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Abstract— The objective of this work is to simultaneously
control and identify the nonlinear longitudinal dynamics of
small-scale fixed-wing Unmanned Aerial Vehicles (UAVs). The
main difficulty in this endeavor lies in the satisfaction of
the Persistence of Excitation (PE) condition, which eventually
ensures accurate learning. Towards this direction, our key
components comprise Radial Basis Function - Neural Networks
(RBF-NNs), which are suitable mathematical models for uni-
versal function approximation, alongside with: i) the recently
developed Dynamic Regression Extension and Mixing (DREM)
technique; a new procedure for designing parameter estimators
with enhanced performance, as well as ii) a novel control design
for the longitudinal UAV dynamics utilizing the Prescribed
Performance Control (PPC) methodology, which enables robust
trajectory tracking with predetermined transient and steady
state quality, even in the presence of model uncertainties.

Index Terms— Prescribed Performance Control, System
Identification, Dynamic Regression, Extension and Mixing.

I. INTRODUCTION

The operation of UAVs as well as of most physical
systems, is modeled by nonlinear differential equations.
Knowledge of their form and the underlying nonlinearities
facilitates the solution of a variety of significant problems,
including model-based control; prediction of the system’s
behavior; real-time fault detection, and others. However,
typically, system dynamics is partially or even completely
unknown; which justifies the development of methodologies
leading to their adaptive identification. Despite the significant
results that have been achieved so far on adaptive control,
the problem of successful learning and control of unknown
system dynamics in a certain predefined domain of oper-
ation remains still open in nonlinear system identification.
Moreover, adaptive control does not perform satisfactorily
under strongly coupled, nonlinear systems, such as UAVs.
Additionally, a quickly adaptable control scheme is needed
for the multitude of commercial and custom-made UAVs that
fly every day, each with slightly different model parameters.

The advent of Artificial Neural Networks (ANNs) and
particularly of RBF-NNs has provided a powerful tool in
the field of adaptive nonlinear system identification. Owing
to their universal approximation capabilities [1], RBF-NNs
have been widely used to deal with unknown nonlinearities
in many applications. Nevertheless, the goal of accurate
learning via RBF-NNs is difficult to be achieved unless
a PE condition is met. The concept of PE has appeared
widely in the adaptive identification literature and it is well
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known that standard parameter estimation algorithms applied
to linear regression give rise to a linear time-varying system,
which is exponentially stable if and only if a PE condition
is imposed on the regressor vector; a fundamental result that
constitutes one of the main building blocks of identification
in adaptive control theories [2], [3]. Regarding RBF-NNs,
the investigation of the PE property has attracted continuing
efforts [4]–[7], and while different approaches were studied,
the main idea is that the satisfaction of the PE property
requires the network inputs to periodically pass nearby the
RBF centers [5].

The adaptive identification scheme presented in this paper,
is based on the recently developed DREM technique [8],
which has been already implemented in various identification
and adaptive control problems [9]–[12]. DREM estimators
achieve better transient performance than classical gradient
based or least-squares estimators in the sense that, inde-
pendently of excitation conditions, the procedure guarantees
monotonous response for each element contained in the
vector of parameter error, which is stronger than just guaran-
teeing the norm’s monotonicity of the corresponding vector.
In addition, convergence is established with a milder PE con-
dition for the regressor vector, namely a non-square integra-
bility condition on the determinant of a designer-dependent
regressor matrix. On the other hand, to establish the PE
condition, the PPC methodology [13] will be employed for
the UAV longitudinal motion control. The proposed state
feedback controller isolates the output performance from
the control gains selection and exhibits strong robustness
against model uncertainties, while completely avoiding the
explosion of complexity issue. Based on the PPC method-
ology, we shall develop a novel control scheme for the
UAV longitudinal motion, capable of tracking airspeed and
altitude trajectory profiles with predetermined quality, even
in the presence of model uncertainties. Concluding, the main
contributions of this work are summarized as follows:

• We design a novel robust control scheme to track air-
speed and altitude trajectory profiles that guarantees the
PE condition for the adopted regressors, thus, achieving
actual learning of the UAV longitudinal dynamics in a
predefined domain of operation.

