Motion Planning and Trajectory Tracking on 2-D Manifolds
embeddedn 3-D Workspaces

Xanthi Papageorgiou, Savvas G. Loizou and Kostas J. Kyriakopoulos
Control Systems Laboratory, M.E. Dept.
National Technical University of Athens
Athens, Greece
{xpapag,sloizou,kkyrig@mail.ntua.gr

Abstract—In this paper we present a methodology that mode controller [12], based on the belt-zone concept [7],
drives and stabilizes a robotic agent moving in a three dimen-  tg stabilize the system on the surface and at the same time
sional environment, to a 2-dimensional manifold embedded with appropriate construction of the neighboring vector

in the workspace. Once the agent reaches the manifold, fields dri ¢ t th ti I ; traiect
depending on the application, it performs a motion planning  '€'dS driven 1o carry out the motion planning or trajectory

or a trajectory tracking task. Appropriately constructed belt-  tracking task. The main contribution of this paper can be
zone vector fields guarantee that the agent will not depart the summarized as follows:
2-D manifold proximity area, while carrying out the motion

planning or trajectory tracking task. The derived closed « A novel theoretically guaranteed trajectory tracking

form feedback control law guarantees global convergence and Controller_,_achieving .obstacle. avoidance and concur-
collision avoidance. The properties of the proposed algorithm rent stabilization during tracking over 2-D manifolds
are verified through non-trivial computer simulations. embedded in 3-D workspaces.

Index Terms—Navigation, tracking, belt-zones. « A provably correct way to perform motion planning

and concurrent stabilization tasks over 2-D manifolds
embedded in 3-D workspaces.

One of the main tasks of neuro-robotics is to make ) , ,
The rest of the paper is organized as follows: Section

a robot execute a task by interfacing with the neural | q imi definit ) q
system (e.g. by processing electromyographic activity, etc.j.I Introduces preliminary definitions, notation and some

In most of the cases, these signals are noisy and rathg?chnical Lemmas, required for further discussion. Section
“incomprehensible” to directly control a robot particularly Il describes the construction of the vector field that is used

in clattered environments. In those cases we need a strategg robot navigation while section IV presents the proposed
to make the robot compliant with its environment and ntrol law. Section V presents the simulation results and
at the same time avoiding obstacles. The methodolog}'® PaPer concludes with section VI.

presented in this paper can be applied as well to the case of

autonomous robotic surface painting, cleaning, inspection, Il. PRELIMINARIES

etc. The main difficulties of the above tasks arise when the Our analysis is demonstrated by considering the nav-

considered surface is not planar. Moreover the non'pla”%ation problem of a moving holonomic agent in 3-
surface might include “bad regions” that must be avoidedp workspace. Let the admissible configuration space
Most of previous relevant research has focused on thﬁ/\/orkspace) for the robot b)Y c R3. The obstacle free
problem of automotive painting of surfaces that are convex \pcet of the workspace is denotéd;,.. € W, and
and have no holes, [1], [2], [3]. Also in [1], the used ;")) _, R js the potential (navigation) function which
approach decomposes the coverage trajectory generatign,jois the environment. Le® € W \ Wiyree be the
problem into three subproblems: selection of the starpy, opstacle i — 1 ... no, whereno is thérgijmber of

curve, selection of the speed profiles along each pass, aflsiacles. We defing;; as the navigation function’s target

selection of the spacing between the passes. configuration.qy; exists in the closure of a 3-D closed
In our work, we are using navigation functions, [4], [5], surface, which surface is defined below.

[6], [9], [10], to drive the agent safely to a surface non- Define a vector valuedC? function: g(si,ss) —

modeled in the navigation function. Once the agent is i (51,52), Gy(s1,52), ga(s1 52)]T R xR ;} R(g)

the close proximity of the surface, a second controller taker%;)res:ent{ngya éloséd Zs[:rfiace. Th.e [amRE) © Wryee

over to stabilize the agent at a predefined distance from th&c the function will serve as the boundary of the surface

sur_face (which partly_ depends on the surface cur_vatgrebver which the surface processing task will take place. We
while at the same time, depending on the apphcatlonCan now define the following topology (Fig. 1):
performs motion planning and trajectory tracking task . e
across the surface. Our basic idea, is to use a sliding 1) The surface’s internal/ ™.
2) The surface’s boundaryyg.

