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Abstract— The accurate human gait tracking is an important
factor for various robotic applications, such as robotic walkers
aiming to provide assistance to patients with different mobility
impairment, social robot companions, etc. A context-aware
robot control architecture needs constant knowledge of the
user’s kinematic state to assess the patient’s gait status and
adjust its movement properly to provide optimal assistance. In
this work we present a novel human gait tracking approach
that uses two Particle Filters (PFs) and Probabilistic Data
Association (PDA) with an Interacting Multiple Model (IMM)
scheme for a real-time selection of the appropriate motion
model according to the human gait analysis and the use of
the Viterbi algorithm for an augmented human gait state
estimation. The gait state estimates also interact with the IMM
as a prior information that drives the Markov sampling process,
while the PDA ensures that the legs of the same person are
coupled. The observation data in this work are provided by
a Laser Range finder (LRF) mounted on a robotic assistant
walker. A detailed experimental validation is presented using
ground truth data from a motion capture system, which was
used in real experiments with elder subjects who presented
various mobility impairments. The validation analysis regards
the algorithm’s accuracy, robustness to occlusions and clutter,
and the gait state classification success, subject to the effect of
different number of samples used in the PFs. The results for the
elder subjects show the dynamics of the proposed algorithm to
be used in a real-time application due to its efficacy to provide
accurate and robust augmented human gait estimates with a
small number of particles.

I. INTRODUCTION

Human detection and tracking is a common research topic,
and refers to the accurate estimation of a human’s position
w.r.t. various sensors. Surveillance, ambient living environ-
ments, mobile robot companions and robotic assistants are
some of the applications where human tracking is necessary,
[1]–[3]. Cameras are commonly used for human activity
detection, [4]. Recent research focus on using Laser Range
Finder (LRF) sensors for detection, due to the simple two-
dimensional representation of the world, the lower computa-
tional cost in extracting features and their faster frame rates.

Approaches for tracking people can be found in [5], where
the authors presented a method for tracking multiple persons
using data from an LRF mounted on a mobile robot, using a
Joint Probabilistic Data Association Filter on the samples of
a Particle Filter (PF), to associate measurements to the re-
spective tracked persons; a pedestrian tracking method using
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multiple static LRFs is presented in [6], where a Kalman
Filter (KF) tracks the legs using a human walking model
inducing predefined constant velocities for the stance/swing
phase. A single person tracker for a mobile robot is presented
in [7], using a Multiple Hypothesis Tracking (MHT) frame-
work that incorporates a switched dynamic walking model
for the left/right leg in an extended KF.

A fusion of visual and laser data for a mobile service
robot has been implemented in [8] using Unscented KF
for human tracking. In [9], an approach for a MHT laser-
based people tracking for a mobile robot is presented. This
framework uses a KF for tracking legs separately and the
MHT associates past with current tracks, [10]. A detection
and tracking framework for a mobile service robot that
follows and interacts with humans is proposed in [11]. A
robotic walker is presented in [12], which has two LRFs
mounted, each one for tracking the user’s legs separately
using PFs. A robotic walker for Parkinson’s Disease patients
is presented in [13], which is equipped with a small LRF that
detects the legs positions. A legs tracking framework for a
walker used for rehabilitation in described in [14].

More recently, [15] presented a method based on two
parallel Interacting Multiple Model (IMM)-unscented KFs to
track human positions and velocities for a companion robot.
The IMM framework incorporates two kinematic models;
one for turning and one for constant heading motion. The
IMM method is commonly used for tracking targets that
present changes in their motion, thus cannot be modeled
by a constant motion model. It is also a framework closely
linked to data association problems. Although most IMM
approaches use a bank of filters that run in parallel to
correctly track a target [15], the PF can be easily used
in the IMM framework for target tracking [16]. IMM-PF
implementations are also used for multiple target tracking
with association probabilities [17], but also in the field of
fault diagnosis and systems identification [18].

This paper presents a novel human gait tracking algorithm
that uses two PFs to track the legs and Probabilistic Data
Association (PDA) for correlating the two legs to the same
subject. An IMM is constructed as a first-order Markov
model using as states specific gait phases defined in the
gait analysis literature. The IMM guides the selection of
the appropriate motion model for the particles of each leg.
Moreover, an augmented human state estimate, regarding
the corresponding gait phase, is provided using the Viterbi
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algorithm. This human gait state estimate is also the prior
that drives the Markov sampling from the IMM for the next
motion model selection. The data used in this work are
provided by a single LRF that is mounted on an assistant
robotic walker. This algorithm can be used for tracking a
human who presents pathological gait, i.e. it deviates from
normal walking function, either when a person changes its
gait due to fatigue or when another person walks closely by,
then the selection of the correct motion model along with
the PDA helps the efficient tracking of the same person.