• Compared to other parameter estimation algorithms, we
ensure enhanced performance during the identification
of the UAV longitudinal dynamics by employing the
recently developed DREM technique.
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II. PROBLEM FORMULATION AND PRELIMINARIES

A fixed-wing UAV is modeled as a 6-DoF rigid body.
However, in this work, we focus only on the longitudinal
dynamics. In such model, the forces and moments that act
on the UAV body are primarily owing to three sources, i.e.,
gravity, aerodynamics and propulsion. Thus, assuming a flat
Earth model, which is rather reasonable for small scale UAVs
[14], the equations of motion are given as:

ḣ = V sin γ (1)

V̇ =
T (V,Φ) cosα−D(α, V )

m
− g sin γ (2)

γ̇ =
T (V,Φ) sinα+ L(α, V )

mV
− g

V
cos γ (3)

θ̇ = q (4)

q̇ =
M(α, V, q, δϵ)

Jyy
(5)

where V is the airspeed vehicle velocity, h is the altitude,
θ and γ denote the pitch and flight-path angle respectively,
α = θ - γ is the angle-of-attack and q is the pitch rate. The
control input signals comprise the throttle Φ and the elevator
δϵ. Furthermore, the lift, drag and thrust forces as well as
the pitch moment are denoted by L(α, V ), D(α, V ), T (V,Φ)
and M(α, V, q, δϵ), respectively, with their explicit analytic
forms described in [14]. Finally, T (V,Φ) and M(α, V, q, δϵ)
are linear, strictly increasing and decreasing functions of Φ
and δϵ, respectively.

The main objective of this study is to design a robust con-
troller, capable of tracking appropriately the selected airspeed
and altitude trajectory profiles such that the UAV dynamics
(1)-(5) is sufficiently excited to enable its identification.

A. Prescribed Performance Control

Prescribed performance control [13] aims at achieving
convergence of a scalar tracking error e(t) to a predetermined
arbitrarily small residual set with speed of convergence no
less than a prespecified value, which is formulated rigorously
by e(t) evolving strictly within a predefined region that is
upper and lower bounded by certain functions of time, as
follows:

−ρ(t) < e(t) < ρ(t), ∀t ≥ 0, (6)

where ρ(t) denotes a smooth and bounded function of time
that satisfies limt→∞ ρ(t) > 0, called performance function.
For instance, an exponentially decaying performance func-
tion is given by ρ(t) = (ρ0 − ρ∞)e−λt + ρ∞, where ρ0,
ρ∞, λ are positive parameters. In particular, the constant ρ0
is selected such that ρ0 > |e(0)|. Moreover, the parameter
ρ∞ ≜ limt→∞ ρ(t) > 0, which represents the maximum
allowable value of the steady state error, can be set to a
value reflecting the resolution of the measurement device,
so that the error e(t) practically converges to zero. Finally,
the constant λ determines the decreasing rate of ρ(t) and
thus is used to set a lower bound on the convergence rate of
e(t). Therefore, the appropriate selection of the performance
function ρ(t) imposes certain transient and steady state
performance characteristics on the tracking error e(t).

The key point in prescribed performance control is a
transformation of the tracking error e(t) that modulates it
with respect to the corresponding transient and steady state
performance specifications, encapsulated in the performance
function ρ(t). More specifically, we employ a strictly increas-
ing, odd and bijective mapping Tf : (−1, 1) → (−∞,∞).
In this work, we adopt the mapping ϵ(t) ≜ Tf (ξ(t)) =
1
2 ln

(
1+ξ(t)
1−ξ(t)

)
that meets the aforementioned properties, with

ξ(t) ≜ e(t)
ρ(t) denoting the modulated error. Furthermore, the

Jacobian (derivative) of the map Tf (·), which is strictly
positive by construction, is defined as T ′

f (ξ) =
1

1−ξ2 . Owing
to the properties of the aforementioned transformation, it can
be easily verified [15] that preserving the boundedness of ϵ(t)
is sufficient to achieve prescribed performance in the sense
of (6).

