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Abstract— For an effective intelligent active mobility assis-
tance robot, the walking pattern of a patient or an elderly
person has to be analyzed precisely. A well-known fact is that
the walking patterns are gaits, that is, cyclic patterns with
several consecutive phases. These cyclic motions can be modeled
using the consecutive gait phases. In this paper, we present
a completely non-invasive framework for analyzing a normal
human walking gait pattern. Our framework utilizes a laser
range finder sensor to collect the data, a combination of filters to
preprocess these data, and an appropriately synthesized Hidden
Markov Model (HMM) for state estimation, and recognition
of the gait data. We demonstrate the applicability of this
setup using real data, collected from an ensemble of different
persons. The results presented in this paper demonstrate that
the proposed human data analysis scheme has the potential
to provide the necessary methodological (modeling, inference,
and learning) framework for a cognitive behavior-based robot
control system. More specifically, the proposed framework has
the potential to be used for the recognition of abnormal gait
patterns and the subsequent classification of specific walking
pathologies, which is needed for the development of a context-
aware robot mobility assistant.

I. INTRODUCTION
A. Motivation

Mobility problems, particularly concerning the elderly
population, constitute a major and ever growing issue in
our society. Mobility disabilities are common and impede
many activities of daily living important to independent
living since they have strong impact in productive life,
independence, physical exercise, and self-esteem, [1], [2].
Furthermore, current demographics show that the elderly
population (aged over 65) in industrialized countries shows a
constant increase, [3]. The social and economic significance
of solving these issue should not be underestimated. Robotics
seems to fit naturally to the role of assistance since it can
incorporate features such as posture support and stability,
walking assistance, navigation in indoor and outdoor envi-
ronments, health monitoring etc.

The motivation in this work is to use intelligent mobile
robotic mechanisms (e.g. a rollator, Fig. 1) which can moni-
tor and understand specific forms of human walking activity
in their workspace, in order to deduce their needs regarding
mobility and ambulation, and to provide context-based sup-
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Fig. 1. Left: Typical passive assistive device for elderly. Right: A robotic
platform based on Pioneer Robot equipped with a Hokuyo Laser Sensor
aiming to record the gait cycle data of the user (below knee level).

(a) (b)

Fig. 2. (a) Internal states of normal gait cycle (Left Leg: blue dashed line,
Right Leg: red solid line). (b) The topology of the network is a left-to-right
Hidden Markov Model.

port, [4] and intuitive assistance in domestic environments.
In this paper we address the challenge of developing a

reliable action recognition system by using non-wearable,
completely noninvasive framework, utilizing a laser sensor
(which does not interfere with human motion) and based on
Hidden Markov Model (HMM) for gait representation and
recognition. Our goal is to employ this setup as a subsystem
within a larger behaviour-based robot control framework,
which can be used for the development of a cognitive
context-aware walking-aid robot.

B. Related Work

The automatic classification and modeling of specific
physical activities of human beings is very useful for many
technical and biomechanical applications. A number of re-
search groups worldwide, are actively pursuing research,
currently investigating problems related to the development
of smart walking support devices, aiming to assist motor-
impaired persons and elderly in standing, walking and other
mobility activities, as well as to detect abnormalities and to
assess rehabilitation procedures [5]-[11].

Different sensors have been employed for extracting
gait motions such as foot pressure distributions (Smart
Shoes), [12], joint angles and accelerations (gyroscopes,
accelometers, [13], [14]), vision information (cameras, [15],
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[16]), myograohic activities (EMG-Electromyographic sig-
nals, [17]), etc. Most of these approaches refer’s to human
detection and tracking, or extraction of pedestrian patterns
and recognition. There is also a growing body of research
works utilizing laser finder sensors, and in some cases
complementary with cameras, or force sensors, or other
similar sensor, for problems of this kind [18]-[21].

Hidden Markov Models (HMMs) have been frequently
used for modelling time series data in a wide range of
applications, due to the fact that they are easy to build and
manipulate, and there exist optimal algorithms to train them
and score (e.g. maximum likelihood, Viterbi decoding). In a
Markov model the states (corresponding to a physical event)
of the model are visible to the observer. On the other hand,
in HMMs, only the output of the model is visible and the
states are not observable, in other words are hidden, [22]. The
versatility of HMM makes them useful in extracting humans
patterns. Apart from their prominent application in speech
recognition, [23], HMMs are also used in pattern recognition
applications such as biometric gait recognition, [24]-[28].