This tracking approach interweaves with our aim to more
general gait tracking applications, e.g. the augmented human
gait state estimate could provide in real-time the appropriate
information for gait analysis, in contrast with our previous
work that propagated the legs state information to an HMM,
[19], therefore needing more computational time. A real-
time gait analysis could infer the appropriate user-adaptation
of the control strategy for a robotic assistant walker in
a context-aware robot control architecture, [20]. Also, the
augmented human gait state estimation can provide the
necessary information for human identification and therefore
could be used to lock the tracking process to one person
with a specific motion model, consequently it could be used
for multiple people tracking and identification. Gait-based
human identification has also been presented in [21], where
Deep Learning methods on energy images of several subjects
have been used. However, to the best of our knowledge,
there is no other method in literature that performs such a
tracking and identification task based on augmented human
state estimation from laser data.

In this work, we validate our IMM-PFs with the PDA
tracking algorithm (IMM-PDA-PF) using ground truth data
from a motion capture system, which was exploited during
experiments with real patients who used an assistant robotic
walker. Specifically, we evaluate the performance of our
algorithm regarding its tracking accuracy, its robustness
towards occlusions and environmental clutter and finally its
classification success on estimating the human gait state.

II. PROBLEM STATEMENT

The problem we aim to solve consists of performing
efficient and robust leg tracking and also estimating the
human gait state, i.e. to provide an augmented human state
estimation (both estimates of the legs states and the respect-
ive gait phase). The estimated human gait state will also
provide inference regarding the desired motion model of
the leg tracking system. For the legs tracking, we aim to
estimate the kinematic state of the legs at each time instant,
regardless of the cluttered environment or occlusion cases.
Let x f ,k be the state of each leg, where f={left,right} at each
time instant k. The state space incorporates the Cartesian
position vector p f ,k = [ x y ]

T and the respective velocity
vector v f ,k = [ υx υy ]

T . Thus, the state vector of each leg
is denoted as:

x f ,k = [ p f ,k
T v f ,k

T ]T (1)

For the human gait state estimation, we need to estimate the
current gait phase. The gait phase is a discrete parameter,

defined as θk and is drawn from a set of discrete states
Θ = {s1, ..,sM}, where M is the number of gait states. The
transition between those states is governed by a first-order
Markov chain, where the transition probability between two
states is denoted as:

ai j = P(θk = s j|θk−1 = si), ∀si,s j ∈Θ (2)

where i, j = 1, ..,M.
Thus, our problem evolves into estimating the augmented

human state {x f ,k,θk}, i.e. the posterior pdf p(x f ,k,θk|yk),
where yk is the measurement vector at time k. The legs’
states estimates are computed by the marginal distribution
of the posterior pdf:

p(x f ,k|yk) =
M

∑
i=1

p(x f ,k|θk = si,yk) · p(θk = si|yk) (3)

Given this formulation the legs’ tracking problem is a two-
step iterative estimation problem:

1) the prediction step, where the state is propagated in
time according to the dynamics p(x f ,k|x f ,k−1,θk), i.e.
the probability density function describing the state
evolution given by the state transition equation:

x f ,k = g f ,k(x f ,k−1,θk,w f ) (4)

where gf ,k is a possibly non-linear function describing
the discrete time dynamics of the each leg given the
human state θk and w f is the process noise modelled
as white Gaussian with covariance matrix Σw f .

2) the correction step, where the state estimate is updated
according to measurements yk. The observations are
provided by a LRF that is located at the origin of
the coordinate system and contains observations of the
subject’s legs along with environmental clutter. The
observations that relate to each leg are described by
the measurement equation:

y f ,k = h f ,k(x f ,k,θk,n f ) (5)

where hf ,k is a possibly non-linear function and n f is
an independent & identically distributed measurement
noise vector.

For the estimation of the human gait state, we must compute
the marginal distribution of the posterior pdf:

p(θk|yk) =
∫

p(x f ,k,θk|yk)dx f ,k (6)

For addressing this augmented estimation problem, we
propose an IMM that describes the human gait states, but
also imposes a certain motion model for the human legs.
The IMM is incorporated into the leg tracking approach. In
this approach, we solve the problem of tracking the two legs
as interacting targets, i.e. we estimate the legs’ states x f ,k
at each time instant k, applying a PDA on the correction
step of the filtering for associating each leg to the correct
measurement vector y f ,k and keep the two legs coupled, in
order to overcome problems of leg occlusions and cluttered
environment. The human gait state estimate results from
computing a joint likelihood for both legs and the use of the
Viterbi decoding algorithm, exploiting the IMM’s Markov
chain that describes the gait states transitions.



TABLE I: Gait States Definition

s1 =LDS Left Double Support
s2 =LS/RW Left Stance/ Right Swing
s3 =RDS Right Double Support
s4 =RS/LW Right Stance/ Left Swing

Definition of the possible gait states of the IMM.

