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Abstract— In this paper we present a methodology that
drives and stabilizes a robotic agent moving in a three dimen-
sional environment, to a 2-dimensional manifold embedded
in the workspace. Once the agent reaches the manifold,
depending on the application, it performs a motion planning
or a trajectory tracking task. Appropriately constructed belt-
zone vector fields guarantee that the agent will not depart the
2-D manifold proximity area, while carrying out the motion
planning or trajectory tracking task. The derived closed
form feedback control law guarantees global convergence and
collision avoidance. The properties of the proposed algorithm
are verified through non-trivial computer simulations.

Index Terms— Navigation, tracking, belt-zones.

I. I NTRODUCTION

One of the main tasks of neuro-robotics is to make
a robot execute a task by interfacing with the neural
system (e.g. by processing electromyographic activity, etc.).
In most of the cases, these signals are noisy and rather
“incomprehensible” to directly control a robot particularly
in clattered environments. In those cases we need a strategy
to make the robot compliant with its environment and
at the same time avoiding obstacles. The methodology
presented in this paper can be applied as well to the case of
autonomous robotic surface painting, cleaning, inspection,
etc. The main difficulties of the above tasks arise when the
considered surface is not planar. Moreover the non-planar
surface might include “bad regions” that must be avoided.

Most of previous relevant research has focused on the
problem of automotive painting of surfaces that are convex
and have no holes, [1], [2], [3]. Also in [1], the used
approach decomposes the coverage trajectory generation
problem into three subproblems: selection of the start
curve, selection of the speed profiles along each pass, and
selection of the spacing between the passes.

In our work, we are using navigation functions, [4], [5],
[6], [9], [10], to drive the agent safely to a surface non-
modeled in the navigation function. Once the agent is in
the close proximity of the surface, a second controller takes
over to stabilize the agent at a predefined distance from the
surface (which partly depends on the surface curvature),
while at the same time, depending on the application,
performs motion planning and trajectory tracking task
across the surface. Our basic idea, is to use a sliding
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mode controller [12], based on the belt-zone concept [7],
to stabilize the system on the surface and at the same time
with appropriate construction of the neighboring vector
fields driven to carry out the motion planning or trajectory
tracking task. The main contribution of this paper can be
summarized as follows:

• A novel theoretically guaranteed trajectory tracking
controller, achieving obstacle avoidance and concur-
rent stabilization during tracking over 2-D manifolds
embedded in 3-D workspaces.

• A provably correct way to perform motion planning
and concurrent stabilization tasks over 2-D manifolds
embedded in 3-D workspaces.

The rest of the paper is organized as follows: Section
II introduces preliminary definitions, notation and some
technical Lemmas, required for further discussion. Section
III describes the construction of the vector field that is used
for robot navigation while section IV presents the proposed
control law. Section V presents the simulation results and
the paper concludes with section VI.

II. PRELIMINARIES

Our analysis is demonstrated by considering the nav-
igation problem of a moving holonomic agent in 3-
D workspace. Let the admissible configuration space
(workspace) for the robot beW ⊂ R

3. The obstacle free
subset of the workspace is denotedWfree ⊆ W, and
ϕ : W → R is the potential (navigation) function which
models the environment. LetO ∈ W \ Wfree be the
i’th obstacle,i = 1, . . . nO, wherenO is the number of
obstacles. We defineqd1 as the navigation function’s target
configuration.qd1 exists in the closure of a 3-D closed
surface, which surface is defined below.

Define a vector valuedC2 function: g(s1, s2) =
[gx(s1, s2), gy(s1, s2), gz(s1, s2)]

T
: R × R → R(g)

representing a closed surface. The rangeR(g) ⊂ Wfree

of the function will serve as the boundary of the surface
over which the surface processing task will take place. We
can now define the following topology (Fig. 1):

1) The surface’s internal,J−.
2) The surface’s boundary,∂g.
3) The surface’s external,J+.

The tangent vectors on the surface w.r.t parameterss1
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ands2 can be defined as:

gs1
(s1, s2) =

∂g(s1, s2)

∂s1

=

[

∂gx

∂s1

,
∂gy

∂s1

,
∂gz

∂s1

]T

(1)

gs2
(s1, s2) =

∂g(s1, s2)

∂s2

=

[

∂gx

∂s2

,
∂gy

∂s2

,
∂gz

∂s2

]T

(2)

Since (gs1
× gs2

) 6= 0, ∀s1, s2 ∈ R, the vectorsgs1
,

gs2
are linear independent everywhere. Therefore, every

tangent vector to the surface is a linear combination of
these two vectorsgs1

andgs2
, (Fig. 1).