B. RBF Neural Networks and Persistence of Excitation

Radial Basis Function-Neural Networks will be employed
in this study owing to their universal approximation capabil-
ities [1]. Mathematically, they are formulated as:

y(x) =

q∑
i=1

zTi (x)wi = ZT (x)W (7)

where x ∈ Rn and y ∈ R denote the input and output
of the RBF-NN, respectively, W = [w1 · · ·wq]

T is the q-
dimensional vector of the synaptic weights and Z(x) =
[z1(x) · · · zq(x)]T is a q-dimensional vector of regressor
terms. In this work, we employ Gaussian functions of the

form zi(x) = exp

(
− (ci − x)2

σ2
i

)
, where ci ∈ Rn and σi

denote the center and variance of the respective kernel. Both
parameters will be fixed in our analysis, thus resulting in
a linearly parameterized model with respect to the synaptic
weights.

The physical interpretation of the PE condition is that
the regressor vector sequence spans the full dimension of
the input parameter space. For RBF-NNs specifically, it
was shown in [5] that the regressor vector Z(x(t)) =[
z1(x(t)) · · · zq(x(t))

]
of the RBFs zi(·) with centers

ci, i = 1, . . . , q is persistently exciting if the orbit x :
[0,∞) → Rn is periodic and within each period it visits
disjoint neighborhoods of each center ci of the RBF-NN for
a minimum amount of time.

C. Dynamic Regression Extension and Mixing Technique

Consider a linear regression problem of the form:

y(t) = mT (t)θ (8)

where y ∈ R and m ∈ Rq are known, bounded functions
of time and θ ∈ Rq is a q-dimensional vector of unknown,
though constant, parameters. The first step in DREM is to
introduce q − 1 linear, L∞-stable operators Hi : L∞ →
L∞, i ∈ 1, 2, . . . , q − 1. It is stated in [8] that such operators
can be either simple LTI filters or pure delay operators. In our
work, we chose LTI filters of the form Hi(s) =

ai
s+ bi

, with

ai ̸= 0 and bi > 0. The next step is to apply those filters
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to the original regression form (8) to generate the filtered
regressions:

yfi(t) = mT
fi(t)θ , i = 1 · · · q − 1. (9)

Subsequently, augmenting the original regression (8) with
the filtered ones (9), we obtain the extended system:

Ye(t) = MT
e (t)θ (10)

with Ye ∈ Rq defined as Ye = [y yf1 . . . yfq−1
]T and Me ∈

Rqxq a square matrix defined as Me = [mmf1 . . . mfq−1
].

Finally, premultiplying (10) with the adjugate matrix of Me,
we obtain a decoupled regression problem:

Y (t) ≜ [Y1(t), . . . , Yq(t)]
T ≜ adj(Me(t))Ye(t) = ϕ(t)θ

(11)
with ϕ(t) = det(Me(t)), from which the unknown param-
eters θi, i = 1, . . . , q can be estimated separately by the
adaptive laws:

˙̂
θi = γiϕ(Yi − ϕθ̂i), γi > 0. (12)

Remark 1: Substituting (11) in (12) and invoking the so-
lution of the first order differential equation of the parametric
error dynamics, we conclude:

lim
t→∞

θ̃i(t) = 0 ⇐⇒ ϕ(t) /∈ L
[0,∞)
2 , (13)

where θ̃i = θ̂i − θi denotes the parametric error. The afore-
mentioned equivalence implies that convergence is estab-
lished without invoking the usually restrictive PE condition.
However, if ϕ(t) is PE then θ̂i converges to θi exponentially
fast [9].

III. CONTROL DESIGN AND ADAPTIVE LEARNING

A. Control Scheme

Consider the fixed-wing UAV longitudinal dynamics (1)-
(5). Since the fundamental maneuvers for the longitudinal
motion are acceleration/deceleration and climb/descend, the
desired motion will be dictated by the airspeed Vd(t) and
altitude hd(t) reference profiles, while the desired flight-path
angle γd(t) will be extracted by the kinematics (1). More
specifically,

Step 1. Given some smooth and bounded desired altitude
hd(t) and airspeed Vd(t) trajectories, we consider an altitude
feedback loop:

ḣd(t)− kh(h− hd) = Vd(t) sin(γd(t)) (14)

with kh > 0, from which the desired flight-path angle
trajectory is calculated as:

γd(t) = arcsin

(
ḣd(t)− kh(h− hd)

Vd(t)

)
(15)

Notice that (14) is equivalent to (1) as the altitude tracking
error h− hd tends to zero, which is described in Remark 2.