III. IMM-PDA-PF AUGMENTED HUMAN STATE
ESTIMATION

A. Interacting Multiple Model for Gait Tracking

The IMM used in this work is inspired by human gait
analysis [22]. There are two main periods in gait cycle: the
stance, when the foot is on the ground, and the swing when
that same foot is no longer in contact with the ground and
is swinging through, in preparation for the next foot strike.
The stance period can be subdivided into three internal time
intervals: the initial Double Support (DS), the single leg
support and the terminal DS, Fig. 1. The initial DS begins
with the Heel Strike (HS) and it is the time when both feet
are on the ground. The single leg support is the period when
only one leg is at stance while the opposite leg is swinging.
The terminal DS begins with the HS of the contra lateral foot
and continues until the original stance leg begins to swing.
The gait cycle can be seen as an interacting model; when
the one leg is in stance phase the other one is swinging.

With this reasoning, we have defined the first-order
Markov model of Fig. 2 as the IMM for the human gait
transition model. In Fig. 2 the human gait states are defined,
i.e. the discrete states si ∈ Θ, i = 1, ..,4 and the possible
transitions ai j between them are defined in (2). The gait
states are described in Table I. Each state si refers to
both legs and imposes a different motion model. Namely,
each state si is characterized by a set of velocity Gaussian
Mixture Models (GMMs), that alter the transition probability
function p(x f ,k|x f ,k−1,θk = si), according to the dynamics
that govern the state si. Thus, in the prediction step we
use the imposed state transition model p(x f ,k|x f ,k−1,θk) to
compute the predicted pdf: p(x f ,k,θk|yk−1):

p(x f ,k,θk|yk−1) =
∫

p(x f ,k,x f ,k−1,θk|yk−1)dx f ,k−1 =∫
∑

θk−1

p(x f ,k|x f ,k−1,θk) · p(θk|θk−1) · p(x f ,k−1,θk−1|yk−1)dx f ,k−1

(7)
where p(θk|θk−1) is defined in (2) for the gait IMM and
p(x f ,k−1,θk−1|yk−1) is the posterior joint state estimate at
time (k-1). At time k, a new observation yk comes, and then
the posterior can be computed as:

p(x f ,k,θk|yk) =
p(yk|x f ,k,θk) · p(x f ,k,θk|yk−1)∫
∑
θk

p(yk|x f ,k,θk) · p(x f ,k,θk|yk−1)
(8)

where p(yk|x f ,k,θk) is the gait state conditional likelihood
function for the correction step.

B. Human Gait State Estimate

Because the transition model of the gait IMM refers to
the movement of both legs, for the human gait state estimate

Fig. 1: Human gait cycle representation regarding Single Leg or
Double Leg Support (DS).

Fig. 2: The gait IMM as a first-order Markov chain that represents
the possible transitions for the human gait states (Table I).

p(θk|yk) defined in (6), we have to account both legs’
estimated states x f ,k. Thus, we define a human-centred state
space defined as: xH

k = xle f t,k−xright,k and compute the joint
likelihood, i.e. (6) is re-written as

p(θk|yk) =
∫

p(xH
k ,θk|yk)dxH

k (9)

For estimating (9), we have defined GMMs regarding the
joint distribution of the xH

k for each state si in the gait
IMM and evaluate the conditional probabilities of being in
state θk = s j, given the human-centred state xH

k and the
measurements yk at time instant k computed as:

Lk =

{
p(θk = s j|xH

k ,yk,θk−1 = si), for j = {i, i+1}
0, for j 6= {i, i+1} (10)

The results of (10) are used as emission probabilities Lk in
the Viterbi algorithm with a one step back-propagation [23],
i.e the human gait state estimate results as the Maximum a
Posteriori (MAP) solution for the time interval (k−1,k):

θ̂
MAP
k = argmax(Lk)

xH
k−1:k

(11)

The MAP estimate (11) is solved using optimization
via the dynamic programming of the Viterbi algorithm. In
the following section we will describe how the IMM is
incorporated into a leg tracking method that used two PFs
with Probabilistic Data Association (PDA-PF), [24].

C. IMM-PFs Probabilistic Data Association Legs Tracking

Our implementation incorporates two filters for estimating
the position and velocity of each leg separately and associate
them probabilistically. The particles represent samples of
the posterior density distribution of the legs’ states xle f t,k
and xright,k at each time instant k for the left and right
leg respectively. Each state constitutes of the Cartesian
position and velocity along the axes. The implementation
covers the basic particle filter methodology [25], including



initialization, propagation in time, particles’ weights update,
resampling and posterior estimation.