“This work is partially supported by the European Commission through  3) The surface’s external*.
contract “FP6 - IST - 001917 - NEUROBOTICS: The fusion of Neuro-
science and Robotics”. The tangent vectors on the surface w.r.t parameiers

I. INTRODUCTION

419
Proc. IEEE Int'l Conf. Robotics & Automation (ICRA-2005), Barcelona, Spain, April 2005. p.p 419-424



and s, can be defined as: This implies that locally, in order to satisfy the needed
condition of the functior(s;, s2), we must choose a> 0

Og(s1,52) _ [0g. g, 0g.]" .
=07 1 such that:
Y1 (Sl’ 52) 881 581 851 881 ( ) 1
P<Pm—{m€n\ﬂ—\—ﬁ— (7)
Gos(51,82) = g(s1, $2) _ {891 Jgy agz] @ 1,52 K
e 0s2 Dsy’ Dsy’ Dsy This justifies the selection of the maximum curvature, so a

Since (g, X gs,) # 0, Vs1,s2 € R, the vectorsg,, , non-negativep can always be defined.
gs, are linear independent everywhere. Therefore, every Letus now assume that the functign Wy,.. — Ris a
tangent vector to the surface is a linear combination oftavigation function [10]gq, the target configuration for the

these two vectorg,, andg.,, (Fig. 1). navigation function and(si, s2) a vector valued bijective
Also, we can define a normalized perpendicular vectof” function, defining a closed surface v, homeomor-
to the surface ash — %51 %92 phic to a sphere, not modeled in the navigation function.

91 X955 | The solutions of the equationh = —V are absolutely

We define asVg(s1,s2) the tangent vector on the
continuous and using standard topological arguments, for
surface directed across the maximum curvature direction
€ J~ and initial conditionszy € J+, those solutions

(see Appendix). Furthermore, we define the perpendlcula(%d
vector to the surface, 8¢ (s1,52) = (gs, X gs,)- Intersect the surfacg(ss, s2).

IIl. NAVIGATION VECTORFIELD

A. Belt Zones

A predefined navigation function is implemented to drive
the robot to the closed surface defined diy, s2) con-
taining the NF's destination point;; in it's internal. Since
our goal is to perform motion tasks across the boundary of
g(s1, s2), when the robot reaches a certain distance from
the boundary of(s1, s2), an appropriate task (navigation
or trajectory tracking) specific vector field starts influeggc
the robot.

To construct such a vector field we are going to use the
Fig. 1. Representation of tangent’s and perpendicular&ovs, of a Concept of Slldlng motion along surfaces of discontinuity.
surface, variations w.r.t. parameter's modification. This type of motion is generated by two neighboring vector
fields, which are attached across the boundayyof the
surface. The region where those vector fields are defined is

We now define the vector valued function called the “belt zone”, and these vector fields, “belt zone”
vector fields, [7]. The “belt zone” is the region close to the

a(s1,52) = g(s1,82) + p- N(s1,52) (3) 8¢ and is thought to be composed of an “internal belt” and

It holds that:da = dg + pdN = dg” - da = dg” - dg + 20 “e_zxternal belt” re_gion. For the_ motion tasks considered
(dgT dN), wheredg = g,, - dsi + g, - dss, AN = in this paper the widths of the internal and external belt

~dsy + N,, - ds, andds,, ds, are length variations regions are consider to be fixed. The “belt zone” concept
S2 ’ 1

across the boundary (Fig. 1). Consequently, we have thé? representeq in Fig. 2. ) )
the radius of curvature is equal to: Let us define the vector functions which are used to

describe the belt zones to which we have referred above.

1 dgT - da
Kn dg* -dg B(s1,52) = g(s1,82) + 1 - N (8)
where k,, is the perpendicular curvature of the surface,
which is equal to (see Appendix): v(s1,82) = B(s1,82) + 02 N 9)
A —dg" - dN ®) with 0 < (01 +62) < p,,. Our goal is to stabilize the robot
" dg? - dg on the middle surface defined by (8).