This paper proposes a flexible and readily extensible
approach for gait representation and characterisation. In this
work, an HMM is employed to represent normal human
gait and to analyse transitions between specific gait phases.
The human gait model used in this work is comprehensive,
comprising a full eight-state representation. As opposed to
most of the literature available on the topic, the gait analysis
approach presented in this paper is completely noninvasive
based on the use of a typical non-wearable device. Instead of
using complex models and motion tracking approaches that
require expensive or bulky sensors and recording devices
that interrupt human motion, the observation data used in
this work is provided by a standard laser rangefinder sensor
mounted on a robotic rollator platform. This framework is
designed so that it can be possible to actively incorporate
many different normal gait patterns as a subsystem within a
larger cognitive behaviour-based context-aware robot control
framework (that embody several walking morphologies, in-
cluding turning and maneuvering motions). Furthermore, this
framework has the potential to be used for the recognition
of abnormal gaits, for the classification of various walking
pathologies and related impairments, and for actively and
cognitively augmenting patients with mobility difficulties.

II. NORMAL HUMAN GAIT CYCLE DESCRIPTION

A basic requisite of the act of walking is the periodic
movement of each foot from one position of support to the
next. This element is necessary for any form of bipedal
walking to occur, no matter how distorted the pattern may
be by an underlying pathology, [29]. This periodic leg
movement is the essence of the cyclic nature of human gait.

There are two main phases in the gait cycle, [30], [31]: The
stance phase, when the foot is on the ground, and the swing
phase when that same foot is no longer in contact with the
ground and is swinging through in preparation for the next
foot strike. The stance phase may be subdivided into three
separate phases: 1. First double support, when both feet are

in contact with the ground, 2. Single limb stance, when only
one foot is in ground contact and the other foot is swinging
forward, 3. Second double support, when both feet are again
in ground contact. The same terminology would be applied
for both the left and right side of the body. For a normal
person, each side is half a cycle behind (or ahead of) the
other side. Thus, first double support for the right side is
second double support for the left side, and vice versa. In
normal gait there is a natural symmetry between the left and
right sides, but in pathological gait an asymmetrical pattern
very often exists.

Traditionally the gait cycle has been divided into eight
events or periods, five during stance phase and three during
swing. The stance phase events are as follows, Fig. 2(a):
1. Heel strike initiates the gait cycle and represents the
point at which the bodys centre of gravity is at its lowest
position. 2. Foot-flat is the time when the plantar surface
of the foot touches the ground. 3. Midstance occurs when
the swinging (contralateral) foot passes the stance foot and
the bodys centre of gravity is at its highest position. 4.
Heel-off occurs as the heel loses contact with the ground
and pushoff is initiated via the triceps surae muscles, which
plantar flex the ankle. 5. Toe-off terminates the stance phase
as the foot leaves the ground, [32]. The swing phase events
are as follows: 6. Acceleration begins as soon as the foot
leaves the ground and the subject activates the hip flexor
muscles to accelerate the leg forward. 7. Midswing occurs
when the foot passes directly beneath the body, coincidental
with midstance for the other foot. 8. Deceleration describes
the action of the muscles as they slow the leg and stabilize
the foot in preparation for the next heel strike. Thus, there are
eight events, but these are sufficiently general to be applied
to any type of gait: 1. Initial contact (0%) - IC, 2. Loading
response (0-10%) - LR, 3. Midstance (10-30%) - MS, 4.
Terminal stance (30-50%) - TS, 5. Preswing (50-60%) - PW,
6. Initial Swing (60-70%) - IW, 7. Midswing (70-85%) -
MW, 8. Terminal swing (85-100%) - TW, [30].

