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Abstract— This paper describes the general control architec-
ture and the basic implementation concepts of a bath service
robotic system. The goal of this system is to support and
enhance elderly’s mobility, manipulation and force exertion
abilities and assist them in successfully, safely and indepen-
dently completing the entire sequence of showering and drying
tasks, such as properly washing their back and lower limbs.
This service robotic system is based on soft-robotic arms which,
together with advanced human-robot force/compliance control
will form the basis for a safe physical human-robot interaction
that complies with the most up-to-date safety standards. In this
paper an overview of the bath robotic system components is
presented, and the basic modules that contribute to the overall
control architecture of the system are described. Moreover, this
paper proposed an algorithm that performs efficient processing
of feedback data provided by a depth sensor. This algorithm
supports local shape perception and geometric characterization
of user body parts and will form the basis for further imple-
mentation of surface reconstruction and robot motion planning
algorithms.

I. INTRODUCTION

Constant increase of life expectancy will cause a great

growth of the elderly population. This group of people along

with people with mobility disabilities are facing difficulties

in performing Personal Care Activities (PCAs) such as

showering, dressing, indoor or outdoor transferring, toilet-

ing and eating [1], [2]. The fulfillment of all these basic

needs induces the necessity of nursing care (both in-house

and clinical), great family financial burden and augmented

requirements for nursing staff.

Body washing care (showering or bathing) is a very

demanding procedure in terms of effort and body flexibility,

so it is included among the first PCAs that are lost [1].

Robotics society has already given some answers to this early

but basic PCA disability, by proposing several health care

and rehabilitation solutions with physical interaction either

static [3]–[5], or portable solutions [6], mounted on a wheel

chair or a mobile robot [7], [8]. These solutions are mostly

focused on washing specific body parts, to the treatment of

particular skin diseases, or to support other PCAs such as

eating or shaving. Furthermore, all these robotic systems
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Fig. 1: Overview of the robotic bath system installed in a

shower room.

employ rigid robotic manipulators for the interaction with

the user.

The integration of soft robot arm technologies [9]–[11] to

applications with physical contact with the user is not only

innovative but also challenging, since all the proper technical

adaptations should be considered, in order to meet the safety

standards and the ease of use in showering activities. The

control of a soft arm [11]–[13] in a dynamically changing

environment is a challenging task, because multiple levels of

control schemes should be taken into account, such as shape

[14], stiffness [15], position, motion and path planning [16],

and force/impedance control [17].

In this paper a brief description of the under construction

bath service robotic system devices (Fig. 1) is provided based

on [18], along with an overview of the control architecture

of the system. Additionally, an algorithm is proposed that
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takes advantage of the octree data structure in order to

efficiently process user perception data obtained from Kinect

depth cameras and calculate local attributes that characterize

a region of interest geometrically. The proposed service

robotic system envisions to provide whole body showering

assistance, ameliorating the daily life of frail parts of the

population by increasing their independency and personal

hygiene. The adaptation of the system to the user needs

and preferences together with the integration of appropriate

washing techniques demonstrated by professional carers is

a multi-parametric problem and simultaneously a delicate

issue, since the system should equilibrate between the proper

elderly treatment and technical goals fulfillment.

II. SYSTEM DESCRIPTION

The functionalities of the overall system can be classified

into two basic tasks:

(i) elderly mobility assistance in the showering space,

with provision of appropriate transfer activities,

such as sit-to-stand or stand-to-sit and human pose

adjustment,

(ii) showering abilities enhancement, e.g. pouring wa-

ter, soaping, body part scrubbing, etc.

In different operational modes of the system the degree

of automation will vary according to the user abilities

and preferences and a proper combination of the devices

described below, will be used. The three basic devices, that

constitute the robotic system, are accomplishing shower tasks

and will meet the motion and force requirements, Fig. 1 and

are briefly described below:

(a) Motorized shower chair: a motorized chair ded-

icated to the provision of the stand-to-sit and sit-

to-stand functionality, for in-shower mobility en-

hancement and safety,

(b) Robotic shower hose: a soft robotic arm dedicated

to specific showering activities, for example pour-

ing water, soaping etc.,

(c) Robotic washer/wiper: a soft robotic arm dedi-

cated to the provision of scrubbing wiping, drying

etc., functionality.

The construction of the robotic arms will be based on

soft materials (silicon, rubber etc.), which are more user

friendly and are generating little resistance to compressive

forces, [9], [10]. The actuation of the robotic arms will be

based on tendons and pneumatic chambers. Combining these

actuation techniques, the required dexterity is given to the

soft-arm and adjustable stiffness in different sections of the

arm can be achieved. This property can allow diversified

behaviour between the sections of the soft-arm. The sections,

that will have physical interaction with the human, will

exhibit low stiffness, while sections that are responsible

for supporting the payload (e.g. for gravity compensation)

will exhibit high stiffness. In addition, customizable physical

interaction in terms of contact forces can be achieved, by

varying the stiffness of the robotic arm during the showering

task execution.

Kinect depth cameras, mounted on the wall of the shower

room in a proper configuration, as depicted in Fig. 1, will

provide visual feedback to the system, by providing multi-

camera view of the user. It is significant from an ethical point

of view, that information only from depth measurements will

be used and not from RGB camera, since depth measure-

ments capture the shape and the geometry of the user and do

not capture face and body features, revealing user’s personal

information. The visual information is a prerequisite not

only for the human/robot perception algorithms (e.g. body

part recognition and segmentation [19]–[21]), but also as a

feedback closing the loop of the robot control algorithms.