Also, we can define a normalized perpendicular vector
to the surface as:N =

gs1
×gs2

‖gs1
×gs2‖

.

We define as∇g(s1, s2) the tangent vector on the
surface directed across the maximum curvature direction
(see Appendix). Furthermore, we define the perpendicular
vector to the surface, as∇g⊥(s1, s2) = (gs1

× gs2
).

Fig. 1. Representation of tangent’s and perpendicular’s vectors, of a
surface, variations w.r.t. parameter’s modification.

We now define the vector valued function

a(s1, s2) = g(s1, s2) + ρ · N(s1, s2) (3)

It holds that:da = dg + ρdN ⇒ dgT · da = dgT · dg +
ρ(dgT · dN), where dg = gs1

· ds1 + gs2
· ds2, dN =

Ns1
· ds1 + Ns2

· ds2, andds1, ds2 are length variations
across the boundary (Fig. 1). Consequently, we have that
the radius of curvature is equal to:

ρ =
1

κn

(

1 −
dgT · da

dgT · dg

)

(4)

where κn is the perpendicular curvature of the surface,
which is equal to (see Appendix):

κn =
−dgT · dN

dgT · dg
(5)

Following the same line of thought as in [7], we need
the function a(s1, s2), from (3) to be bijective. This is
guaranteed locally if we require thatda 6= 0, ∀dg 6= 0 ⇔
ds1, ds2 6= 0. So if we haveda = 0, from (4), the radius of
g(s1, s2) at the point(s1, s2) is the inverse of the curvature
of g(s1, s2):

ρ =
1

κn
(6)

This implies that locally, in order to satisfy the needed
condition of the functiona(s1, s2), we must choose aρ > 0
such that:

ρ < ρm = min
s1,s2

|
1

κn
| =

1

κ∗
(7)

This justifies the selection of the maximum curvature, so a
non-negativeρ can always be defined.

Let us now assume that the functionϕ : Wfree → R is a
navigation function [10],qd1 the target configuration for the
navigation function andg(s1, s2) a vector valued bijective
C2 function, defining a closed surface inW, homeomor-
phic to a sphere, not modeled in the navigation function.
The solutions of the equatioṅx = −∇ϕ are absolutely
continuous and using standard topological arguments, for
qd1

∈ J− and initial conditionsx0 ∈ J+, those solutions
intersect the surfaceg(s1, s2).

III. N AVIGATION VECTORFIELD

A. Belt Zones

A predefined navigation function is implemented to drive
the robot to the closed surface defined byg(s1, s2) con-
taining the NF’s destination pointqd1 in it’s internal. Since
our goal is to perform motion tasks across the boundary of
g(s1, s2), when the robot reaches a certain distance from
the boundary ofg(s1, s2), an appropriate task (navigation
or trajectory tracking) specific vector field starts influencing
the robot.

To construct such a vector field we are going to use the
concept of sliding motion along surfaces of discontinuity.
This type of motion is generated by two neighboring vector
fields, which are attached across the boundary∂g of the
surface. The region where those vector fields are defined is
called the “belt zone”, and these vector fields, “belt zone”
vector fields, [7]. The “belt zone” is the region close to the
∂g and is thought to be composed of an “internal belt” and
an “external belt” region. For the motion tasks considered
in this paper the widths of the internal and external belt
regions are consider to be fixed. The “belt zone” concept
is represented in Fig. 2.

Let us define the vector functions which are used to
describe the belt zones to which we have referred above.

β(s1, s2) = g(s1, s2) + δ1 · N (8)

γ(s1, s2) = β(s1, s2) + δ2 · N (9)

with 0 < (δ1 +δ2) < ρm. Our goal is to stabilize the robot
on the middle surface defined by (8).

Now we are in position to define the sets of “internal
region”, E , and the “external region”,I.

I = {q : q = (1 − λ) · β(s1, s2) + λ · g(s1, s2)} (10)

E = {q : q = (1−λ)·β(s1, s2)+λ·γ(s1, s2), λ 6= 0} (11)

whereλ ∈ [0, 1], (Fig. 2).

420



B. Belt zone vector fields

We wish to choose the vector fields which steers the
agent to slide across the surfaceβ(s1, s2).