Step 2. Select exponential performance functions ρV (t) =

(ρV0 − ρV∞)e−λV t + ρV∞ and ργ(t) = (ργ0 − ργ∞)e−λγt + ργ∞
that satisfy ρV0 > |V (0) − Vd(0)| and ργ0 > |γ(0) − γd(0)|
incorporating, via the appropriate selection of ρV∞, ργ∞, λV

and λγ , the desired performance specifications regarding the
steady state error and the speed of convergence, as described
in Subsection II-A. Subsequently, define the transformed
errors:

ϵV = Tf

(
V − Vd(t)

ρV (t)

)
, ϵγ = Tf

(
γ − γd(t)

ργ(t)

)
(16)

Step 3. Select the reference force vector[
Fx

Fz

]
≜ −

[
kV rV ϵV
kγ

V rγϵγ

]
, kV , kγ > 0 (17)

with the scaling factors rV ≜
T ′
f

(
V −Vd(t)

ρV (t)

)
ρV (t) , rγ ≜

T ′
f

(
γ−γd(t)

ργ (t)

)
ργ(t)

. Notice that the control signal Fx regulates the
horizontal motion of the vehicle while Fz corresponds to
the command associated with the vertical motion of the
plant. Thus, utilizing the polar coordinates, we design the
throttle command Φ and the reference angle of attack αd as[
Φ
αd

]
=

[√
F 2
x + F 2

z

arctan(Fz

Fx
)

]
.

Step 4. Consider the pitch reference command:

θd(t) = αd(t) + γd(t) (18)

and select an exponential performance function ρθ(t) =

(ρθ0 − ρθ∞)e−λθt + ρθ∞ to satisfy ρθ0 > |θ(0) − θd(0)| and
incorporate the desired performance specifications via the
appropriate selection of ρθ∞ and λθ. Then, the pitch rate
reference control signal is designed as:

qd(θ, t) = −kθTf

(
θ − θd(t)

ρθ(t)

)
, kθ > 0 (19)

Step 5. Finally, select an exponential performance function
ρq(t) = (ρq0−ρq∞)e−λqt+ρq∞ that only satisfies ρq0 > |q(0)−
qd(θ(0), 0)| and design the elevator control command as:

δϵ(θ, q, t) = kqTf

(
q − qd(θ, t)

ρq(t)

)
, kq > 0 (20)

Remark 2: Concerning the altitude kinematics (14), given
the fact that we enforce prescribed performance on the
airspeed and flight-path angle response, the altitude error
h − hd response will be dictated by a stable, linear system
with an exponentially decaying input that corresponds to the
performance functions ρV (t) and ργ(t). Thus, kh, as well as
the performance specifications encapsulated by the airspeed
and flight-path angle performance functions, will define the
transient and steady state response of the altitude error. Fi-
nally, notice that the elevator control signal obtains a positive
sign as it is associated with the primary control deflection
of the elevator. By convention [14], since M(α, V, q, δϵ) is
strictly decreasing, a positive elevator deflection results in a
nose-down pitching moment and vice-versa.