Following the same line of thought as in [7], we need Now we are in position to define the sets of “internal
the functiona(sy,s), from (3) to be bijective. This is region”, &, and the “external region7.
guaranteed locally if we require thdt # 0, Vdg # 0 <
dsy,dsy # 0. So if we havela = 0, from (4), the radius of IT={g:q=(1—=2) B(s1,8) +A-g(s1,52)} (10)
g(s1, s2) at the point(sy, s2) is the inverse of the curvature
of g(s1, 52): E={q:q=(1-N)B(s1,82)+A7(s1,52), A # 0} (11)

1
b= 6)  where ¢ [0, 1], (Fig. 2).
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B. Belt zone vector fields hE :q € & — q € B(si,s2) andhl : g € T —

o

We wish to choose the vector fields which steers thd € O(s1,52). Let (31752)5(‘1)5 = 7a) dgenote the
agent to slide across the surfagsi, s;). inverse function ofs, and(sy, s5) = (s1, s2)(h&(q)), and

o s nof (s7,53) = (s1,52)(hE(q)).
Lethe € €, hz € T and(s¢, s3) belong to the domain of \°1>°2 1, 52)\ ,
g. Then leth, be such thah, = ¢(s2, s3). Then for each We choose fol € £ (external zone) the vector field:
he and hz, there exists uniqué, hence uniqugs?, s3) Ve = —ko - Veor(sS,s5) + ka (A1) - Vgt (sS,s5)  (14)

such that: _ - _ _
where kg is positive tuning constant, andk, is a class-

he = (1 — A1) B(s7,83) + Ay(s7, 83) (12) K function of \;. This means that at the beginning the
_ o o o o influence of the perpendicular vector field is high, and when
hz = (1= X22)B(s1, 5) + Aag(s1, 53) (13) " the robot approaches thesurface this influence is going
for somel;, A, € [0,1] as long agé; + 62) < pp. to zero to avoid chattering effectS ¢, (s1,s2) is a task
specific vector field defined on the surface.
For the regiony € Z we choose the vector field:

Vi =—ko-Vr(s,53) +ks(X2) - Vg (s1,s5) (15)

wherek, is a classk function of Ay, for the same reason
asks.

C. Vector fields on a surface

Once the robot enters the belt zone, it will remain there
as the boundaries of the belt zone are repulsive and it
will execute a sliding motion along the surfa@és;, s2),
depending onp.,.

Now it is necessary to define the appropriate vector field
- on the surface, that will be used in order the robot
to navigate across the surface to a specified destination
Fig. 2. Representation of Belt Zones, in a part of a surface. point. We can transform the closed surfai{g, s2) to the
Ast) boundary of a spher§ with radius R. We know that the
expression of the surface in polar coordinates is:

r= \/53(81752) + B3 (s1, 52) + B2(s1, 52) (16)

Assuming thats; = ¢ and sy = ¢, with ¢ € [0, 27), and
¢ € [0, 7], we have that thé, ¢, can be used for the sphere

Ty = idg (17)

where id4 is the identity map of a se#l, and we have
changed the radius, i.e. the cartesian coordinates trans-
formation can be expressed as = § - q, whereq =
[z y 2]T. The obstacles on the surfadés;,s,) have
the formOy, (s1,s2) = 0, withi =1, ... M, the number of
the obstacles, (Fig. 3). This representation of the olesacl
is very useful because it does not need transformation on
the sphere, when,, s; are longitude and latitude angles,
since in this case the transformation affects only the polar
Fig. 3. Transformation of a surface, firstly, on a sphere aed into a  distance.
disc. The next step is to project (stereographic projection) the
surface of the spherg to a discC, which belong to the
planez = 0. Our goal is to construct a vector field on a
This follows from g(s1,s2) being bijective, and since (7) manifold, but a necessary condition for this is that we have
holds, we can always choose nonzéroand d, such that a manifold with boundary. The stereographic projection of
01+ 02 is smaller than the surface’s minimum radius. Sincethe singular point is at infinity. So we need to avoid the
the distances of the belt zone boundaries are lower thasingular point. It is known that a vector field on a sphere
the local radius ofg(s1,s2) for each (s, s2), then the must have at least one singular (critical) point, [13]. In
set of points of minimum distance of any: € £ or  our case the critical point i§0,0,2R). In order to avoid
hz € T from surfaceS contain only one point3 (s¢,s3)  this point, and to have a boundary on the manifold, we
of this surface. So we can define the surjective functionghoose a region on the top of the sphere which is repulsive
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for ¢ < ¢,, andd € [0,2r). This region is transformed  Since ¢ is a navigation function, all initial states in
to the surface as a virtual obstadt®gs, (Fig. 3). The the original environment are brought to the origin, except
transformationT; : S — C, is defined ford € [0,27), a set of initial states having measure zero, that lead to

