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Abstract. Mobility disabilities are prevalent in our ageing society and impede
activities important for the independent living of elderly people and their quality
of life. The goal of this work is to support human mobility and thus enforce fitness
and vitality by developing intelligent robotic platforms designed to provide user-
centred and natural support for ambulating in indoor environments. We envision
the design of cognitive mobile robotic systems that can monitor and understand
specific forms of human activity, in order to deduce what the human needs are,
in terms of mobility. The goal is to provide user and context adaptive active sup-
port and ambulation assistance to elderly users, and generally to individuals with
specific forms of moderate to mild walking impairment.

To achieve such targets, a reliable multimodal action recognition system needs
to be developed, that can monitor, analyse and predict the user actions with a high
level of accuracy and detail. Different modalities need to be combined into an in-
tegrated action recognition system. This paper reports current advances regarding
the development and implementation of the first walking assistance robot pro-
totype, which consists of a sensorized and actuated rollator platform. The main
thrust of our approach is based on the enhancement of computer vision techniques
with modalities that are broadly used in robotics, such as range images and hap-
tic data, as well as on the integration of machine learning and pattern recognition
approaches regarding specific verbal and non-verbal (gestural) commands in the
envisaged (physical and non-physical) human-robot interaction context.
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1 Introduction

1.1 Motivation

Mobility problems, particularly concerning the elderly population, constitute a major
issue in our society. According to recent reports, approximately 20% of people aged
70 years or older, and 50% of people aged 85 and over, report difficulties in basic
activities of daily living. Mobility disabilities are common and impede many activities
important to independent living, [1], [2]. A significant proportion of older people have
serious mobility problems. Furthermore, current demographics show that the elderly
population (aged over 65) in industrialized countries shows a constant increase, [3].

Mobility is a crucial activity especially in the elderly since it promotes physical
exercise, independence and self-esteem. Robotics seems to fit naturally to the role of
assistance since it can incorporate features such as posture support and stability, walk-
ing assistance, navigation in indoor and outdoor environments, health monitoring etc.
Our motivation in this approach stems from the fact that for an efficient and intelligent
robotic assistant, a variety of multimodal interaction and cognitive control functionali-
ties must be embedded, so that the robot can autonomously reason about how to provide
optimal support to the user whenever and wherever needed.

1.2 Related Work

Several intelligent robot mobility aids are known, which are divided into two large cat-
egories: robotic wheelchairs and robotic walkers, [4]. They are designed to accommo-
date a normal walking pattern with opposite arm and leg moving together. Most robotic
walkers are robotized variations of the typical Rollator frame, which is a standard walk-
ing frame attached to wheels, mainly used where balance -rather than weight bearing-
is the major problem.

Many robotic walkers have been developed, generally presenting some of the fol-
lowing functionalities: (i) physical support; (ii) sensorial assistance; (iii) cognitive as-
sistance; (iv) health monitoring and (v) advanced human - machine interface, [5]. These
platforms largely fall into two categories: passive and active devices, [6]. While passive
mobility aids either steer or brake, but cannot move forward without the human apply-
ing forces on them, [7]-[9], active devices are equipped with actuators and thus, their
motion and interaction behaviour can be actively controlled, [10]-[12].

The research work reported in this paper aims to further extend and enhance the
functionalities of such systems, by focusing on the development of robotic mobility
aids for indoor environments that provide intelligent and active walking/mobility as-
sistance (standing up, walking, and sitting down) to elderly people (with and without
enough strength to support and stabilize themselves), in particular by supporting safe
autonomous proactive control (for instance, by incorporating fall prevention features)
and adaptive user-robot interaction, through multimodal sensory processing and intu-
itive human-robot communication.
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1.3 Organization and Overview

This paper is organized as follows. In Section 2, the first prototype of the experimental
platform is described. The multimodal information processing and action recognition
system is discussed in Section 3. The appropriate analysis and identification of human
walking motions and classification of specific mobility weaknesses are discussed in
Section 4. The design of a context-aware control architecture for an active mobility aid
robot is briefly analysed in Section 5. Finally, conclusion and plans for future work are
given in Section 6.

2 Experimental Platform

The experimental platform consists of a sensorised passive rollator prototype, as de-
picted in Fig. 1, which has already been used for the purposes of data collection and
recording in a set of predefined typical use-cases and scenarios involving elderly peo-
ple. The system incorporates multimodal information from laser range finder sensors,
force/torque sensors, RGB and RGB-D cameras, encoders, and microphones.

