. Additionally, for RBF neural networks
with neuron centers dispersed on a regular lattice, it was
shown that the corresponding regressor vector is persistently
excited provided that the input variables to the RBF networks
belong to a certain neighborhood of neuron centers [10].
Particularly in the present work, the size of the neighborhood
will be restricted, by the prescribed performance control
design to be less than a predefined small value, which
is smaller than the minimum distance of any two neuron
centers. Towards this direction, a class of ideal reference
trajectories which ensure the satisfaction of the PE condition
will be extracted as ergodic trajectories visiting the limited
neighborhoods of all neuron centers of the RBF network.

B. Prescribed Performance Control

The control design in this work is heavily connected to the
prescribed performance control technique that was originally
employed to design robust controllers for various classes
of nonlinear systems, capable of guaranteeing output track-
ing with prescribed performance. In this paper, prescribed
performance is restricted to tracking error convergence to
a predefined arbitrarily small residual set. The work in
[9] gives the basic theoretical background of prescribed
performance, which is summarized as follows.

Consider a generic tracking error e(t). Prescribed perfor-
mance is achieved if e(t) evolves strictly within a predefined
set that is bounded by decaying functions of time. The
mathematical expression of prescribed performance is given
by the following inequalities:

−ρ(t) < e(t) < ρ(t), ∀t ≥ 0 (7)

where ρ(t) is a smooth, bounded, strictly positive and
decreasing function of time satisfying the condition
limt→∞ ρ(t) > 0, called performance function. The afore-
mentioned statements are clearly illustrated in Fig. 1 for an
exponentially decreasing performance function ρ(t) = (ρ0−
ρ∞)e−lt + ρ∞ with ρ0, ρ∞, l appropriately chosen strictly
positive constants. The constant ρ0 = ρ(0) is selected such
that ρ0 > |e(0)|. The constant ρ∞ = lim

t→∞
ρ(t) represents

the maximum allowable size of the tracking error e(t) at the
steady state. Moreover, the decreasing rate of ρ(t), which is
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affected by the constant l in this case, introduces a lower
bound on the required speed of convergence of e(t).

Fig. 1. Graphical illustration of prescribed performance (7).

III. MAIN RESULTS

In this section, a technique that produces a reference
trajectory is analyzed and designed such that it satisfies the
persistency of excitation condition a priori. Subsequently, a
control scheme is designed based on the prescribed perfor-
mance control technique that succeeds in forcing the system
states follow the desired trajectory and satisfying the per-
sistency of excitation of the RBF neural network regressors
that are utilized to achieve local learning of system nonlinear
functions. Finally, an identification scheme is proposed to
establish learning in a predefined compact set of the system
states.

A. Reference Trajectory Design

The reference trajectory is designed in order to satisfy
the persistency of excitation condition a priori. As stated in
[12], if the inputs to RBFs are periodic and coincide with
the neuron centers, placed in a lattice inside a predefined
compact set, for a minimum amount of time during every
period, then the regressor vector of neural network applied
satisfies the persistency of excitation and the estimates of
weight vectors converge to their optimal values satisfying the
learning purpose. The predefined compact set, is a bounded
rectangle for which x-coordinates represent the values of
position of the system, and y-coordinates represent the ve-
locity values accordingly. Thus, this rectangle represents all
possible states of the system inside this area. Subsequently,
this area is defined as the desired compact set inside which,
the aim of learning is needed to be achieved. In this compact
set a grid is created by placing the nodes of the grid in a way
to cover as much as possible the feasible states of system.
These nodes are the neuron centers of Radial Basis Functions
(RBFs). Increasing the number of nodes improves the result
of learning but inevitably increases the computational needs.