¢ € [po, 7] as: unstable saddle points. Fgre ® we have thatip(z) =
x 2Rsing | cosU —[Vel? < 0, whereg(z) = 0 vz € {0}JS andS
{ y } =T =755 [ sin v } (18)  being the set of measure zero of saddle points. A navigation

function has at least as many isolated saddle points as the

The obstacles, after this projection are modeled as fungaumber of obstacles, [10]. Hence under the given control
tions of z, y. They compose star-shaped sets, and wgaw the potential is strictly decreasing almost everywhere
can change their coordinates into a disc, which can béh ®. As stated in a previous section any system trajectory
done with analytic diffeomorphisms [9]. So we have thestarting in.J* will enter the belt zone. Upon entrance in
diffeomorphism ., from a star-shaped set into a disc. the belt zone the system switches to ma&iéNe can now
The problem is thus reduced to designing a navigatiofiorm the following Lyapunov functionV; = ¢ + 6%,
function o on a disk shaped workspace [9] and pullingwhere 6y is the distance of a point from thé surface.

the _nayigation vector field back to the initial su.rface. TheThen, v, = —k IV — 20xki vaLH? ‘20, since

navigation function on the surfaces(si,sz) is thus ;0 (ki) = sign (6x), i € {2,4}. Thus the system will

defined as: stabilize on the3 surface while performing the navigation
p=pnohyoTyoT) (19)  task encoded irp. [

The following states that when the robot enters the belt
zone, it can never leave it.

Corollary 1: The set{€|JZ} C W is positively invari-
IV. CONTROL STRATEGY ant.

and the task specific vector field By, = V¢ for the
navigation task.

We assume that we have a stationary environment ant E rEOf: Asstl;]mte_that tge grobgt |sT(;n the boug_da:y of
the robot can be described trivially by a fully actuated, e belt zone, that ig € 9{€JI}. The perpendicular

H i 1€ &
first order kinematic model. In the workspace, the roboveciorztowzar(f:is ttr;]e inner og thedzeHng E?ulsz%_,ha”d_t
is represented by a point. The obstacles present in th& (s1,s7) for the regionf andZ, respectively. Then i

environment are modeled by the navigation function, [9]."S Y€ that-Vg(s7, s5)-f > 0andVg= (s, s3)- f > 0.
The goal is for the robot to be able to navigate using theConsequentIy, the boundary of the $€4 JZ} is repulsive.
navigation function constructed on a 3-D space, to execute u
sliding motion on the surfacé(si, s2), to complete a task B. Tracking

on the surface, avoiding obstacles. Now let us consider a tracking task across the surface

A. Reaching a point on a surface B(s1, s2). The task is described by a known trajectouyt)
hat th bot's initial . o on it (e.g. for neuro-robotic set-up, a manipulator keep a
Assume that the robot's initial configuration i%0) € pen and we would like it to write something on a paper).

+ . . .
Jd, and we ‘;}VOUld l'k?f_ it move towards thfe sm;]rface, N et us now define the appropriate control law in order to
order to reach a specific point on it (e.g. for the neuroy- the predefined trajectory,

robotic set-up, a manipulator wants to place an object on We introduce a navigation function of the form:
a table, without breaking it). So, it is necessary to define

the control law with which we can achieve this. onlg,t) = Va(g, t) (22)
Let us define a vector field through the following mul- (5 (g, ) + B(q,t)]V"
tifunction: where~, is the distance to the trajectory, afdq) is the
~Vo(a), q€Weat product of obstacle functions, [9].
fla) = Ve(q), q€€ (20) We consider convergence of the system to a small ball
Vi(q), q€ZI of radiuse > 0 containing the target.
whereWiar = Wiree NI\ {EUT} Before defining the control we need some preliminary