III. DETECTION OF GAIT CYCLE BASED ON
HIDDEN MARKOV MODEL

A. Hidden Markov Model for Human Normal Gait

Hidden Markov Models are well suitable for gait recog-
nition because of their statistical properties and its ability to
reflect the temporal state-transition nature of gait. An HMM
is defined as a doubly embedded stochastic process with
an underlying process that is not observable (it is hidden),
but can only be observed through another set of stochas-
tic processes that produce the sequence of observations,
[22], [23]. This reveals that the states underlying the data
generation process are hidden, and they could be inferred
through observations. HMMs are very common in several
applications such as speech recognition, [23], [33], biological
sequence analysis, [34], gesture recognition, [35], human
activity analysis, [28], etc.

In this paper we have distinguished seven gait phases in
order to analyze the normal gait cycle, since the Terminal
Swing phase is characterized by heel strike that is equivalent
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trigger as for Initial Contact phase, and therefore TW and
IC phases are treated as identical phases. These seven states
can define the hidden states of the HMM. As observables,
we utilize several quantities that represent the motion of the
subjects’ legs. These quantities (relative position w.r.t. the
laser, velocities, etc.) are estimated using sequential signals
from laser sensor installed on a Pioneer robot that follows
the subject’s motion. The state and observations at time t are
denoted as st and Ot , respectively. The seven states at time
t = 1,2, ...,T , where T is the total time, are expressed by
the value of the (hidden) variable st = i ∈ S, for i = 1, . . . ,7,
where 1 ≡ IC/TW (since we treat IC and TW as identical),
2 ≡ LR, 3 ≡ MS, 4 ≡ T S, 5 ≡ PW , 6 ≡ IW , and 7 ≡ MW .
Regarding observations at time t, we define nine signals
denoted as xm, ym, υm

x , υm
y , for m = {R,L}, which are the

coordinates and the velocities along the axis for right and left
leg, respectively, and Dlegs which is the distance between
legs, that are represented by the vector Ot = [o1

t . . .o
k
t ]

T ∈ O,
for k = 1, . . . ,9, where o1

t ≡ xR, o2
t ≡ yR, o3

t ≡ xL, o4
t ≡ yL,

o5
t ≡ υR

x , o6
t ≡ υR

y , o7
t ≡ υL

x , o8
t ≡ υL

y , and o9
t ≡ Dlegs.

Following the HMM notation, the transition probability
matrix is defined as A = {ai j}, where ai j = P[st+1 = j|st = i],
for 1≤ i, j ≤N, where N is the number of states, i,e, the (i, j)
element of the matrix represents the transition probability
from the ith state at a given time step to the jth state at the
following time step. In the normal gait cycle the gait phases
follow each other sequentially. Thus, this HMM is a left-
to-right model. This means that the only feasible transitions
from a state i will be either to remain in the same state or
to jump to the following adjacent state, as depicted in Fig.
2(b). The transition probability matrix, as well as the prior
probability vector (i.e. the vector of probabilities πi of the
system being at state i at the initial time t0), are estimated
using the standard Baum-Welch algorithm, [23].

B. Modeling the observation data

The normal observation data (derived from the raw laser
sensor data) are modeled using a mixture of Gaussian
distributions This is a natural way of representing these
data, as the data vector takes values from a bounded set
(recall that we use the relative position of the legs from a
robot that follows the subject with his/her mean velocity)
and is inherently repetitive (due to the cyclic nature of the
human gait). Thus, by collecting many data for a normal gait,
we can obtain the mean and the variance of the Gaussian
distributions of the mixture.

Since nine signals are measured and constitute the
extracted features at each time instant, the distribution
is a multivariate Gaussian distribution: g(x|µm,Σm) =

1

(2π)
n
2 |Σm|

1
2

exp
{
− 1

2 (x−µm)
T Σ−1

m (x−µm)
}

, where x ∈ Rn is

the feature vector, µm ∈Rn is a mean vector, Σm is a (n×n)
covariance matrix, and in our case n = 9, and m = 1, . . . ,M
for a Gaussian Mixture Model (GMM). GMM is a weighted
sum of M component Gaussian densities as given by the
equation: P(x) = ∑M

m=1 wm ·g(x|µm,Σm), where wm are the
mixture weights, for which it holds: ∑M

m=1 wm = 1, wm ≥ 0.