Motivated by the above discussion, we aim at designing
an elliptical motion profile dictated by:

(xref (t)−Ai,0)
2

A2
i

+
ẋref (t)

2

(Aiωi)
2 = 1, ∀i ∈ {1, . . . , p} (8)

where each ellipse is centered at (Ai,0, 0) and Ai and Aiωi

correspond to the major and minor axes. Hence, the planning
of the desired trajectory lies in finding the optimal ellipses
that pass through each given node inside a compact set, i.e.,
each ellipse i ∈ {1, . . . , p} that passes through the RBF’s
center ci and satisfies a certain optimization condition. The
goal needed to be satisfied is to cover as long distance as
possible within the set, i.e., largest possible perimeter, as
possible inside the compact set. So, the center of each ellipse
needed to be calculated is in the form (x0, 0). Two kinds
of ellipses could pass through each node, the horizontal one
whose focal points and major axis a run across x−axis, while
in the second kind of ellipse, the vertical one, the two focal
points are placed bilaterally in symmetric distances from the
x-axis and the major axis a is running across the y-axis
of the plane. Thus, it is concluded that two optimization
problems should be solved, where each time an optimal
ellipse from each of the two kinds is calculated. In particular,
the optimization problem in case of horizontal ellipse is
described by:

V1(ai, bi) = min{−w1aibi + w2fi} (9)
s.t. |xi,0| < DX̄ − ai, D ≥ 1 (10)

b < DdȲ, Dd ≥ 1 (11)
a < DX̄ (12)
|xi,0| < X̄ (13)
|f | ≤ 0.96a (14)

for all i ∈ {1, . . . , p}, where ai, bi correspond to the major,
minor semi-axes respectively, w1, w2 are weight factors ex-
pressing the importance of optimization goals and fi denotes
the distance between x0,i the focal points. The first term
of (9) is utilized to maximize the perimeter of the ellipse
lying within the area of the compact set by maximizing
the corresponding area of the ellipse. The second term of
(9) serves at minimizing the distance between the two focal
points as we want to keep as much as possible the trajectory
of the ellipse inside the compact set. Furthermore, X̄,−X̄
are the upper and lower bounds in x-axis of the compact
set, and , Ȳ,−Ȳ are the upper and lower bounds in y-axis
respectively. The satisfaction of the first two constraints (10),
(11) allows a certain percentage of the ellipse’s trajectory
to be crossed outside the compact set by regulating it
with certain parameters D,Dd. Finally, (14) ensures that
lines are excluded and the optimization algorithm each time
gives an elliptical shape as a solution due to the fact that
fi =

√
a2i − b2i . Similarly, in case of vertical ellipse the
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optimization problem is described by:

V2(ai, bi) = min{−w1aibi + w2fi} (15)
s.t. |xi,0| < DX̄ − bi, D ≥ 1 (16)

b < DX̄ (17)
a < DdȲ, Dd ≥ 1 (18)
|xi,0| < X̄ (19)

for all i ∈ {1, . . . , p}. Each optimization problem derives a
different ellipse and thus it is chosen the one which has the
minimum value of the objective function, i.e., the one having
the largest area as well as the largest perimeter inside the
compact set.

Subsequently, we assume a route which starts from the top
left node following the whole trajectory of the first ellipse
two times and next doing the same by moving onto the
trajectory of the next consecutive node’s ellipse on the right
until reaching the last node. The same movement is done
from the last node moving again back to the first node. This is
the complete route which can be repeated periodically during
the learning process. Thus, the desired reference trajectory
is defined by the following periodic equations:

xref (t) = Ai sin(ωit+ ϕi) +Ai,0

ẋref (t) = Aiωi cosωi + ϕi

(20)

where Ai, ωi, ϕi, Ai,0, i ∈ {1, . . . , p} are the parameters of
each elliptic trajectory of the whole route. So the whole
desired reference trajectory for the learning problem is calcu-
lated from the above equations (20) by changing parameters
Ai, ωi, ϕi, Ai,0 as moving from one elliptic trajectory to the
next. Each elliptic trajectory is the optimal one calculated
for each node from which the ellipse passes through. The
route to be followed is formed by running the whole ellipses
trajectories starting from the trajectory corresponding to the
first node till the one corresponding to the final node and
then doing the opposite direction as well. Each time, the
nodes which correspond to each ellipse’s trajectory must be
neighboring keeping a consecutive order during the move
from the one node’s ellipse to the next. As the transition
from the one elliptic trajectory to the next one is regarded
to be done instantly, the reference trajectory (xref , ẋref ) is
filtered in order to smooth the regions of abrupt transition.