B. Stability Analysis

Consider the positive definite and radially unbounded
Lyapunov candidate function:

L =
1

2
m(kV ϵ

2
V + kγϵ

2
γ)
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Differentiating with respect to time, substituting (2)-(3) and
invoking basic trigonometric identities, we obtain:

L̇ =
kV ϵV rV

ρV

(
T cosαd(cos eα − sin eα)−D−

−m
(
g sin γ − V̇d − ρ̇V ξV

))
+

kγϵγrγ
ργV

(
T sinαd(sin eα + cos eα) + LV

−m
(g cos γ

V
− γ̇d − ρ̇γξγ

))
(21)

Finally, adding and subtracting the reference force vector
(17) and after straightforward algebraic manipulations, we
arrive that:

L̇ ≤ − k̄

∥∥∥∥∥
[
ϵV
ϵγ

]T [
rV 0
0 rγ

] [
1 0
0 1

V

] [ 1
ρV

0

0 1
ργ

]∥∥∥∥∥
2

+

∥∥∥∥∥
[
ϵV
ϵγ

]T [
rV 0
0 rγ

] [
1 0
0 1

V

][ 1
ρV

0

0 1
ργ

]∥∥∥∥∥× · · ·

· · · ×
∥∥∥∥[ −D −mg sin γ −mV̇d −mρ̇V ξV

LV −mg cos γ −mV γ̇d −mV ρ̇γξγ

]∥∥∥∥
(22)

for a positive constant k̄. Notice that the negative quadratic
term in (22) dominates the second positive term, for large
transformed errors ϵV , ϵγ ; thus L̇ becomes negative, and
consequently the value of the Lyapunov function L as well as
of the errors ϵV , ϵγ remains bounded, ensuring according to
Subsection II-A that the actual airspeed velocity and flight-
path angle errors eV (t) and eγ(t) satisfy the performance
specifications encapsulated in the corresponding performance
functions, in view of ∥eV (t)∥< ρV (t) and ∥eγ(t)∥< ργ(t),
∀t ≥ 0. The rest of the stability analysis for the pitch angle
θ and pitch rate q follows identical steps with [16], and is
omitted here owing to page limitations.

C. Adaptive Identification

Consider the UAV-dynamics (2), (3) and (5), expressed as:

V̇ = fV (α, V, γ) + gV (α, V )Φ

γ̇ = fγ(α, V, γ) + gγ(α, V )Φ

q̇ = fq(α, V, q) + gq(α, V, q)δϵ

(23)

where the unknown functions fi(·), gi(·), i ∈ {V, γ, q} will
be substituted by RBF-NN approximants in the form of (7),
plus a modeling error term as fi(·) = ZT

fi
(·)Wfi + εfi(·),

gi(·) = ZT
gi(·)Wgi +εgi(·), i ∈ {V, γ, q}, for some unknown

weights Wfi , Wgi that minimize the modeling errors εfi(·),
εgi(·) respectively, over a compact set. However, notice that
(23) is not in the linear regression form (8), for which the
DREM approach may be applied, since its left hand side is
not measurable. To that end, we employ a standard filtering
technique [17] to formulate a linear regression problem as

follows:

yV ≜ V − a

s+ a
V =

1

s+ a

(
ZT
fV WfV +ΦZT

gV WgV

)
yγ ≜ γ − a

s+ a
γ =

1

s+ a

(
ZT
fγWfγ +ΦZT

gγWgγ

)
yq ≜ q − a

s+ a
q =

1

s+ a

(
ZT
fqWfq + δϵZ

T
gqWgq

)
(24)

where a > 0 denotes the pole of the adopted filter 1
s+a .

Consequently, we may apply the DREM technique presented
in Subsection II-C for (24), and design decoupled adaptive
laws in the form of (12), to estimate the unknown parameters.

Theorem 1: Consider the UAV longitudinal dynamics (1)-
(5) as well as appropriately selected RBF-NNs with unknown
synaptic weights to approximate the unknown nonlinearities
in (23), within a compact domain of operation. If the airspeed
velocity and altitude reference trajectories Vd(t) and hd(t)
are selected such that the adopted RBF-regressor vector
is persistently exciting, then the control protocol presented
in Subsection III-A and the DREM-based adaptive scheme
presented in Subsection III-C, guarantee actual learning of
the UAV longitudinal dynamics.