Let hE ∈ E , hI ∈ I and(so
1, s

o
2) belong to the domain of

g. Then letho be such thatho = g(so
1, s

o
2). Then for each

hE and hI , there exists uniqueho hence unique(so
1, s

o
2)

such that:

hE = (1 − λ1) β(so
1, s

o
2) + λ1γ(so

1, s
o
2) (12)

hI = (1 − λ2)β(so
1, s

o
2) + λ2g(so

1, s
o
2) (13)

for someλ1, λ2 ∈ [0, 1] as long as(δ1 + δ2) < ρm.

Fig. 2. Representation of Belt Zones, in a part of a surface.

Fig. 3. Transformation of a surface, firstly, on a sphere and then into a
disc.

This follows from g(s1, s2) being bijective, and since (7)
holds, we can always choose nonzeroδ1 and δ2 such that
δ1+δ2 is smaller than the surface’s minimum radius. Since
the distances of the belt zone boundaries are lower than
the local radius ofg(s1, s2) for each (s1, s2), then the
set of points of minimum distance of anyhE ∈ E or
hI ∈ I from surfaceβ contain only one point:β (so

1, s
o
2)

of this surface. So we can define the surjective functions

hE
o : q ∈ E → q ∈ β(s1, s2) and hI

o : q ∈ I →
q ∈ β(s1, s2). Let (s1, s2)(q) = β−1(q) denote the
inverse function ofβ, and(sE1 , sE2 ) = (s1, s2)(h

E
o (q)), and

(sI1 , sI2 ) = (s1, s2)(h
I
o (q)).

We choose forq ∈ E (external zone) the vector field:

VE = −k0 · ∇ϕτ (sE1 , sE2 ) + k2 (λ1) · ∇g⊥(sE1 , sE2 ) (14)

wherek0 is positive tuning constant, and−k2 is a class-
K function of λ1. This means that at the beginning the
influence of the perpendicular vector field is high, and when
the robot approaches theβ surface this influence is going
to zero to avoid chattering effects.∇ϕτ (s1, s2) is a task
specific vector field defined on theβ surface.

For the regionq ∈ I we choose the vector field:

VI = −k0 · ∇ϕτ (sI1 , sI2 ) + k4 (λ2) · ∇g⊥(sI1 , sI2 ) (15)

wherek4 is a class-K function of λ2, for the same reason
ask2.

C. Vector fields on a surface

Once the robot enters the belt zone, it will remain there
as the boundaries of the belt zone are repulsive and it
will execute a sliding motion along the surfaceβ(s1, s2),
depending onϕτ .

Now it is necessary to define the appropriate vector field
ϕτ on the surface, that will be used in order the robot
to navigate across the surface to a specified destination
point. We can transform the closed surfaceβ(s1, s2) to the
boundary of a sphereS with radiusR. We know that the
expression of the surface in polar coordinates is:

r =
√

β2
x(s1, s2) + β2

y(s1, s2) + β2
z (s1, s2) (16)

Assuming thats1 = ϑ and s2 = φ, with ϑ ∈ [0, 2π), and
φ ∈ [0, π], we have that theϑ, φ, can be used for the sphere

T1 = idβ (17)

where idA is the identity map of a setA, and we have
changed the radius, i.e. the cartesian coordinates trans-
formation can be expressed asq′ = R

r · q, where q =
[x y z]T . The obstacles on the surfaceβ(s1, s2) have
the formOgi

(s1, s2) = 0, with i = 1, . . . M , the number of
the obstacles, (Fig. 3). This representation of the obstacles
is very useful because it does not need transformation on
the sphere, whens1, s2 are longitude and latitude angles,
since in this case the transformation affects only the polar
distance.

The next step is to project (stereographic projection) the
surface of the sphereS to a discC, which belong to the
planez = 0. Our goal is to construct a vector field on a
manifold, but a necessary condition for this is that we have
a manifold with boundary. The stereographic projection of
the singular point is at infinity. So we need to avoid the
singular point. It is known that a vector field on a sphere
must have at least one singular (critical) point, [13]. In
our case the critical point is(0, 0, 2R). In order to avoid
this point, and to have a boundary on the manifold, we
choose a region on the top of the sphere which is repulsive
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for φ < φo, and ϑ ∈ [0, 2π). This region is transformed
to the surface as a virtual obstacleOgS , (Fig. 3). The
transformationT2 : S → C, is defined forϑ ∈ [0, 2π),
φ ∈ [φo, π] as:

[

x

y

]

= T2 = 2·R·sin φ
1−cos φ

[

cos ϑ

sinϑ

]

(18)

The obstacles, after this projection are modeled as func-
tions of x, y. They compose star-shaped sets, and we
can change their coordinates into a disc, which can be
done with analytic diffeomorphisms [9]. So we have the
diffeomorphism hλ from a star-shaped set into a disc.
The problem is thus reduced to designing a navigation
function ϕN on a disk shaped workspace [9] and pulling
the navigation vector field back to the initial surface. The
navigation functionϕ̃ on the surfaceβ(s1, s2) is thus
defined as:

ϕ̃ = ϕN ◦ hλ ◦ T2 ◦ T1 (19)

and the task specific vector field is∇ϕτ = ∇ϕ̃ for the
navigation task.