B. Control Design

Given the aforementioned reference trajectory, a controller
is designed to force the system to follow it, so that learning is
achieved. To that end, we propose a robust controller, using
the prescribed performance method.

Given the compact set Ωx, where a locally accurate
approximation of the unknown functions f(·), g(·) should
be achieved, as well as a smooth bounded trajectory xd =
[x̄ref (t), ˙̄xref (t)]

T ∈ Ωx,∀t ≥ 0 as defined in the Section
III-A and any initial system condition x(0) ∈ Ωx, we
define the state errors e1 = x̄1 − x̄ref , with x̄ref =
[x1

ref , . . . , x
n
ref ]

T ∈ Rn and e2 = x̄2 − ˙̄xref , with ˙̄xref =

[ẋ1
ref , . . . , ẋ

n
ref ]

T ∈ Rn. The overall tracking error can be

written in vector form as e = [e1, e2]
T . Let us now define

the filtered error vector:

σ(e(t)) = e2(t) + Λe1(t) ∈ Rn (21)

where Λ = diag(λi), λi > 0, i = 1, . . . , n is a gain matrix.
Subsequently, a performance function R(t) =

diag(ρi(t)), i ∈ {1, . . . , n} is defined, with ρi(t) selected
as described in Section II-B, satisfying the condition
ρi(0) > |σi(e(0))|. Additionally, select the decay rate li less
than λi and let ξ = R−1(t)σ(e(t)) denote the normalized
error vector. Taking the aforementioned into account, the
control law is designed as:

u = −KR−1JT (ξ)T (ξ) (22)

where K = diag(ki), i ∈ {1, . . . , n} is a gain matrix, T (⋆) :
n times︷ ︸︸ ︷

(−1, 1)× · · · × (−1, 1) → Rn with T (0) = 0 (e.g., T (⋆) =
ln
(

1+⋆
1−⋆

)
) and the scaling factor JT (⋆) denotes the Jacobian

of mapping T (⋆). The properties of the proposed controller
are summarized in the following theorem.

Theorem 1: Consider system (2) operating within a com-
pact set Ωx, any initial system conditions x(0) ∈ Ωx and
any smooth bounded trajectory xd(t) ∈ Ωx. The control
input (22) guarantees that: i) all signals of the closed-loop
system remain bounded for all t ≥ 0 and ii) the tracking
error e(t) = [e1(t), e2(t)]

T converges in finite time to the
compact sets:

E1 ≜

{
e1 = [e11, . . . , e

n
1 ]

T ∈ Rn : |ei1| ≤
lim
t→∞

ρi(t)

λi

}
E2 ≜

{
e2 = [e12, . . . , e

n
2 ]

T ∈ Rn : |ei2| ≤ 2 lim
t→∞

ρi(t)
}
.

(23)
Proof: Let us first define the generalized error vector

ζ = [e1, e2, ξ]
T . Differentiating ζ with respect to time and

substituting the control input (22) we get:

ζ̇ =

 e2
W

Ṙ−1Rξ +R−1 (W + Λe2)

 (24)

where W = −M−1
(
C(e2 + ˙̄xref ) +G+KR−1JT (ξ)T (ξ)

)
−

ẍd and Ṙ = diag(ρ̇i(t)), i ∈ {1, . . . , n}. Additionally, let
ϵ = T (ξ) ∈ Rn. Let Ωξ be the non-empty set:

Ωξ ≜ {(ξ1, ..., ξn) | ξl ∈ (−1, 1),∀l ∈ {1, ..., n}}

According to the initial values of the performance functions,
it is deduced that |ξl(0)| < 1, which implies that ξ(0) ∈ Ωξ.
Furthermore, (24) is piecewise continuous and locally inte-
grable on t as well as locally Lipschitz on ξ. Thus, as proved
in [13], there exists a maximal solution ξ(t) of (24) on a time
interval [0, tmax) such that ξ(t) ∈ Ωξ,∀t ∈ [0, τmax). Hence,
σ(e(t)) is absolutely bounded by R(t),∀t ∈ [0, τmax). As
a result, there exists a compact set Ωe ⊂ Rn×2 the size of
which is independent of τmax such that e(t) ∈ Ωe, ∀t ∈
[0, τmax). In this point, consider the radially unbounded
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Lyapunov function candidate V = 1
2ϵ

TK−1ϵ. Differentiating
with respect to time, we arrive at:

V̇ =ϵTK−1JT (ξ)R−1(Λe2 − ẍd

−M−1 (Cx̄2 +G− u)− Ṙξ).
(25)

Exploiting the fact that xd(t) ∈ Ωx, e(t) ∈ Ωe, ∀t ∈
[0, τmax) and the continuity of f(·) we conclude by the
Extreme Value Theorem the boundedness of f(·), ∀t ∈
[0, τmax). Additionally, R(t), Ṙ(t) and ẍd are bounded by
construction. So, there is a positive constant F̄ such that:

∥Λe2 − ẍd −M−1 (Cx̄2 +G)− Ṙξ∥ ≤ F̄ (26)

for all ∀t ∈ [0, τmax). Owing to (26) and substituting the
control law (22), equation (25) is transformed into:

V̇ ≤
(
JT (ξ)R−1ϵK−1

)T
[F̄ +M−1KJT (ξ)R−1ϵ] =⇒

V̇ ≤
(
JT (ξ)R−1ϵK−1

)T
M−1K

(
JT (ξ)R−1ϵ

)
+
(
JT (ξ)R−1ϵK−1

)T
F̄.

(27)

We showed that ξ(t) ∈ Ωξ, ∀t ∈ [0, τmax). Thus, invoking
the properties of T (⋆), JT (⋆) as well as the boundedness of
ϵ we arrive at:

V̇ ≤ ∥JT (ξ)R−1ϵ∥
(
−λmin(M)∥JT (ξ)R−1ϵ∥+ kmaxF̄

)
(28)

where kmax is the maximum element of K−1. Therefore,
V̇ < 0, when:

∥JT (ξ)R−1ϵ∥ >
kmaxF̄

λmin(M)
. (29)

By letting ω = JT (ξ)R−1ϵ we conclude that:

∥ω∥ ≤ max

{
ω(0),

kmaxF̄

λmin(M)

}
(30)

Taking the inverse logarithmic function and combining the
boundedness of all elements of ϵ(t), whose upper bounds are
given by |ϵi| ≤ ϵ̄i, we get:

−1 <
e−ϵ̄i − 1

e−ϵ̄i + 1
=
¯
ξi ≤ ξi ≤ ξ̄i =

eϵ̄i − 1

eϵ̄i + 1
< 1 (31)

and hence the control signal (22) remains bounded ∀t ∈
[0, τmax). Since e(t) ∈ Ωe and xd(t) ∈ Ωx the boundedness
of x̄1, x̄2 can be easily deduced ∀t ∈ [0, τmax). The rest
of the stability analysis regarding the proposed closed-loop
system, follows identical steps with Theorem 1 in [14], and
thus it is omitted here owing to page limitations.

Finally, owing to the fact that (21) is bounded input
bounded output, it is obtained by [15], that the state errors
e1, e2 converge to the compact sets:

E1 ≜

{
e1 = [e11, . . . , e

n
1 ]

T ∈ Rn : |ei1| ≤
lim
t→∞

ρi(t)

λi

}
E2 ≜

{
e2 = [e12, . . . , e

n
2 ]

T ∈ Rn : |ei2| ≤ 2 lim
t→∞

ρi(t)
}
.