Remark 3: Note that for the adequate reference trajecto-
ries our algorithm guarantees the satisfaction of PE condi-
tion. This important attribute derives from the output tracking
performance imposed by the PPC methodology. In particular,
by choosing the performance parameters ρV∞, ργ∞ close to
zero, then in each period there exists a minimum amount of
time in which the airspeed velocity V as well as the altitude
h of the vehicle lie within a neighborhood around each
RBF center ci, which implies the satisfaction PE condition.
Furthermore, the model-free control strategy inherited by
the PPC approach, reduces the interconnections between
the trajectory tacking and system identifications problem,
rendering our control scheme robust to system uncertainties,
internal faults and external disturbances.

IV. SIMULATION RESULTS

In this section, we present extensive simulation results
that verify and clarify both the effectiveness of the proposed
control protocol as well as the learning capabilities of the
DREM-based identification scheme using RBF-NNs. For
simulation purposes, the nonlinear dynamical model of the
Aerosonde UAV was adopted, as presented in [14].

A. Control Design Efficiency

The proposed PPC scheme for the longitudinal UAV
dynamics is employed to accurately track the following sinu-
soidal airspeed and altitude trajectory profiles Vd(t) = 50 +
5 sin(2π0.01t) and hd(t) = 100+80 sin(2π0.01t). Given the
initial conditions, the performance functions were selected as
ρV (t) = (50 − 5)e−0.5t + 5, ργ(t) = (π3 − π

16 )e
−0.5t + π

16 ,
ρθ(t) = (π − π

20 )e
−0.5t + π

20 , ρq(t) = (π − π
5 )e

−0.5t + π
5 ,

with the control gains kh = 0.25, kV = 2, kγ = 10, kθ =
1, kq = 0.35 to produce reasonable control effort. In Fig.1a,
the airspeed and altitude response is depicted, along with the
desired profiles. The associated errors are illustrated in Fig.1b
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Fig. 1: The closed loop system response for sinusoidal airspeed and altitude reference profiles.

along with the corresponding performance bounds encapsu-
lated by the appropriately selected performance functions.
Finally, the evolution of the rest of the system states, as well
as the required control input signals are drawn in Fig.1c.

Robustness: To perform a more realistic simulation, wind
disturbance in the form of Dryden gusts affecting the UAV
dynamics and sensor models under white measurement noise,
with zero mean and 10% deviation from the actual value,
were considered. To that end, an Extended Kalman Filter
(EKF) was adopted to provide the state estimates to the
controller. The system’s response is illustrated in Fig.2,
from which the robustness of our method against external
disturbances and measurement noise is verified.

Comparative Results: The proposed controller is com-
pared to a classic model-based controller, designed, after
linearizing the dynamics around the operating point, via
the Successive Loop Closure with PD and PI controllers
with appropriately selected gains such that the bandwidth
of the outer(s) loop(s) is smaller by a factor of 10 − 15
from the preceding loop(s) [14]. Notice in Fig.3a, that
the aforementioned model-based controller achieves sat-
isfactory tracking for slow varying airspeed and altitude
profiles Vd(t) = 50 + 5 sin(2π0.01t) and hd(t) = 100 +
80 sin(2π0.01t). However, when a more aggressive (faster)
profile is adopted, i.e., Vd(t) = 50 + 5 sin(2π0.03t) and
hd(t) = 300 + 200 sin(2π0.03t), and without modifying the
corresponding control gains, the model-based controller fails,
as illustrated in Fig.3b. On the contrary, our control scheme
preserves its satisfactory performance, without altering the
control parameters, as depicted in Fig.3c. In particular, from
Figs.3b,3c it can be observed that our method outperforms
the model-based controller regarding to tracking delay, as
well as to the amplitude of the the tracking error, which is
more clear in the bottom subfigures of Figs.3b,3c, i.e., the
tracking performance of altitude trajectory.