Initialization: At the first time instant k=1, we initialize
a set of N particles for each leg. Let the position of the nth

particle, for n = 1, ..,N, be noted as: pn
f ,k = [ x y ]T and

its velocity as: vn
f ,k = [ υx υy ]T , where f : {left,right} is

the label of each leg. The particles’ states are denoted as:

xn
f ,k = [ pn

f ,k
T vn

f ,k
T ]T (12)

Only for initialization we detect the initial positions of the
legs with respect to the robotic platform inside an observation
window and discriminate the left from the right leg using K-
means clustering and circle fitting. The particles’ positions
are initialized to be equal to the detected positions. We also
draw N samples for the legs’ velocity from an initial zero-
mean GMM distribution (we consider that both legs are
still in front of the robot for initialization). The particles’
weights ω

f ,n
k of each leg are initialized equal to: 1/N, with

n = 1, ..,N. The initial posterior estimate is approximated by
the Minimum Mean Square Error:

x f ,k =
N

∑
n=1

ω
n
f ,k ·x

n
f ,k = [ p f ,k

T v f ,k
T ]T (13)

Regarding the human gait state estimation, only for initial-
ization we deviate from (10), in the sense that we calculate
the probabilities L1 = p(θ1 = s j|xH

k ), ∀si ∈ Θ. The initial
human gait state estimate θ1 results from the maximum
likelihood: θ̂1 = argmax(L1).

IMM Particles’ Propagation: At each time frame k=2,..,T
(where T is the total tracking time) the particles’ states are
propagated in time using the IMM and the state transition
pdf p(x f ,k|x f ,k−1,θk). We use Markov Chain Monte Carlo
sampling using the gait IMM transition model to draw N
samples for the human gait state at time k, noted as θ n

k ,
given the estimated gait state at time (k-1), θ̂k−1. Each gait
state θ n

k imposes a different motion model for the respective
nth particle of each leg according to certain velocity GMMs
that describe the states si. The selected GMMs from the
respective θ n

k are centred around the previously estimated
velocities v f ,k−1. Let vn

f ,k be the nth velocity sample drawn
from the respective GMM of the state θ n

k at time instant k.
Then, the position of the nth particle is propagated in time
according to the equation:

pn
f ,k = p f ,k−1 +vn

f ,k ·∆t (14)

where p f ,k−1, is the estimated position vector of each leg for
the (k−1) time frame.

IMM-PDA Observation Likelihood computation: One
of the main objectives is to correctly associate each leg
with the respective cluster of laser points y f ,k, where f =
{le f t,right}. The problem, however, is that the legs do not
have an explicit observation, but a cluster of laser points form
the observation. The cluster of laser points that represents a
leg has variable number of points, has a deformable shape
and often contains outliers. Thus, inspired by the methods
used in data association literature, [26], we considered the
legs to be two interacting targets and we implemented a data

association, to associate each leg to the most representative
cluster of laser points, but also keep the formation of the
two legs that belong to the same person by taking into
consideration the IMM formulation.

At each time instant k, the particles’ weights have to be
updated according to the observations. The observations are
the Cartesian positions of the laser points in the sagittal
plane. In this implementation, we use an observation window
for each leg, which is an experimentally defined rectangular
area, centred around each particle, so that every sample xn

f ,k
is associated with a different cluster of laser points, yn

f ,k.
Given the IMM formulation the particle weights depend on
the gait state conditional observation likelihood:

ω
n
f ,k =

p(yk|xn
f ,k,θ

n
k ) · p(θ

n
k |θ̂k−1)∫

∑
θ n

k

p(yk|xn
f ,k,θ

n
k ) · p(θ

n
k |θ̂k−1)

(15)

We treat each particle as a possible leg center and we
expect the observations to be on the circular circumference
of this center. We set the observation window centred on
the nth particle and we associate it with the corresponding
observations, i.e. the laser points yn

f ,k detected inside the
window. The observation likelihood that will provide the
weight of the particles is computed based on three factors:

1. The distribution of the laser points in the circular
contour given the center (i.e. the respective particle): In
Fig. 3 an example of the circular representation of the legs
from the laser points w.r.t. the laser scanner is presented.
On the right of Fig. 3, there is a depiction of the detected
laser points with black stars, the green and magenta circles
are the circular representations of the right and left leg
respectively. The labels R0, R1, R2, R3, R4 represent the
segmentation of the circle into regions (the regions’ bound-
aries are depicted with orange lines) based on which we have
computed the observation likelihood for the IMM-PDA-PF.
We have divided horizontally the circle into two semicircles.
Laser points in the upper semicircle R0 do not contribute
to the observation likelihood. The lower semicircle is split
into four regions (R1,..,R4) of equal angle range. We have
calculated the normal distribution of the Euclidean distances
of the laser points of each region w.r.t. the corresponding
center. Let dRm be the vector of distances of the laser points
w.r.t. the corresponding circle center for the Rm region, with
m ∈ 1, ...,4. Thus, each region Rm is described by a normal
distribution of the distances N (dRm |µRm ,ΣRm), with µRm the
mean distance and ΣRm is the covariance matrix.