(32)

The proposed control scheme (22) achieves its goals without
residing to the need of rendering ϵ̄ = [ϵi, . . . , ϵn]

T arbitrarily
small. Although the unknown system nonlinearities f(·), g(·)
affect the size of ϵ̄, they leave unaltered the achieved con-
vergence properties. Finally, the actual tracking performance
at the steady state is assessed by the sets E1, E2 defined
above, which are closely related and depending on the matrix
of performance functions R(t) as well as the control gain
matrix Λ, while the convergence rate to steady state is
regulated via the factors li, i ∈ {1, . . . , n}

C. Identification Scheme

In this section, the controller designed in Section III-B
to ensure that the system states follow the desired trajec-
tory, is combined with RBF neural networks to establish
local learning of the nonlinear functions f(·), g(·) in a
predefined compact set, by imposing the Persistency of
Excitation property. In particular, the unknown functions
f(x), g(x) are approximated through f(x) = W ∗T

f Zf (x) +

ϵf (x), g(x) = W ∗T
g Zg(x) + ϵg(x) respectively, where

Zf (x) ∈ Rp×n, Zg(x) ∈ Rp×n are the regressor vectors
of selected RBFs with centers ci ∈ Ωx, i ∈ {1, . . . , p}
and W ∗T

f ,W ∗T
g are the optimal values of RBF weights

which minimize the error terms ēf = sup
x∈Ωx

{|ϵf (x)|}, ēg =

sup
x∈Ωx

{|ϵg(x)|}. In the following proposition, it is shown

how the desired trajectory xd and the proposed controller
(22) should be designed in a way that the regressor vectors
Zf (x), Zg(x) are persistently excited.

Proposition 1: Consider a periodic, bounded and smooth
trajectory xd : [0,∞) → Ωx traversing all the centers of the
selected RBFs as designed in Section III-A. By designing
the performance function matrix R(t) and the control gain
matrix Λ such that:

lim
t→∞

ρi(t) <

min
j1 ̸=j2

{
1
2∥cj1 − cj2∥

}
2

√
n∑

i=1

(
2i−1

λn−1

)2 (33)

where i ∈ {1, . . . , n} and j1, j2 ∈ {1, . . . , p} then
the control law (22) guarantees that the regressor vectors
Zf (x(t)), Zg(x(t)) are persistently exciting.

Proof: Consider any ϵ < min
i ̸=j

{
1
2∥ci − cj∥

}
, i, j ∈

{1, . . . , p} and define the ball area Bt(xd(t),
ϵ
2 ) ={

x ∈ Rn : ∥x− xd(t)∥ ≤ ϵ
2

}
. If we select lim

t→∞
ρj(t) <

ϵ

2

√
2∑

i=1

(
2i−1

λj

)2
, j ∈ {1, . . . , n}, then according to Theorem

1 it can be verified that there exists a time instant T0 such
that x(t) ∈ Bt(xd(t),

ϵ
2 ),∀t ≥ T0. Subsequently, let us

consider the ϵ-neighborhoods of the RBF centers Bi(ci, ϵ) =
{x ∈ Rn : ∥x− ci∥ ≤ ϵ} , i ∈ {1, . . . , p} which are non-
intersecting. Owing to the smoothness and the boundedness
of xd as well as the fact that xd(tci + mT ) = ci,∀i ∈
{1, . . . , p} with m ∈ N and T denoting the period of
the orbit xd(t), there exists a positive constant δt such
that Bt(xd(t),

ϵ
2 ) ⊂ Bi(ci, ϵ),∀t ∈ [tci + mT − δt

2 , tci +
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mT + δt
2 ] for all i ∈ {1, . . . , p}. As a consequence, since

x(t) ∈ Bt(xd(t),
ϵ
2 )∀t ≥ T0 it is concluded that x(t) ∈

Bi(ci, ϵ),∀t ∈ [tci +mT − δt
2 , tci +mT + δt

2 ]∩ [T0,∞) for
all i ∈ {1, . . . , p}. Thus, invoking Theorem 3.5 in [11], the
proof is complete.
Having defined the state error vectors e = [e1, e2]

T the error
dynamics are obtained by ė1 = e2, ė2 = f(x) + g(x)u− ẍd

or in compact form ė = Ae + B[f(x) + g(x)u − ẍd]. The
identification scheme is given by:

˙̂x = Ax̂+B(ŴT
f Zf (x) + ŴT

g Zg(x)u+KT x̃)

˙̂
Wf = γf [Zf (x)x̃

TB − σfŴf ]

˙̂
Wg = γg[Zg(x)x̃

TB − σgŴg]

(34)

where x̃ = x− x̂ denotes the state estimation error vector, K
is the gain vector selected such that A − BKT is Hurwitz,
Ŵf , Ŵg are the estimates of the unknown optimal weight
vectors W ∗

f ,W
∗
g and γf , γg, σf , σg are positive gains.

Theorem 2: Consider system (2) excited by the control
input (22). The identifier (34) guarantees that: i) all signals in
the identification loop are bounded, ii) the estimates Ŵf , Ŵg

converge to small neighborhoods of their optimal values
W ∗

f ,W
∗
g and iii) the state estimation error x̃ converges to

a small neighborhood of zero.
Proof: Consider the following Lyapunov function can-

didate:

V =
1

2
x̃T x̃+

1

2γf
tr{W̃T

f W̃f}+
1

2γg
tr{W̃T

g W̃g} (35)

where tr{·} denotes the trace of a square matrix and W̃f =
W ∗

f − Ŵf , W̃g = W ∗
g − Ŵg represent parametric errors.

Differentiating (35) with respect to time, and after some
straightforward manipulations we obtain:

V̇ = x̃T (A−BKT )x̃− σf tr{W̃T
f W̃f} − σgtr{W̃T

g W̃g}
+ σf tr{W̃T

f W ∗
f }+ σgtr{W̃T

g W ∗
g }

+ x̃TB(ϵf (x) + ϵg(x)u)
(36)

Note that the quantity tr{W̃T
h W ∗

h}, h = {f, g} can be

written as tr{W̃T
h W ∗

h} =
n∑

i=1

p∑
j=1

W̃T
hji

W ∗
hji

. Invoking the

Young’s inequality as well as substituting the previous equa-
tions into (36) we arrive at:

V̇ = x̃T (A−BKT )x̃+ q − σf tr{W̃T
f W̃f}

− σgtr{W̃T
g W̃g}+ x̃TB(ϵf (x) + ϵg(x)u)

(37)

where q = 1
2

(
n∑

i=1

p∑
j=1

|W̃fji |2 + |W ∗
fji

|2 + |W̃gji |2 + |W̃ ∗
gji |

2

)
.

Next we substitute x̃T (A − BKT )x̃ =

x̃T (A−BKT+(A−BKT )T

2 )x̃ in (37) resulting to:

V̇ = x̃T (
A−BKT + (A−BKT )T

2
)x̃+ q − σf tr{W̃T

f W̃f}

− σgtr{W̃T
g W̃g}+ x̃TB(ϵf (x) + ϵg(x)u)

(38)

Subsequently, by letting σmin =
−λmin

2

(
A−BKT + (a−BKT )T

)
the above equation

can be manipulated as:

V̇ ≤ −σmin

2
∥x̃∥2 − σf tr{W̃T

f W̃f} − σgtr{W̃T
g W̃g}

+ x̃TB(ϵf (x) + ϵg(x)u) + q
(39)

Notice that the last term of (39) can be written as

x̃TB(ϵf (x) + ϵg(x)u) =
n∑

i=1

˙̃xi

(
ϵfi(x) +

n∑
j=1

ϵgij(x)uj

)
owing to the fact that x̃ = [x̃1, . . . , x̃n, ˙̃x1, . . . , ˙̃xn]

T . In-
voking once again the Young’s inequality we can arrive at:

− σmin

2n
∥x̃∥2 + ˙̃x1∥

ϵfi(x) +

n∑
j=1

ϵgij(x)uj

 ≤

n

(
ϵfi(x) +

n∑
j=1

ϵgij(x)uj

)2

2σmin
= Ai

(40)

for all i ∈ {1, . . . , n}. Finally by letting D = q +
n∑

i=1

Ai,

(39) becomes:

V̇ ≤ −σmin

2
∥x̃∥2 − σf tr{W̃T

f W̃f} − σgtr{W̃T
g W̃g}+D

(41)
which leads to the uniform ultimate boundness (UUB) of
x̃, W̃f , W̃g with respect to compact sets:

X ≜

{
x̃ ∈ R2n : ∥x̃∥ ≤

√
2D

σmin

}

Wf ≜

{
W̃f ∈ Rp : tr{W̃T

f W̃f} ≥ D

σf

}
Wg ≜

{
W̃g ∈ Rp : tr{W̃T

g W̃g} ≥ D

σg

}
}.

Additionally it has been proven in the previous subsection
that under the excitation of (22), system (2) generates uni-
formly bounded state trajectories. Hence, x̂ ∈ L∞ and there-
fore all signals of the identification scheme remain bounded.
So it can be verified that ∥x̃(t)∥ converges to a neighborhood
of zero whose size is regulated by permitting σmin to admit
sufficiently large values by choosing appropriately the K
matrix and putting small values for σf , σg . Also, according
to Proposition 1 the regressor vectors Zf (x(t)), Zg(x(t)) are
persistently exciting. Thus, the parametric errors W̃f , W̃g

converge to neighborhoods of zero, whose size is determined
by the value of D which is closely influenced by the values of
parameters σmin, σf , σg for a given RBF network structure
which corresponds to specific modeling error bounds ϵ̄f , ϵ̄g .

IV. SIMULATION RESULTS

A simulation example is provided to assess the proposed
identification process. In particular, we consider the follow-
ing Lagrangian dynamics:

Iq̈ +ml sin(q)q̇2 = u
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for which the state is expressed as x1 = q, x2 = q̇ the
unknown nonlinearities are given by:

f(x) = −ml

I
sin(x1)x

2
2, g(x1) =

1

I

The compact set over which we want to learn the system
nonlinearities is Ω = {x1, x2 : −1.5 ≤ x1, x2 ≤ 1.5}.
We also selected an RBF neural network with 16 nodes
within the set Ω. A reference tractor was then calculated
that transverses all nodes and which is depicted in red dashed
line in Fig. 2. The evolution of the weight estimates of the

Fig. 2. The reference trajectory in red dashed line that transverses all nodes
(blue stars) and the actual trajectory in green solid line.

RBF neural network that was adopted to approximate the
unknown function f(x) is illustrated in Fig. 3. Moreover, The

Fig. 3. The evolution of the weight estimates for the function f(x).

approximation quality over the set Ω is given in Fig. 4 for the
function f(x). In order to improve further the approximation
results, we employed RBF neural networks with 36 and 64
nodes, respectively. The results are summarized in Table I,
from which it can be easily deduced that the approximation

Fig. 4. The unknown function (green) and its approximation (blue).

error reduces as the number of nodes increases, demanding
however more time to establish accurate learning as the
reference trajectory becomes more complex. Similar results
hold for the constant but unknown function g(x1) =

1
I .

TABLE I
THE EFFECT OF INCREASING THE NODES NUMBER.

Number of nodes Maximum error Average error Simulation time
16 9.56% 2.18% 250 sec
36 7.12% 1.34% 360 sec
64 6.07% 1.02% 600 sec

V. CONCLUSIONS AND FUTURE WORK

In this work, a system identification methodology was
designed for on-line learning the actual nonlinearities of un-
known Lagrangian systems. The whole scheme is consisted
of an online RBF neural network identifier and a controller
that guarantees arbitrarily close tracking of a reference trajec-
tory that satisfies the persistency of excitation condition for
the RBF regressors employed in the identification scheme.
The nonlinear functions of the system are expressed by RBF
neural networks and it has been proven that the estimated
weight vector converges close to the optimal weight vec-
tor. For future work, these results could be extended for
other kind of systems like pure-feedback systems and strict-
feedback systems. Another interesting field of application
would be fault diagnosis, which plays important role in
modern engineering systems.
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