First of all two laser sensors are used on the experimental platform. The first sensor
(Hokuyo UTM-30LX) is placed at the front of the platform facing towards the mo-
tion direction, to provide full scanning of the walking area. For the purpose of human
legs’ detection and tracking, a second laser range finder (Hokuyo UBG-04LX-F01 rapid
LRF) sensor is mounted at the back of the experimental platform facing the user legs,
scanning a horizontal plane at the lower limbs at a height of approximately 40cm from

Fig. 1. Experimental platform: first sensorized prototype used for data acquisition and recordings
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Fig. 2. A snapshot of the detected user’s legs along the legs’ centers

the ground, in order to take measurements from the users’ gaiting performance. An ex-
ample of the detected subject’s legs is depicted in Fig. 2. A rectangular area (a search
window) in front of the laser sensor is defined, inside of which we search for the po-
tential user legs. For the detection process, a simple background extraction is used, in
which we discard outliers that do not satisfy certain constraints defined for the potential
legs, such as the minimum distance between consecutive points in each scanning frame
and also the jump distance between neighboring laser groups. Subsquently, a K-means
clustering algorithm is implemented to detect the legs’ clusters.

Furthermore, two 6 DOF HR3 force/torque sensors (JR3 45E15) are placed at the
handles of the experimental rollator in order to measure the applied forces between the
patient and the rollator. In addition to the above sensors, an HD small, high performance
and versatile video camera (GoPro) is also mounted on the rollator. This device is able
to record the patient’s head, torso, arms and all his/her movements and it provides nec-
essary information for the subject’s condition.

Another set of sensors placed on the rollator consists of two Kinect-for-Windows
(KFW) sensors. This set of sensors allows the recording of the human body from a
short distance. The first KFW sensor is placed horizontally towards the patient, in order
to capture the area of the torso, waist, hips and the upper part of the limbs. The second
KFW sensor is facing downwards in complementary direction with the first one, so as to
achieve broad coverage and not to interfere with each other. This second sensor is able
to capture the lower limb motion information, and therefore to enhance the localisation
of limb positions and assist the analysis of gait abnormalities.

In addition to the above, an array of 8-microphone MEMS is also used as audio
capturing device, mounted on the horizontal bar of the experimental platform in a linear
configuration (with a 4cm uniform spacing) in front of the user (see Fig. 1). An example
of a specific audio-gestural command is depicted in Fig. 3 (the captured audio visual
data for the command “MOBOT: I want to stand up”). The visual data is obtained from
the RGB and depth stream of the Kinect visual sensor while the audio data from the
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Fig. 3. Multimodal data captured for a specific audio-gestural command (“MOBOT: I want to
stand up”, “MOBOT: Ich will aufstehen”). Top: RGB data from Kinect, Middle: Depth data from
Kinect, and Bottom: Multichannel waveform outputs from MEMS microphone array.

microphone array mounted on the rollator. A distinct waveform for each channel of the
MEMS microphone array is presented along with indicative frames of the visual stream.

3 Multimodal Sensory Processing for Human Action Recognition

Different sensory modalities need to be combined into an integrated human action
recognition system. The development of robust and effective computer vision tech-
niques are needed in order to achieve the visual processing goals based on multiple cues
such as spatio-temporal RGB appearance data as well as depth data from Kinect sen-
sors. The enhancement of computer vision techniques with modalities that are broadly
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used in robotics, such as range images and haptic data will be introduced. Another ma-
jor challenge is the integration of recognizing specific verbal and non-verbal (gestural)
commands in the considered human-robot interaction context. All the above technical
problems and research challenges embody all tasks related to visual, speech, haptic,
and physiological data processing for detecting, tracking and recognizing the human
actions. Specific objectives include the following:

– detection of human actions rapidly and robustly based on low and high level infor-
mation,

– classification of human actions by analyzing spatio-temporal video information,
– analysis of walking patterns and detection of abnormalities by tracking human body

pose,
– processing of multimodal data (visual, speech, haptic, physiology) originating from

different sensors,
– developing of isolated spoken and gestural command recognition capabilities for

human-robot communication, and
– ultimately performing human action recognition by multimodal sensory

integration.

The approach followed towards this end is divided into several tasks in the current
study. The first task focuses on visual processing for human localisation and action
classification, based on a set of enhanced visual features and object representations.
Another task is related to limb localisation and body pose estimation, combining visual
appearance, motion and range data, that is, also exploiting data provided by the Kinects’
depth sensors. Results of this task will also be integrated in a system performing isolated
gesture recognition, which is currently under development and testing. Preliminary re-
sults in this direction are very promising, showing that the combination of multiple
modalities enhances specific performance characteristics. Another task focuses on spo-
ken command processing for human-robot communication and is based on HMMs for
the recognition of specific spoken commands from distant microphones. Multimodal
fusion approaches are also being investigated to achieve human action recognition, in-
tegrating cues from various sensorial modalities, including vision (RGB appearance,
depth, tracking data) and speech modalities.