(a) (b)

Fig. 3. (a) Left (blue data points) and Right (red data points) leg
representation from laser data related to the Laser Sensor which is attached
at the mobile robot. The black crosses indicate the centroid of the legs at
each time instant. (b) Left (blue data points) and Right (red data points) leg
representation for ideal gait cycle (top: velocities, middle: displacement,
bottom: legs’ distance in the sagittal plane).

C. Estimation of state sequence

The inference problem for an HMM is the following:
given a sequence of observed data, compute the most
probable sequence for the hidden states of the model,
p(st |O), [23]. According to Bayes rule this probability for
total experiment time T , can be estimated as: p(st |O) =
p(O1,...,Ot |st )·p(Ot+1,...OT |st )·p(st )

p(O) . All these probabilities can be
estimated recursively, based on transition probabilities, using
the Viterbi algorithm [23].

IV. GAIT FEATURE VECTOR EXTRACTION

A. Feature variable selection

The observation data used in the proposed HMM approach
are defined by a set of gait feature variables, which are
extracted based on the recordings provided continuously by
a laser finder sensor. In order to use appropriate features to
depict the gait motion, it is important to choose the simplest
and most comprehensive data to describe the normal gait
cycle. The ideal normal gait cycle in a straight line can
be considered to follow the simple periodic motion pattern
shown in Fig. 3(b) (adapted from [21]). From there it can be
seen that the ideal normal gait follows some simple patterns.
The first remark from this ideal gait cycle is the following:
when the walking human starts moving the left leg, the
right leg is stationary, and vice versa, which is reflected in
the legs’ velocities of the model. Therefore, the extracted
velocity of the leg can convey information related to the gait
phases. Another relevant remark that can be made from this
observation is that when a leg holds its place (i.e. it is in
a stance phase), it creates a stream of laser data points that
are all approximately at the same position in a sequence of
frames, which is reflected by the coordinates of each leg.
Thus, the spatial coordinates of each leg, as depicted in
the recording data, also provide important information that
directly reflects the gait phases. Third, another important
observation that can be made concerns distinguishing the
“crossing points” between the legs, which are the points
where the distance between the legs, at the sagittal plane,
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is zero (see Fig. 3(b)). This information is reflected on the
displacement between the legs, and can also be used to
characterize the gait phases. It is thus significant to estimate
this information and use it in the gait features.

The above selected features (comprising velocities, posi-
tions,and interleg distance) are essential to characterize gait
cycle properties and to signal transitions between gait phases.
These features are extracted from the laser sensor data, as
described in the following paragraph, and have been used as
the observation data fed in the HMM.

B. Feature vector estimation

The above mentioned gait features are extracted using a
laser range sensor, attached to a robot walker that follows
the subject. The sensor is located at a height of 40cm (ap-
proximately at the height of knee), scanning a plane parallel
to the ground, as shown in Fig. 1. The robot walker follows
the subject leaving an approximately constant clearance. The
speed of the walker is the mean speed of the subject. The
system records the relative position of the legs from the laser.

On these raw data, we employ a clustering technique
(specifically a K-means clustering) to identify the legs of
the subject, for each time instant, as indicated in Fig. 3(a).
The centroid of the clusters is used as an estimate for the
(relative) position of each leg. Using these data we compute
the intraleg distance and, with a numerical smoothing and
differentiation filter, we estimate the velocity of each leg.
These values comprise the feature vector at each time instant
that is used as observation data to the HMM.

V. ANALYSIS AND EVALUATION OF
EXPERIMENTAL RESULTS

A. Experiment and data description

The data used in this paper were collected using a
HOKUYO rapid laser sensor (UBG-04LX-F01, with mean
sampling period of about 56ms) mounted on the Pioneer 3
mobile robot that was adapted with walking frame and han-
dles to be used as the robotic walker during the experiment.

Ten subjects have participated in the experiment (three of
them were aged under 30 years old, while the rest were aged
over 30 years old, and six of the subjects were females).
Each subject was capable to perform a normal walk, and
was followed by the Pioneer robot in front of him/her. All
the subjects were wearing tight clothes. There is no patient
involvement in this study. In the experimental setup the
robot was used as a robotic rollator. The length of the path
was about 20m down the hall on a flat marble surface. At
the end of the corridor the subject had to turn around (the
recordings of this turn were disregarded during preprocessing
of the data), and then walk back the same distance. The
subjects were instructed to walk as normally as possible. This
results in a different walking speed for each subject, and in a
different step length. The experimental data consists of only
normal walks for each of the ten subjects.