2. The number of laser points inside each observation
window: A normal kernel distribution, noted as λn for every
particle with n = 1, ..,N, describes the likelihood of the
number of laser points detected on the circular contour that
represents the leg.

3. Association probability We compute an association
probability about the Euclidean distance between the two
legs. The human legs are two interacting moving targets, and
thus we introduce an association probability βi, modelled
by a Gamma distribution. This probability regulates the
observation likelihood of the one leg w.r.t. the other; we



Fig. 3: Example of the circular representation of the legs from the
laser points w.r.t. the laser scanner. Left: a snapshot of a subject
walking with the rollator while the Hokuyo LRF scans the walking
area; Right: a presentation of the detected laser points, the circular
representations of the legs and the regions based on which we
compute the observation likelihood.

Fig. 4: Left: A snapshot from the experimentation scene. A patient
with his normal clothes wears a set of visual markers while walking
with support of the passive rollator. Right: a representation of the
visual markers from MOKKA visualization system.

account how probable is the current state of the nth particle
of the one leg w.r.t. the estimated position of the other leg at
(k−1). By inserting the association probability, we achieve
to control the relative positions of the two legs, especially in
cases of leg occlusions or cluttered environment, but also to
assign the correct observations to each leg.

For the nth particle of each leg we compute the observation
likelihood using the following function:

p(yn
f ,k|x

n
f ,k,θ

n
k ) = βn ·

[
λn ·

4

∑
m=1

πRm ·N (dRm |µRm ,ΣRm)

]
(16)

We assume as πRm , the importance weights of the four
regions, which were set experimentally so that the extreme
regions R1 and R4, which often contain many outliers have
less importance than the inner regions R2 and R3. All
parameters have been experimentally defined. The weights
are normalized for all particles n = 1, ...,N according to:

ω̂
n
f ,k = ω

n
f ,k/

N

∑
j=1

ω
j
f ,k (17)

Resampling: For confronting the problems of weight
degeneracy and sample impoverishment [25], at each time
frame we check whether the effective sampling size Ne f f =

1/
N
∑

n=1
ω̂n

f ,k is less than the threshold Nthr = N/2. If so, we

apply a random walk on the current particles’ state providing
new particles ∗xn|θ n

k
f ,k given the sampled state θ n

k . Then, we
evaluate the weights of the new particles, according to
the IMM-PDA Observation Likelihood computation, which
provides the new weights: ∗ω̂n

f ,k. Having the old pairs of

particles and their weights (xn|θ n
k

f ,k , ω̂n
f ,k) and the new ones

(∗xn|θ n
k

f ,k ,∗ω̂n
f ,k), we apply the Metropolis-Hastings algorithm,

[27]. Based on this algorithm we can decide whether or not
we have to replace the nth pair (xn|θ n

k
f ,k , ω̂n

f ,k) with the new

samples (∗xn|θ n
k

f ,k ,∗ω̂n
f ,k).

Posterior Estimation: For the posterior state estimate
p(x f ,k|y f ,k) (from the marginalized posterior pdf of (3)),
we apply maximum likelihood for finding the particle with
the highest weight and collect the “best” particles, i.e. those
having a weight greater or equal than 80% of the maximum
weight:

s = argmax
i

[ω̂n
f ,k > 0,8 ·max(ω̂n

f ,k)] (18)

where s is the index of the “best” particles, i.e. s ∈ S ⊆
{1, ...,N}. In that way, we have a dynamic system, that leaves
out particles that may track outliers and could contaminate
the posterior estimation, and therefore provides smoother
estimates. The posterior state estimate is then approximated
by the weighted mean of the “best” particles:

p(x f ,k|y f ,k) =

(
∑
s

xs
f ,k · ω̂

s
f ,k

)/(
∑
s

ω̂s
f ,k

)
(19)

IV. EXPERIMENTAL ANALYSIS & VALIDATION

A. Experimental setup and data description

Experiments with real patients were conducted in Agaple-
sion Bethanien Hospital - Geriatric Center, under ethical
approval by the ethics committee of the Medical Department
of the University of Heidelberg. All subjects had signed
written consent for participating in the experiments. The
participants presented moderate to mild mobility impairment,
according to clinical evaluation. The patients were wearing
their normal clothes. For Ground Truth (GT), a set of
markers from a VICON Motion Capture system was placed
on certain areas of the subjects’ body. In this work we
employ data from a dataset of 23 patients aged over 65
years old. The subjects participated in a walking scenario
having physical support of a rollator, where they had to
walk in a room and make some turning manoeuvres to avoid
obstacles. All patients performed the experimental scenarios
under appropriate carer’s supervision.