4 Human Action Analysis

One of the main goals of our work is to perform analysis and identification of hu-
man walking motions and classification of specific walking pathologies and associated
mobility weaknesses. The idea is to conceptually and systematically synthesize all the
modules performing multimodal recognition and inference regarding human behaviour
and user intent, onto generative context-aware mobility assistance models. Towards this
end, we investigate a completely non-invasive framework for analyzing a normal human
walking gait pattern, which is described in this section.
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Fig. 4. Internal states of normal gait cycle (Left Leg: blue dashed line, Right Leg: red solid line)

4.1 Normal Human Gait Cycle Description

A well-known fact is that the walking patterns are gaits, that is, cyclic patterns with
several consecutive phases. These cyclic motions can be modelled using a set of con-
secutive and repetitive gait phases. A basic requisite of the act of walking is the periodic
movement of each foot from one position of support to the next. This element is neces-
sary for any form of bipedal walking to occur, no matter how distorted the pattern may
be by an underlying pathology, [13]. This periodic leg movement is the essence of the
cyclic nature of human gait.

There are two main phases in the gait cycle, [14,15]: The stance phase, when the
foot is on the ground, and the swing phase when that same foot is no longer in contact
with the ground and is swinging through in preparation for the next foot strike. The
stance phase may be subdivided into three separate phases: 1. First double support,
when both feet are in contact with the ground, 2. Single limb stance, when only one
foot is in ground contact and the other foot is swinging forward, 3. Second double
support, when both feet are again in ground contact. The same terminology would be
applied for both the left and right side of the body. For a normal person, each side is half
a cycle behind (or ahead) of the other side. Thus, first double support for the right side is
second double support for the left side, and vice versa. In normal gait there is a natural
symmetry between the left and right sides, but in pathological gait an asymmetrical
pattern very often exists.

Traditionally the gait cycle has been divided into eight events or periods, five during
stance phase and three during swing.

The stance phase events are as follows (see Fig. 4):

1. Heel strike initiates the gait cycle and represents the point at which the body’s
centre of gravity is at its lowest position.
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2. Foot-flat is the time when the plantar surface of the foot touches the ground.
3. Midstance occurs when the swinging (contralateral) foot passes the stance foot and

the body’s centre of gravity is at its highest position.
4. Heel-off occurs as the heel loses contact with the ground and pushoff is initiated

via the triceps surae muscles, which plantar flex the ankle.
5. Toe-off terminates the stance phase as the foot leaves the ground, [16].

The swing phase events are as follows:

6. Acceleration begins as soon as the foot leaves the ground and the subject activates
the hip flexor muscles to accelerate the leg forward.

7. Midswing occurs when the foot passes directly beneath the body, coincidental with
midstance for the other foot.

8. Deceleration describes the action of the muscles as they slow the leg and stabilize
the foot in preparation for the next heel strike.

Thus, there are eight events, but these are sufficiently general to be applied to any type
of gait as shown in Table 4.1.

Table 1. Gait Cycle Events, [14]

Gait Phase % Duration

1. Initial contact - IC (0%)
2. Loading response - LR (0-10%)
3. Midstance - MS (10-30%)
4. Terminal stance - TS (30-50%)
5. Preswing - PW (50-60%)
6. Initial Swing - IW (60-70%)
7. Midswing - MW (70-85%)
8. Terminal swing - TW (85-100%)

4.2 Detection of Gait Cycle Based on Hidden Markov Model

Hidden Markov Models are well suited for gait analysis and recognition because of
their statistical properties and their ability to reflect the temporal state-transition nature
of gait. An HMM is defined as a doubly embedded stochastic process with an underly-
ing process that is not observable (i.e. it is hidden), but can only be observed through
another set of stochastic processes that produce the sequence of observations [17][18].
This means that the states underlying the data generation process are hidden and can
only be inferred through observations. HMMs are very common in several applications
such as speech recognition [18][19], biological sequence analysis [20], gesture recog-
nition [21], as well as human activity analysis [22].
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Fig. 5. The topology of the network used for gait analysis and recognition is based on a left-to-
right Hidden Markov Model

Based on the analysis of Subsection 4.1, the idea is to build a model that can dis-
tinguish between the different gait phases in order to analyze the normal gait cycle.
The number of phases used in this study are seven, since the Terminal Swing phase is
characterized by heel strike, which is an equivalent trigger as for Initial Contact phase,
meaning that these two phases (TW and IC) can be eventually treated as identical.
These seven gait phases, thus, correspond to the hidden states of the HMM. As observ-
ables, several quantities that represent the motion of the subjects’ legs are used. These
quantities are estimated using sequential signals from the laser range finder sensor that
collects appropriate data (such as relative position w.r.t. the laser, velocities, etc.), while
the rollator follows the subject’s motion.