definitions. We define bW?2¢(q,t) the Hessian of the.
Let Amin, Mmae D€ the minimum and the maximum eigen-
t=f (21) values of the Hessian,,,,,, ©x,.,. the unit eigenvectors
N corresponding to the minimum and maximum eigenvalues
Proposition 1: The systemi = u under the control law  f the Hessian. Then thB; region, introduced in [8], can
u = f with f as defined in (20) is globally asymptotically he ysed to identify sets of points that contain measure zero

stable, almost evgrywhépe ~ sets whose positive limit sets are saddle points:
Proof: We will consider the system as operating in

two possible modes: modeé whereq € W,,; and mode Pt = (Amin < 0) A (Amax > 0) A ([Or,,,, - VV| < 1)
B whereq € E|JZ.

Consider the following differential equation:

min !

where & < min (IIVe (C)]). If
C={q:lla-qall=<} _
li.e. everywhere except a set of initial conditions of measerme. [Oxn.m - VV| = 0 then the setP; consists of the
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measure zero set of initial conditions that lead to saddl¢here is an extra obstacle on the surface which comes from

point, [8]. In view of this, e; can be chosen to be
arbitrarily small so the sets defined hi;, eventually

the constraint ofp > 5° at the sphere’s vector field, which
is centered at,; : (0,0,0.3). After the agent reaches its

consist of thin sets containing sets of initial conditionsdestination poin{(g.2), it starts a tracking task, to track a

that lead to saddle points.
Now consider that the system is operating in mdgle
defined in the proof of Proposition 1.
Proposition 2: System (21) in mod#, under the control
law defined by the task specific vector field:
(Ivel?)

=Vp+ 8—90 : Ve
% sw(|Vel?e) ~e2 o (52) o

(23)

converges to the set whetlg — ¢4/ < &, almost every-

. = T, xTx>e

wheré, with ¢ (z) = T e r<e

and@ = ¢, (q,t) o hy o Ty o Ty + 6%, whereTy, T» come
from equations (17), (18) respectively.

Proof: We form the following Lyapunov function:

V =@(q,t) (24)

and take it's derivative:

%
V= a+f \A%

Ve -
2g

ot

sw(z,e) =

(25)

After substituting the control law (23) and since we pursue ~

convergence in the sdy — ¢q|| < &, we get:

2
= _||VV 2 v . 1— Ivviy _
I I*+ ot HVQVHQ,Ez,g(%i\t/)ﬁ(ﬂvvnz)
—26nk; || Vgt||” < —IVV?+
Ivvy?

LoV,

T IvVIE=e2.0(ZY) - (IVVIZ)

since the same arguments from the proof of Proposition

1 hold w.r.t.oxk;. We can now discriminate the following

caseS'

=0=V=—||VV|? <
('?V > 0 > 0<o(Z) <1=|VV[[PE-e<
||VVH2 —e20 (I) 0 (|[VV]?) < |[VV[2P=V <0
%t <0=-1< a(a‘/) <0=|VV|2 < |[VV]?
20 (3) -0 (IVVIP) < [VVIE +2 >V <0
The sets defined by? are by construction repulsive.

We assume that the system’s initial conditions are in the

set{E€JZ}\P, where the seP = {¢: |[VV] <e1}. W
Remark 1:In practice we can choose an, such that
g1 < min{eg, [|[VV(qo,t0)||}, SO we can be sure that the

system’s initial conditions are not iR.

V. SIMULATION RESULTS

predefined trajectory which is the yellow colored line in

Fig. 4-6. Also, each of these figures depict the simulation
results, from a different point of view, since there is a 3-D

view simulation. Our algorithm successfully converges to
the goal configuration and track the predefined trajectory
avoiding obstacles.

A second simulation have been performed in order to
check, that when the trajectory is passing through an
obstacle, the robot can avoid it by leaving the trajectory
until this is out of the obstacle again. The results are shown
in Fig. 7.

| Initial
onfiguration

/ Closed surface

Og2

02f

03F

L L L
-08 -06 0.4 0.4

Fig. 4. Simulation results 1: top view.