A snapshot of the experimentation scene with a subject
walking supported by the robotic rollator while wearing a
set of visual markers is shown on the left of Fig. 4; on the
right, a representation of the markers from the MOKKA
visualization system is provided. Two types of GT data
are needed for the validation of our work: a) the GT data
of the tibia movement for validating the tracking accuracy,
and b) the GT data of the gait phases for evaluating the
classification. In Fig. 4, marked with red are the tibia markers
and with blue the rollator markers, which are used for
extracting the GT of the legs’ movement w.r.t. the rollator. To
extract GT data we apply a series of interpolation, cyllinder
fitting and smoothing algorithms for the positions, as well as
simple differentiation for the velocities. Heel and toe markers
(marked green) are also used to extract GT gait phases, based



on an automatic gait phase detection algorithm thoroughly
described in [28].

The extracted GT data from the 15 subjects constitute the
training dataset (comprising approximately 60.000 frames,
75% of the whole dataset), dedicated to training the GMMs
of the motion models, the pdfs that describe the gait states
and the Transition Probability Matrix of the gait IMM
of Fig. 2. In particular, 2 mixture-GMMs were used for
modelling the DS phases and 5-mixtures for the stance/swing
phase of the left and right legs in the IMM of Fig. 2.
The data from the remaining 8 subjects formed the testing
set, containing approximately 25.000 scanning frames, 25%
of the whole dataset, or else ∼12 minutes of walking. It
is important to mention, that all the subjects had various
mobility impairments, giving a rich dataset of different gaits,
i.e. different gait speeds and variable gait phases durations.
In this work we have used as training set a randomly selected
group of subjects. In future work we plan to perform a
systematic cross-validation study using different partitions
of the training/testing dataset.

The laser data were provided by a Hokuyo rapid laser
sensor UBG-04LX-F01, mounted on the robotic platform of
Fig. 4 for the detection of the patients’ legs. The laser sensor
is placed at a height of about 40 cm from the ground in order
to capture the motion of the subject’s tibia.
B. Validation Strategy

Our validation strategy comprises the testing of our
algorithm regarding: i) its accuracy, by computing its
average position and velocity Root Mean Square Error
(RMSE) w.r.t. the ground truth data from the visual mark-
ers, ii) its robustness evaluating the algorithm’s behaviour
in cases of leg occlusions, environmental clutter or loss
of detection, by computing the percentage of the frames
when the algorithm successfully tracked both legs to the
total recorded frames (frames were hand-annotated), and
iii) the gait state classification given the extracted ground
truth gait states by assessing three measures. a) The
classification accuracy: the quotient of the correct predic-
tions to the total number of predictions and is a measure
of how good the proposed model is, b) the recall: RE is
a measure of how many actual positive observations were
predicted correctly, c) the precision: PR is a measure of how
many positive predictions were actual positive observations,
and d) the F1-score: F1 is the weighted average of precision
and recall,

RE =
T P

(T P+FN)
, PR =

T P
(T P+FP)

, F1 =
2(RE ·PR)
(RE +PR)

(20)

where TP: True Positives, FN: False Negatives and FP: False
Positives. We present a sensitivity analysis of the above
metrics w.r.t. the number of samples used in the PFs, to
evaluate how the performance of the algorithm is affected
by the number of particles. In this work, we evaluate the
algorithm’s performance for a range of particles from 50 to
500 samples. To evaluate the performance of the proposed
method with respect to other state of the art approaches,
we choose to compare the IMM-PDA-PF method with a
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Fig. 5: Tracking accuracy as the position and velocity average
RMSE according to different number of particles of the proposed
IMM-PDA-PF and the baseline PDA-PF w.r.t. GT.

recently published one, proposed in [24], which we here
denote as the baseline PDA-PF method. We choose this
method, following an extensive literature survey, as being
the most relevant one for comparative evaluation purposes.
This baseline method also employs PF tracking of legs using
on-board LRF data, but uses a single motion model without
any IMM-based human state estimation. We comparatively
evaluate the performance of the two methods regarding their
tracking accuracy and robustness for the same range of
particles sets. We also combine the baseline PDA-PF tracking
method with the human gait state estimate of Section III-
B (i.e. without the proposed IMM framework), and provide
comparative classification results on the aforementioned test-
ing dataset (in terms of accuracy and F1-score only, due to
space limitations).