Example of recorded data are depicted in Fig. 4. The upper
part shows the velocity of both legs during the gait w.r.t.
time. The second diagram corresponds to the evolution of

Fig. 4. Left (blue data) and Right (red data) leg representation from
Real Experimental data (top: velocities, middle: displacement in the sagittal
plane, bottom: legs’s distance in the sagittal plane). The green vertical
lines indicate the range of experimental data that are emitted to the HMM.

the displacement from the robotic rollator reference point in
the sagittal plane, while in the bottom legs’s distance in the
sagittal plane is represented.

The experimental data that are used as observation data
into HMM are divided into parts of 1.68sec (corresponds
to a 9 × 30 observation data matrix). This time frame is
empirically determined from the approximation of experi-
mental time for each stride (which is the equivalent of gait
cycle, i.e. two sequential steps define one stride, [30]) during
the normal gait. Therefore, the total collected data during
the experiment as divided above comprises 82 walking
sections for all participated subjects (each walking section
corresponds to one stride of 1.68sec). Tests were done by
using different number of Gaussian mixtures (as described in
Subsection III-B). HMM training and testing was performed
according to two different scenarios. According to Scenario
1 the HMM training phase includes all subjects’ data (i.e. all
the walking sections participate in the training). In Scenario
2, the training phase comprises only a part of subjects’
data (only 76 of the walking sections are included in the
training set), excluding the recorded data of one subject.
This second scenario aims to test the performance of the
proposed approach, validating its generalisation capacity over
unseen data obtained by new subjects. Thus, two different
models are trained, that is, one HMM for each scenario.
The experimental results for both scenarios were done by
using only one Gaussian mixture (for simplicity), and they
are presented in the following subsection. The proposed
algorithm was implemented in Matlab and it was running
on an Intel(R) i5-2400 CPU @3.10GHz with 4GB RAM.
The training phase took 13.5sec, while the testing phase for
new observation data took 35msec.

B. Experimental results

The testing and evaluation phase of the HMMs is per-
formed according to the two scenarios mentioned in the
previous subsection. In both scenarios, evaluation is based
on an assessment of the estimated states provided by the
two constructed HMMs. Each HMM, after the training phase,
represents human gait cycle. In the sequel, the model trained
in the first case corresponding to a known scenario is called
HMM1 (experimental test data is part of the training data
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(a) (b)

Fig. 5. (a) Estimated values of probability to jump from one state to the
other. (b) Estimated values of prior probability that represent the probability
of each initial state.

(a) (b)

Fig. 6. (a) Real experimental data from one subject’s normal gait that have
been used in the testing and evaluation phase of both constructed HMMs.
Top: Left (blue data) and Right (red data) legs displacement. Bottom: legs
distance in the sagittal plane. (b) Scenario 1: Estimated sequence of gait
states based on the constructed model (HMM1) with respect to time by
testing the data depicted in Fig. 6(a) which represent a known walking
section (blue line). Scenario 2: Estimated sequence of gait states based
on the constructed model (HMM2) with respect to time by testing the data
depicted in Fig. 6(a) which represent an unknown walking section (red line).

set), while the model trained in the second case referring to
a completely unknown scenario is called HMM2 (the test
set comprises new data not included in the training data set,
and thus not used during the training phase of the model).
The estimated values of the transition probability matrix A
are depicted in Fig. 5(a), while Fig. 5(b) shows the estimated
values of prior probability vector.

The transition matrix A in Fig. 5(a) has a triangular form.
The diagonal elements represent the probabilities of self-
transitions in gait phases, while the non-zero elements refer
to the transition probabilities to the next adjacent gait phase
only. The gait phases are changed with the correct sequence.