IV. CONTROL STRATEGY

We assume that we have a stationary environment and
the robot can be described trivially by a fully actuated,
first order kinematic model. In the workspace, the robot
is represented by a point. The obstacles present in the
environment are modeled by the navigation function, [9].
The goal is for the robot to be able to navigate using the
navigation function constructed on a 3-D space, to execute
sliding motion on the surfaceβ(s1, s2), to complete a task
on the surface, avoiding obstacles.

A. Reaching a point on a surface

Assume that the robot’s initial configuration isx(0) ∈
J+, and we would like it move towards the surface, in
order to reach a specific point on it (e.g. for the neuro-
robotic set-up, a manipulator wants to place an object on
a table, without breaking it). So, it is necessary to define
the control law with which we can achieve this.

Let us define a vector field through the following mul-
tifunction:

f(q) =







−∇ϕ(q), q ∈ Wext

VE(q), q ∈ E
VI(q), q ∈ I

(20)

whereWext = {Wfree

⋂

J+} \ {E
⋃

I}
Consider the following differential equation:

ẋ = f (21)

Proposition 1: The systemẋ = u under the control law
u = f with f as defined in (20) is globally asymptotically
stable, almost everywhere1.

Proof: We will consider the system as operating in
two possible modes: modeΦ whereq ∈ Wext and mode
B whereq ∈ E

⋃

I.

1i.e. everywhere except a set of initial conditions of measurezero.

Since ϕ is a navigation function, all initial states in
the original environment are brought to the origin, except
a set of initial states having measure zero, that lead to
unstable saddle points. Forq ∈ Φ we have that:ϕ̇(x) =

−‖∇ϕ‖2
a.e.
< 0, where ϕ̇(x) = 0 ∀x ∈ {0}

⋃

S and S
being the set of measure zero of saddle points. A navigation
function has at least as many isolated saddle points as the
number of obstacles, [10]. Hence under the given control
law the potential is strictly decreasing almost everywhere
in Φ. As stated in a previous section any system trajectory
starting inJ+ will enter the belt zone. Upon entrance in
the belt zone the system switches to modeB. We can now
form the following Lyapunov function:V1 = ϕ̃ + δ2

N ,
where δN is the distance of a point from theβ surface.
Then, V̇1 = −k0 ‖∇ϕ̃‖

2
− 2δNki

∥

∥∇g⊥
∥

∥

2 a.e.
< 0, since

sign (ki) = sign (δN ), i ∈ {2, 4}. Thus the system will
stabilize on theβ surface while performing the navigation
task encoded iñϕ.

The following states that when the robot enters the belt
zone, it can never leave it.

Corollary 1: The set{E
⋃

I} ⊂ W is positively invari-
ant.

Proof: Assume that the robot is on the boundary of
the belt zone, that isq ∈ ∂{E

⋃

I}. The perpendicular
vector towards the inner of the set is−∇g⊥(sE1 , sE2 ), and
∇g⊥(sI1 , sI2 ) for the regionE andI, respectively. Then it
is true that−∇g⊥(sE1 , sE2 ) ·f > 0 and∇g⊥(sI1 , sI2 ) ·f > 0.
Consequently, the boundary of the set{E

⋃

I} is repulsive.

B. Tracking

Now let us consider a tracking task across the surface
β(s1, s2). The task is described by a known trajectoryqd(t)
on it (e.g. for neuro-robotic set-up, a manipulator keep a
pen and we would like it to write something on a paper).
Let us now define the appropriate control law in order to
track the predefined trajectory.

We introduce a navigation function of the form:

ϕκ(q, t) =
γd(q, t)

[γκ
d (q, t) + β(q, t)]

1/κ
(22)

whereγd is the distance to the trajectory, andβ(q) is the
product of obstacle functions, [9].

We consider convergence of the system to a small ball
of radiusε > 0 containing the target.