C. Validation Results and Discussion

The validation results regarding the tracking accuracy are
depicted in Fig. 5. The blue lines depict the average (position
and velocity) RMSE of the proposed IMM-PDA-PF method,
for an increasing number of particles, while the red lines on
the same figures depict the respective comparative results of
the baseline PDA-PF method. Inspecting the results of Fig. 5,
we can deduce that, as far as the position tracking accuracy
is concerned, the proposed IMM-PDA-PF method achieves
significantly better results than the baseline PDA-PF method,
for all sets of particles. In particular, when 50 particles are
used the average position tracking RMSE for the IMM-
PDA-PF is decreased by 38% (as compared to the baseline
method) and this significant decrease is consistent for all
different sizes of particle sets, achieving a value of 46%
improvement in tracking accuracy for 500 particles (average
RMSE of 6.69cm for the proposed method over 12.45cm
for the baseline method). In average, over all particle sets
of different sizes, the IMM-PDA-PF method achieves an
ameliorated position tracking accuracy with a mean value
of approximately 41% performance gain.

Regarding the velocity RMSE, the IMM-PDA-PF again
achieves better results than the baseline approach for all
particle sets, achieving an average RMSE decrease of ap-
proximately 20% w.r.t. the baseline. Generally, the relatively
higher errors in velocity estimation can be explained by
the computation of the GT velocity (simple differentiation
of markers’ positions) that induces random noise; also the



TABLE II: Comparative robustness evaluation

Method
particles 50 100 150 200 300 500

IMM-PDA-PF 98.49 99.83 100.00 100.00 100.00 100.00
Baseline PDA-PF 86.72 90.53 90.58 91.00 92.12 93.84

Robustness evaluation of the proposed IMM-PDA-PF vs. the
baseline PDA-PF method according to different number of particles.

laser clusters are highly deformable due to clothing further
adding considerable noise to the observations. The particles’
propagation motion model described in Eq. (14), favours
the position estimation convergence; hence a higher order
kinematic model should be used to minimize estimation error
in velocity.

Table II presents a comparative evaluation of the robust-
ness performance of the proposed IMM-PDA-PF method
in contrast to the baseline PDA-PF tracking algorithm.
Evaluating the cumulative results from the eight subjects of
the test set, we can observe that even with as few as 50
particles the IMM-PDA-PF method achieves highly robust
tracking performance (98.49% success rate), while for 150
particles or more there are apparently no false detections
or tracking failures (100% tracking success rate). On the
other hand, the baseline PDA-PF method achieves a mediocre
performance (in terms of robustness) when using a small set
of 50 particles (a low 86.72% tracking success rate), while
even with 500 particles it still exhibits considerable failure
rate, tracking successfully only 93.84% of all the frames
of the eight subjects. The results of Table II clearly show
that the proposed tracking algorithm can efficiently handle
problems of leg occlusions and environmental clutter, i.e.
noise or another person’s legs in the proximity of the tracked
person, using much fewer particles than the baseline PDA-
PF. It suffices to mention that even in cases when tracking
losses occurred (sample sizes of 50 or 100 particles), the
algorithm, due to the PDA and the motion model selection
from the IMM, managed in all cases to quickly re-detect the
subject’s legs and continue the tracking process.

Table III presents the classification results for the human
gait state estimation, regarding the four states of the Markov
model in Fig. 2. We aim to evaluate the ability of the
proposed IMM scheme to reliably predict the human gait
phases in real-time, hence providing an augmented human
state estimation. Inspecting the results, we can notice high
mean accuracies (over 90%) for the proposed IMM-PDA-PF
implementations of 100 particles and over, with a peak value
of 94% accuracy for 500 particles. Embarking on the classi-
fication problem, we have to check the recall and precision
results. All recall results are approximately over 70% with
maximum recall 88% at 300 and 500 particles. Regarding
precision, the results are over 60% for all implementations,
presenting an ascending pattern w.r.t. the increasing number
of particles, reaching an 80% precision at 500 particles. It is
also important to observe and separately analyse the results
for individual classes (i.e. gait phases), since it seems that
gait states s1 and s4 are more easily recognized than states
s2 and s3; indeed, the last two refer to the DS phases that
correspond to very short time intervals and are hence difficult

to capture.
The F1-score helps assessing the overall model perform-

ance. According to Table III the tracking implementations
with 150 particles or more achieve F1-scores over 70%,
with the best score of 82% classification success achieved
for 500 particles. For comparison, Table IV depicts the
classification results (accuracy and F1-scores) achieved when
the baseline PDA-PF tracking algorithm is used (instead of
the proposed IMM scheme) in combination with the human
gait state estimation. It is evident that both the accuracy
and F1-scores are much lower than the proposed method;
e.g. for 500 particles the IMM-PDA-PF achieves 51% better
classification performance (according to the F1-score) than
the baseline. All these results lead to the conclusion that
the gait IMM-PDA-PF scheme, proposed in this paper, is
a robust method that can provide accurate and real-time
augmented human gait state estimation.