For testing and evaluation purposes of both constructed
HMMs, the same real experimental data set has been used,
which is depicted in Fig. 6(a). The goal of this evaluation
phase is to unveil the hidden parts of the constructed models,
i.e. to estimate the correct sequence of state transitions that
occur in the test data. This test dataset reflects the normal
gait of one subject and comprises 6 walking sections (about
6 strides). In this figure the displacement of each leg in
the sagittal plane with respect to time is depicted on the
top graph, while the bottom graph shows the evolution of
the distance between legs within the same time frame. This
figure is very useful to understand the exact subject’s motion,
as is described more in detail in the sequel.

The estimated sequence of gait states obtained using the
model trained in the first scenario (i.e. using HMM1) is
depicted in Fig. 6(b) with the blue line, while for the second

scenario (i.e. by using HMM2) the respective results are
presented again in Fig. 6(b) with the red line. A first remark
that can be made by observing these experimental results
is that the evolution of the gait states provided by both
models matches the general evolution of the human normal
gait model that is to be represented by the HMMs; i.e. the
gait phases appear sequentially with the correct order, and
the time frame of each state is within the general bounds as
have been mentioned previously in Section II.

Another very significant result is that the HMM can
take input data (observation data) without any restriction
regarding the initial phase of the recordings and it can find
the sequence of states from there on. This is very important
in order to leave the subject free when starting to walk.
There is an assumption, without a loss of generality, that
at the beginning of each gait cycle the initial contact refers
to the right leg, while a complete stride is concluded when
the right leg is again in front of the left leg, ready for a new
initial contact and therefore for the next stride. By observing
the results depicted in Fig. 6(b), it can be seen that both
models manage indeed successfully to recognize that (for
the recorded experimental data of Fig. 6(a), used in this case
study for model testing) the subject starts the motion with
the right leg. Thus, the first estimated gait phase in Fig. 6(b)
(for the first scenario) is Initial Contact (IC), while for the
second scenario the first estimated phase is Midswing (MW).

Another remark concerns the terminal instant of the mo-
tion. At the end of the recorded test data of Fig. 6(a) (just
after 10sec) it can be seen that the motion is terminated
approximately at the middle of a stride. Indeed, as shown in
Figure 6(b), both models correctly recognise that the motion
corresponding to the test data of Fig. 6(a) is terminated (just
after 10sec) in a phase just after the middle of a gait cycle
(PW in Fig. 6(b)). The results in both case studies show
that constructed models recognize the normal gait, of course
with different likelihood for each model (the sequence of
phases has smaller probability in the second scenario when
HMM2 is used). We assume as precision index the division
of correctly detected states by all detected states, related to
the reference data provided by scenario 1. Therefore, the
overlapping of those results between scenario 1 (which is
the reference data) and scenario 2, in the form of precision
index, is 90.95%. Also, the time instances and duration of
phases have variations, which is reasonable since in the case
of the second scenario, the test data is completely unknown.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a framework to represent and analyse human
gait using a Hidden Markov Model (HMM) is presented.
The HMM employed in this work analyses gait phases by
using observation data provided by a typical laser rangefinder
sensor, thus constituting a completely noninvasive approach
using a non-wearable device. The proposed gait modeling
method has been applied to actual human gait data. The
experimental results clearly show that this method is ca-
pable of correctly recognizing human gait cycle patterns.
Furthermore, this approach, based on its statistical learning
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properties, is quite flexible and readily extensible to different
gait models, thus presenting a strong potential to support a
behaviour-based cognitive robot control framework.

For further research, we will investigate the sequence of
the gait phases in an abnormal gait. If the gait phases are
not detected sequentially, then non-zero probabilities in the
transition matrix can be observed between non-adjacent gait
phases. Therefore, a variety of abnormal gaits (corresponding
to specific motor impairments) can be characterized by the
transition probabilities between different phases.

Furthermore, within our future plans is to model more
gait patterns based on HMM, regarding turning motions
during indoor ambulation, as well as more complicated and
maneuvering motions that appear in daily activities. A data
corpus will be created and annotated for this purpose, and
the recorded data will be used to build different models for
a variety of situations. The aim is to create a system that can
detect in real time specific gait pathologies and automatically
classify the patient status or the rehabilitation progress, thus
providing the necessary information for effective cognitive
(context-aware) active mobility assistance robots.
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