Before defining the control we need some preliminary
definitions. We define by∇2ϕ(q, t) the Hessian of theϕ.
Let λmin, λmax be the minimum and the maximum eigen-
values of the Hessian,̂υλmin

, υ̂λmax
the unit eigenvectors

corresponding to the minimum and maximum eigenvalues
of the Hessian. Then theP1 region, introduced in [8], can
be used to identify sets of points that contain measure zero
sets whose positive limit sets are saddle points:

P1 = (λmin < 0) ∧ (λmax > 0) ∧ (|υ̂λmin
· ∇V | < ε1)

where ε1 < min
C={q:‖q−qd‖=ε}

(‖∇ϕ (C)‖). If

|υ̂λmin
· ∇V | = 0 then the setP1 consists of the
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measure zero set of initial conditions that lead to saddle
point, [8]. In view of this, ε1 can be chosen to be
arbitrarily small so the sets defined byP1 eventually
consist of thin sets containing sets of initial conditions
that lead to saddle points.

Now consider that the system is operating in modeB
defined in the proof of Proposition 1.

Proposition 2: System (21) in modeB, under the control
law defined by the task specific vector field:

∇ϕτ = ∇ϕ̄ +
∂ϕ̄

∂t
·

∇ϕ̄

sw (‖∇ϕ̄‖2, ε2) − ε2 · σ
(

∂ϕ̄
∂t

)

· σ (‖∇ϕ̄‖2)

(23)

converges to the set where‖q − qd‖ < ε, almost every-

where1, with σ (x) = x
1+|x| , sw(x, e) =

{

x, x ≥ e

e, x < e
,

and ϕ̄ = ϕκ(q, t) ◦ hλ ◦ T2 ◦ T1 + δ2
N , whereT1, T2 come

from equations (17), (18) respectively.
Proof: We form the following Lyapunov function:

V = ϕ̄(q, t) (24)

and take it’s derivative:

V̇ =
∂V

∂t
+ f · ∇V (25)

After substituting the control law (23) and since we pursue
convergence in the set‖q − qd‖ < ε, we get:

V̇ = −‖∇V ‖2 + ∂V
∂t

·

(

1 −
‖∇V ‖2

‖∇V ‖2−ε2·σ( ∂V

∂t
)·σ(‖∇V ‖2)

)

−

−2δNki

∥

∥∇g⊥
∥

∥

2
≤ −‖∇V ‖2+

+ ∂V
∂t

·

(

1 −
‖∇V ‖2

‖∇V ‖2−ε2·σ( ∂V

∂t
)·σ(‖∇V ‖2)

)

since the same arguments from the proof of Proposition
1 hold w.r.t.δNki. We can now discriminate the following
cases:

•
∂V
∂t = 0 ⇒ V̇ = −‖∇V ‖2 ≤ 0

•
∂V
∂t > 0 ⇒ 0 < σ(∂V

∂t ) < 1 ⇒ ‖∇V ‖2 − ε2 <

‖∇V ‖2−ε2·σ
(

∂V
∂t

)

·σ
(

‖∇V ‖2
)

< ‖∇V ‖2 ⇒ V̇ ≤ 0
•

∂V
∂t < 0 ⇒ −1 < σ(∂V

∂t ) < 0 ⇒ ‖∇V ‖2 < ‖∇V ‖2

−ε2 · σ
(

∂V
∂t

)

· σ
(

‖∇V ‖2
)

< ‖∇V ‖2 + ε2 ⇒ V̇ ≤ 0

The sets defined byP1 are by construction repulsive.
We assume that the system’s initial conditions are in the
set{E

⋃

I} \P, where the setP = {q : ‖∇V ‖ < ε1}.
Remark 1: In practice we can choose anε1, such that

ε1 < min {ε0, ‖∇V (q0, t0)‖}, so we can be sure that the
system’s initial conditions are not inP.

V. SIMULATION RESULTS

Computer simulations have been carried out to verify
the feasibility and efficacy of the proposed methodol-
ogy. The scenario of the simulation contains two 3-D
(ellipsoid) obstacles centered atO1 : (−0.55, 0.6, 0) and
O2 : (−0.7, 0, 0). The agent’s initial configuration was:
q(0) = (−0.7, 0.65, 0) and the first target was set at
qd1 = (0, 0, 0). The surface’s obstacles shown in Fig. 4-6,
are the intersections of ellipsoid obstacles with the surface.
They are centered atOg1 : (−0.3, 0.2, 0.2121), Og2 :
(0.3, 0.2, 0.2121) andOg3 : (−0.3,−0.2,−0.2121) and the
second target was set atqd2 = (0.3,−0.2,−0.2121). Also,

there is an extra obstacle on the surface which comes from
the constraint ofφ ≥ 5◦ at the sphere’s vector field, which
is centered atOgs : (0, 0, 0.3). After the agent reaches its
destination point(qd2), it starts a tracking task, to track a
predefined trajectory which is the yellow colored line in
Fig. 4-6. Also, each of these figures depict the simulation
results, from a different point of view, since there is a 3-D
view simulation. Our algorithm successfully converges to
the goal configuration and track the predefined trajectory
avoiding obstacles.