B. DREM-based Identification

It can be easily observed by (24) that the longitudinal
UAV dynamics may be formulated as three, independent

Fig. 2: The response under noise and disturbances.

linear regression problems. Hence, we employ three dif-
ferent RBF-NNs, one for each state variable of the UAV
dynamics (i.e., V , q and γ), but with common regressor
terms for the corresponding drift (fV , fq, fγ) and input
gain (gV , gq, gγ) nonlinearities. The centers of each RBF-
NN were selected through a k-means clustering algorithm,
while the deviation was computed so that neighboring centers
have a 75% overlap. Furthermore, since the proposed model-
free controller guarantees predetermined transient and steady
state performance, we selected via a trial and error procedure,
appropriate airspeed and altitude reference trajectories such
that the system state periodically visits the adopted RBF
centers and hence ensures the satisfaction of the PE condition
for the underlying RBF-NNs. Alternatively, we could choose
reference signals consisting of m ≥ n

2 (n = 3), discrete
frequencies, which constitutes PE of order n. The parameter
estimate errors are illustrated in Fig.4. Indicative results
that verify the learning capabilities of the proposed scheme
regarding the convergence of the parameter estimates related
to the airspeed dynamics are presented in Table I. Finally,
it should be noted that the identification procedure was
conducted in the presence of noise affecting the sensor
measurements.

Comment 1. The choice of the LTI filters in the DREM
algorithm was critical in the identification scheme. Their
parameters were selected after a tedious trial-and-error pro-
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(a) Model-based controller (slow).
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(b) Model-based controller (fast).
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(c) The proposed controller (fast).

Fig. 3: Comparative simulation study. The airspeed and altitude response of a model-based and the proposed model-free
controller for sinusoidal airspeed and altitude reference profiles.

(a) Nonlinearity fV . (b) Nonlinearity fq . (c) Nonlinearity fγ .

(d) Nonlinearity gV . (e) Nonlinearity gq . (f) Nonlinearity gγ .

Fig. 4: The evolution of the parametric error for the RBF-NN weights.

cedure, since no indications exist on how to select them
in a systematic way [18]. Nevertheless, an observation was
that as the number of NN-weights grew, larger values for
the filters’ DC-gains αi were needed to attain a sufficiently
large value of det(Me) to enable identification. As a result,
it was necessary to select a rather small network with q = 4
nodes for each output, because a large DC-gain in the
DREM operators would also magnify the modelling error

of the RBF-NN, resulting in worse response. As for the
filters’ poles βi, the only observation was that the higher the
frequency of the trajectory was, the faster the poles should
be selected to increase the value of det(Me). Regarding the
adaptation gains γi, increasing their values leads to faster
rate of convergence in the expense of larger overshoot until
the filters’ state reach the steady state. Finally, it should be
highlighted that the RBF-NN modelling error was probably
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TABLE I: Results for the airspeed-related parameters. The optimal
weights w∗

f , w∗
g were calculated via a batch-LS method.

w∗
f ŵf w̃f (%) w∗

g ŵg w̃g (%)

−40.26 −36.51 9.31 60.75 56.7 −6.67
−45.35 −41.85 7.72 60.88 53.5 −12.12
−20.45 −22.53 −10.17 60.99 64.3 5.43
−16.26 −15.17 6.70 61.02 57.55 −5.69

the most critical factor in our identification scheme, since
reducing it via adopting a more complex network structure,
needs proper attention to avoid large filter DC-gains that
deteriorate the achieved performance.

Comment 2. Systematic approaches on how to select
the RBF-NN hidden layer parameters to enhance their ap-
proximation capabilities are well documented in the related
literature and are not in the scope of this study. Nevertheless,
concerning the RBF centers, we had to make sure that they
were selected in a concise way, such that the UAV system
states can actually attain their values during a reasonable
flight. Therefore, sampled states from various maneuvers
were given as inputs to the k-means algorithm that was
employed to extract the RBF centers. Finally, it was observed
that adding a bias term in the network output required larger
DC-gains for the DREM operators, and thus was omitted.

V. CONCLUSIONS AND FUTURE WORK

In this work, an adaptive learning scheme for small-
scale fixed wing UAVs was developed, combining innova-
tively the DREM technique with the PPC methodology to
establish provably correct identification of the UAV lon-
gitudinal dynamics. The proposed control scheme exhibits
great robustness against model uncertainties and external
disturbances, by decoupling the tracking controller from
the system identification procedure. Future efforts will be
devoted towards the experimental validation of the proposed
scheme for sufficiently large flight envelope, involving take-
off, landing and lateral motion profiles.
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