Summing up, we can claim that the IMM-PDA-PF suc-
ceeded to perform accurate and robust tracking of the humans
legs with a small number of particles, in contrast to the
baseline PDA-PF, i.e. thus reducing the computational load
for a real-time implementation. The contribution of the
IMM in the selection of the motion model during gaiting
is particularly related to the fewer number of particles. We
present strong evidence that the proposed methodology can
provide efficient human gait state estimates with small sets
of particles. Even with as few as 150 particles the proposed
algorithm can achieve efficient augmented human state esti-
mation, constituting a novel approach that provides real-time
tracking of humans with various mobility impairments and
a potential tool for on-line gait analysis and identification.
It is however important to augment the training dataset with
more pathological gait data and to test new GMMs in order
to achieve better classification results.

V. CONCLUSIONS & FUTURE WORK

We introduce a novel gait tracking algorithm for an
augmented human state estimation that uses two PFs to
track the legs and PDA to associate them, an IMM for the
selection of the appropriate motion model and a gait state
estimation using the Viterbi algorithm. The human gait state
estimate drives the selection of the motion model from the
Markov model of the gait IMM. We utilize data from an LRF
mounted on a robotic assistant platform designed for mobility
impaired subjects, constituting a non-invasive approach using
a non-wearable device. We validate the performance of
our human gait tracking algorithm regarding its accuracy,
robustness to occlusions and clutter, and its classification
abilities according to different number of particles. The GT
data used in this work were extracted from visual markers.

The experimental results show that the proposed gait
tracking method has the ability to track users with vari-
ous mobility impairments, providing accurate and robust
estimates even with a small number of particles, which is
very important for a real-time application. The classification
results seem promising and could be incorporated in a real-
time gait analysis system for a user-adaptive context aware
robot controller.



TABLE III: Classification results (IMM-PDA-PF)

Accuracy

gait state
particles 50 100 150 200 300 500

s1 89.78 91.73 93.92 94.16 93.45 90.20
s2 86.37 89.78 89.54 90.02 94.78 94.12
s3 88.56 89.29 88.08 87.35 92.31 98.04
s4 88.08 90.75 92.46 91.48 90.88 94.12

mean 88.20 90.39 91.00 90.75 92.88 94.12
Recall

gait state
particles 50 100 150 200 300 500

s1 60.87 78.26 89.29 87.10 88.00 80.00
s2 84.62 86.75 84.57 91.28 89.86 77.27
s3 57.89 61.54 55.88 51.02 94.74 100.00
s4 75.26 79.78 83.33 80.77 80.50 95.00

mean 69.66 76.58 78.27 77.54 88.28 88.07

Precision

gait state
particles 50 100 150 200 300 500

s1 29.79 38.30 53.19 57.45 52.38 44.44
s2 80.49 87.80 90.24 82.93 97.79 94.44
s3 41.51 45.28 35.85 47.17 40.91 80.00
s4 99.32 99.32 98.64 100.00 99.22 100.00

mean 62.78 67.68 69.48 71.89 72.58 79.72
F1-score

gait state
particles 50 100 150 200 300 500

s1 40.00 51.43 66.67 69.23 65.67 57.14
s2 82.50 87.27 87.32 86.90 93.66 85.00
s3 48.35 51.27 43.68 49.02 57.14 88.89
s4 85.63 88.48 90.34 89.36 88.89 97.44

mean 64.12 69.61 72.00 73.63 76.34 82.12

Gait state classification results (accuracy, recall, precision, and F1-
score) using the IMM-PDA-PF method with an increasing number
of particles.

TABLE IV: Classification results (PDA-PF)

Accuracy

gait state
particles 50 100 150 200 300 500

s1 77.69 78.81 79.16 79.11 77.10 79.50
s2 76.56 79.11 76.41 80.65 75.48 78.72
s3 74.69 79.50 77.93 77.15 74.99 76.66
s4 76.12 75.58 77.93 76.75 75.43 76.66

mean 76.26 78.25 77.81 78.42 75.75 77.88
F1-score

gait state
particles 50 100 150 200 300 500

s1 43.90 45.86 42.18 48.43 39.27 45.14
s2 63.17 67.58 65.81 69.17 62.06 65.06
s3 38.42 52.06 48.86 45.81 43.58 47.46
s4 56.94 54.48 57.01 57.45 53.91 59.25

mean 50.61 55.00 53.47 55.22 49.71 54.23

Gait state classification results (accuracy and overall F1-score)
for the baseline PDA-PF method with an increasing number of
particles.

Our ongoing research comprises the development of differ-
ent motion models that would stochastically describe differ-
ent classes of mobility impairment, an on-line user classifica-
tion according to the selected motion model and specific gait
features, the adaptation of the number of particles according
to the type of walking and the real time implementation and
evaluation of the algorithm.
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