Following the HMM notation, the transition probability matrix is defined as

A = {ai j}, where ai j = P[st+1 = j|st = i], for 1 ≤ i, j ≤ N,

where N is the number of states, and the (i, j) element of the matrix A represents the
transition probability from the ith state, at a given time step t, to the jth state at the
following time step (where t = 1,2, ...,T , and T denotes the total time). In the normal
gait cycle, the gait phases follow each other sequentially. Thus, this HMM is a left-to-
right model. This means that the only feasible transitions from a state i will be either to
remain in the same state or to jump to the following adjacent state, as depicted in Fig. 5.
The transition probability matrix, as well as the prior probability vector (i.e. the vector
of probabilities πi of the system being at state i at the initial time t0), are estimated using
the standard and well known Baum-Welch algorithm, [18].

Initial results obtained by applying this model in normal human gait data are very
promising [23], and demonstrate that this human data analysis scheme has the potential
to provide the necessary methodological (modeling, inference, and learning) framework
for a cognitive behavior-based robot control system. More specifically, the proposed
framework has the potential to be used for the recognition of abnormal gait patterns and
the subsequent classification of specific walking pathologies, which is needed for the
development of a context-aware robot mobility assistant.

5 Context-Aware Robot Control

All the subsystems and individual signal processing and control modules developed to
achieve some of the aforementioned functionalities need to be integrated seamlessly
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Fig. 6. Context-aware Mobility Assistant Architecture

into a full-scale robot control system. The current form of the overall functional robot
control architecture, encompassing all these submodules, is depicted in Fig. 6. One
of the most important characteristics of this system is that it must perform context-
aware operations, that is, it must reason and adapt its operational behaviour based on
the following information:

– environment state,
– user behaviour, physiological state, and action, plan, and intention recognition,
– user-robot interaction context (verbal or non-verbal, vocal or non-vocal, physical

or non-contact, etc.).

Two basic modules are currently being integrated and tested on the platform. Firstly,
all the methods and algorithms necessary to enable autonomous sensor-based naviga-
tion of the mobile robot assistant in an indoor domestic environment are being devel-
oped and integrated. These include: map creation and localisation on static or dynamic
maps, global path planning (using metric and/or topological map representations), ob-
stacle detection and on-line collision avoidance, and targeted (goal-oriented) motion
control supported by realtime path planning. Secondly, all methods and control algo-
rithms for physical user-robot interaction are being developed, Currently, an adaptive
admittance controller is being integrated on the platform, providing haptic collision-
avoidance assistance to the user. Indeed, the robot walking assistant is equipped with
two haptic interaction points (force/torque sensors on the two handles) and is able to
apply different assistance policies when physically supporting a user.

Non-physical user-robot interaction modules are also under development, meaning
that the mobility assistant does not necessarily have to be in continuous contact with
the user, but could accompany him/her while walking from one place to the other, only
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approaching the user to provide assistance when needed. Such user-accompanying as-
sistance behaviors are also being investigated, where the corresponding robot motion
controllers that will endow the mobility assistant with such user following functional-
ities are based on non-contact (mainly, laser rangefinder) sensor data. In more general
terms, several models of user assistance can be applied, and special emphasis is needed
on schemes that allow independently setting the cognitive and physical dominance lev-
els for the mobility assistant and thus, to take over different roles for workload sharing
and decision making.

6 Conclusions and Future Work

This paper reports current advances related to the development of a multimodal frame-
work for intelligent robotic mobility aids. The system aims to provide context-adaptive
and active walking/mobility assistance (standing up, walking, and sitting down) to el-
derly people (with and without enough strength to support and stabilize themselves).
In particular, the system will support autonomous and proactive control modes (for
instance, by incorporating user monitoring and fall prevention features), through multi-
modal sensory processing empowering intuitive human-robot interaction.

For further research, a reliable multimodal action recognition system needs to be en-
hanced, that will monitor and analyse human actions and predict user intentions with
a high level of accuracy and detail. Different modalities will be combined into an in-
tegrated action recognition system. The main thrust of our approach is based on the
enhancement of computer vision techniques with modalities that are broadly used in
robotics, such as range images and haptic data, as well as the integration of pattern
recognition modules focusing on specific verbal and non-verbal (gestural) commands
in the considered human-robot interaction context. A context-aware robot control archi-
tecture will be further developed to synthesize all these multimodal sensory processing
and pattern recognition modules into human-adaptive assistance models, aiming to pro-
vide optimal physical and/or cognitive support to the user.
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