A second simulation have been performed in order to
check, that when the trajectory is passing through an
obstacle, the robot can avoid it by leaving the trajectory
until this is out of the obstacle again. The results are shown
in Fig. 7.

Closed surface


Initial


Configuration


Fig. 4. Simulation results 1: top view.

Constant distance from the surface
Target configuration


Trajectory


tracking


Fig. 5. Simulation results 1: reaching a point on the surface.

VI. CONCLUSION

A methodology of performing navigation and tracking
tasks over a 2-dimensional manifold embedded in a 3-
dimensional workspace was derived. After safely navigat-
ing the robot to the 2-D manifold, task specific vector
fields direct the robot towards accomplishing a navigation
or a trajectory tracking task across the 2-D manifold.
The methodology has theoretically guaranteed global con-
vergence and collision avoidance properties. Due to the
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closed form of the feedback controller, the methodology
is particularly suitable for implementation on real time
systems with limited computation capability.

Further research includes considering surface properties
in the construction of the belt zone vector fields and
implementing the methodology to real neuro-robotic sys-
tems taking into account their dynamics and kinematic
constraints.

Initial


Configuration


Target Configuration


 Trajectory tracking


Fig. 6. Simulation results 1: bottom view, tracking.

Target Configuration


 Trajectory tracking


Obstacle avoidance during tracking


Fig. 7. Simulation results 2: bottom view, tracking.
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APPENDIX

A C2 surfaceg = g(s1, s2), on Euclidian spaceE3 is
defined univocally, from two invariable quantities, which
are functions ofds1, ds2, where ds1, ds2 are length
variations across the boundary. These quantities are the
first and the second fundamental forms, respectively:I =
dg · dg, II = −dg · dN with dg = (g((s1 + ds1), (s2 +
ds2))−g(s1, s2)) ⇒ dg = gs1

·ds1 +gs2
·ds2 wheredN is

defined as following, (Fig. 1):dN = ∂N
∂s1

·ds1+ ∂N
∂s2

·ds2 ⇒
dN = Ns1

· ds1 + Ns2
· ds2.

Writing all the above in a matrix form we have that:
I = JT · J , II = JT · H where J = [gs1

gs2
], and

H = [Ns1
Ns2

], with Ns1
= ∂N

∂s1

andNs2
= ∂N

∂s2

.
The perpendicular curvature of the surface can be defined

from the inner product of the curvature vector and the
normalized perpendicular vector to the surface:κn =
k · N ⇔ κn = II

I ⇔ or in a matrix form:S = I−1 · II.
Consider the eigenvector problemS · p = κ · p. Each

eigenvectorp is a principal direction. The corresponding
eigenvalueκ is a principal curvature. The vectorp is an
2-vector given in terms of tangent space coordinates.

Let us define:E = gT
s1

· gs1
, F = gT

s1
· gs2

, andG =
gT

s2
·gs2

. Also we can define:L = −gT
s1
·Ns1

, M = − 1

2
(gT

s1
·

Ns2
+ gT

s2
· Ns1

), andN = −gT
s2

· Ns2
.

A direction ds1

ds2

is a principal direction and a real valued
numberκ is a principal curvature which correspond to this
direction in a point of the surface, if and only if, in this
point, the following relations hold:

(L − κE)ds1 + (M − κF)ds2 = 0
(M − κF)ds1 + (N − κG)ds2 = 0

}

(26)

with ds2
1 + ds2

2 6= 0. Accordingly we have that:(EG −
F2)κ2 − (EN + GL − 2FM)κ + (LN − M2) = 0. This
means that we have minimum and maximum curvatureκ1,
κ2. As will be shown subsequently, we will need to use the
maximum curvature:κ∗ = max(κ1, κ2). From the above
equation (26), we have that the direction of the maximum
curvature, isµ =

ds∗

1

ds∗

2

. Whenκ1 = κ2 then we have only
one direction to choose from equation (26).
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