Og TN Ogl Oy O
Og2 ==

i Trajectory\’e

tracking

10

1]

2]

/L4

Constant distance from the surface

03]

e Target configuration

04
929 92 04 05 g 03 02 o1 0 o1 02 03 04 05 05 07
y

Fig. 5. Simulation results 1: reaching a point on the surface.

Computer simulations have been carried out to verify
the feasibility and efficacy of the proposed methodol-
ogy. The scenario of the simulation contains two 3-D VI,
(ellipsoid) obstacles centered &; : (—0.55,0.6,0) and A methodology of performing navigation and tracking
Oy : (=0.7,0,0). The agent’s initial configuration was: tasks over a 2-dimensional manifold embedded in a 3-
q(0) = (-0.7,0.65,0) and the first target was set at dimensional workspace was derived. After safely navigat-
qa1 = (0,0,0). The surface’s obstacles shown in Fig. 4-6,ing the robot to the 2-D manifold, task specific vector
are the intersections of ellipsoid obstacles with the seaxfa fields direct the robot towards accomplishing a navigation
They are centered ay; : (—0.3,0.2,0.2121), Oy or a trajectory tracking task across the 2-D manifold.
(0.3,0.2,0.2121) andOy3 : (—0.3,—-0.2,—-0.2121) and the  The methodology has theoretically guaranteed global con-
second target was set@h = (0.3, —0.2,—0.2121). Also,  vergence and collision avoidance properties. Due to the

CONCLUSION
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closed form of the feedback controller, the methodology{6] S.G. Loizou, K.J. Kyriakopoulos, “Closed Loop Navigatifor Mul-

is particularly suitable for implementation on real time

systems with limited computation capability.

Further research includes considering surface properties
in the construction of the belt zone vector fields and
implementing the methodology to real neuro-robotic sysy
tems taking into account their dynamics and kinematic

constraints.

Initial
Configuration

o,

Trajectory tracking

Trajectory tracking

(1]

[2

(3]

[4]

(5]

Obstacle avoidance during tracking

Fig. 7. Simulation results 2: bottom view, tracking.
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APPENDIX

A C? surfaceg = g(s1,s2), on Euclidian spac&? is
defined univocally, from two invariable quantities, which
are functions ofdsy, dss, where ds;, dsy are length
variations across the boundary. These quantities are the
first and the second fundamental forms, respectivély:
dg - dg, II = —dg - dN with dg = (g((s1 + ds1), (s2 +
ds2))—g(s1,$2)) = dg = gs, -ds1 —|—g52 -dsg wheredN is
defined as following, (Fig. 14N = 5% .ds; + 9¥ . ds, =
dN = Ny, -ds1 + N, - dss.

Writing all the above in a matrix form we have that:
I=J-J1n=J"'H whereJ = [g9s, gs,], and
H =[Ny, N, with N, = ¥ and N, = g&.

The perpendicular curvature of the surface can be defined
from the inner product of the curvature vector and the
normalized perpendicular vector to the surfaes;
k-N &k, = I—II < orin a matrix form:S =11 . II.

Consider the eigenvector problegh- p = « - p. Each
eigenvectorp is a principal direction. The corresponding
eigenvaluex is a principal curvature. The vectgr is an
2-vector given in terms of tangent space coordinates.

Let us defineE = g7 - g,,, F = g7 - g,, and G =
g% -gs,. Also we can definel, = —ggl N, M =—1(gT.
N52 +95T2 'Nsl)! andN = _952 Ns2

A direction % is a principal direction and a real valued
numberx is a principal curvature which correspond to this
direction in a point of the surface, if and only if, in this
point, the following relations hold:

boe

(L — kE)dsy + (M — kF)dss =0

(M — kF)ds; + (N — kG)dsy =0
with ds? + ds2 # 0. Accordingly we have that{EG —
F?)k? — (EN + GL — 2FM)x + (LN — M?) = 0. This
means that we have minimum and maximum curvakyre
k2. As will be shown subsequently, we will need to use the
maximum curvaturex* = maz(k1, k2). From the above
equation (26), we have that the direction of the maximum
curvature, isy = d . Whenk; = k3 then we have only
one direction to choose from equation (26).
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