Furthermore, the human-system interaction will be enhanced

by audio and action/gestural commands recognised via an

array of microphones and the obtained depth measurements

respectively. This integrated cognition system will give the

appropriate assistance to the frail senior citizens, by in-

terpreting the user’s intent and preferences. This goal will

be achieved by the development of cognitive robotic and

learning algorithms action and gesture recognition.

The system will be able to operate in three different

modes, i.e. Autonomous, direct Tele-manimultation, Shared

interaction mode. In the Autonomous mode the system will

execute the whole sequence without obtaining any input

from the user, except for the emergency situations. More-

over, the operational mode can be switched to direct Tele-

manipulation by using a remote controller, i.e. a lightweight

remote controller similar to those used in video games (e.g.

Wiimote), that can give the soft robotic arms the desired

motion commands depending on the task of the showering

sequence. The latter operational mode (i.e. Shared Inter-

action) includes the enrichment of human-robot interaction

with a degree of autonomy, that will assist the elderly user

during the task execution. In particular, if the user wants

to wash him/herself, he/she will guide the soft arms to an

appropriate position and then will grab and move the soft-

arm, through direct physical (haptic) interaction. The robot

controller is responsible for performing gravity and friction

compensation, in order to ameliorate the haptic feeling this

interaction creates.

III. CONTROL ARCHITECTURE

A modular, multilayered control architecture, as depicted

in Fig. 2, is considered to deal with the interrelating multiple

control levels of the system (i.e. shape, stiffness, position,

and force/impedance control).

Decomposing this control architecture in a top-down

sense, Fig. 2, the higher level module of the control ar-

chitecture is the Supervisory Control Unit. This is an event

based unit, that has an overview of the system and has also

continuous communication with the user interfaces. Events

are called all the possible situations that change the state

of the system, for example emergency signal handling or

user interaction commands (e.g. Voice instruction, Gestural

command, Tele-manipulation input, etc.). One of the basic

functionalities of this unit is to specify the operational mode

714



Fig. 2: Overview of the Bath Robotic System Control Architecture.

of the system and the body part onto which the robot will

operate, selected via the user interface.

The medium level of the control architecture includes the

Task Level Planning Module. This module is based on three

components:

1) the operational mode (e.g. Autonomous, Tele-

manipulation, Shared Interaction),

2) the operational body area (e.g. back region, lower

limbs), and

3) the specific sequence of washing execution.

The former two components are obtained as an input from

the Supervisory Control Unit. In the latter component the

washing execution sequence (e.g. initial position, pouring

water, scrubbing, rinse, and dry) is determined by a Finite

State Machine (FSM) framework. Each subtask of the execu-

tion sequence is planned based on several parameters such as

Motion Primitives information [22], [23], Robot/User percep-

tion using the sensory infrastructure and collision avoidance

techniques, in order to plan the proper motion of the Soft-

Arm end-effector for a specific part of the sequence. The

resulting motions will be simpler than the final trajectories

that the end-effector of the robot will track.

In the Robot Motion Commands module, the Robot Mo-

tion Programming Submodule and the Interaction Control

Submodule will be implemented. In this part, information

regarding the desired end-effector trajectories from the Task

Level Planning Submodule, the robot localization (position,

motion, shape) from the Robot Pose Estimation Submodule,

and force feedback information directly from the Sensor

Fusion module will be received. Initially, the Robot Motion

Programming Submodule will implement functionalities re-

garding position control, to ensure trajectory tracking with

global convergence, collision avoidance and shape control

of the Soft Robotic Arm. In addition, the Interaction Control

Submodule will be responsible for the Soft Robotic Arm

stiffness control, dynamic impedance/admittance integrating

user adaptive features, implementing a hybrid force/position

control. The output of this control level will be the actual

3D end-effector trajectories, reference shape and interaction

commands (e.g. force and stiffness commands). The lower

module of the architecture includes the implementation of

the controllers of the motorized chair and the Soft-Arm.

These controllers will be responsible for the realization of the

reference commands obtained as an input from the previously

described modules, by giving the appropriate motor, tendon

and pressure commands respectively. In the next section, we

present our first approach on data handling obtained from

the depth sensors and on the characterization of the surfaces

of interest (i.e. body parts), which is a prerequisite for robot

motion planning.

IV. BODY PARTS REGION CHARACTERIZATION

FOR ROBOT MOTION PLANNING

The general scope of robot motion planning includes

the definition of a feedback dynamic control law (given

the soft-arm kinematic input constraints and the operating

environment), that allows the end-effector of the arm to

execute surface tasks such as navigating to any feasible

body part point, tracking a predefined trajectory and at
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Fig. 3: Volume representation using the Octree data structure.

Each level of the tree structure has direct correspondence to

the division of the physical space.

the same time being compliant with this body part. This

task is challenging, since many difficulties are to be faced.

Firstly, we have to deal with non-planar operating surfaces,

as it is shown in Fig. 4, the motion of the user, either

systematic (e.g. breathing) or random motions of several

body parts. Additionally, we have to cope with multiple

depth cameras registration and efficient data processing. An

extended analysis of the accuracy of the Kinect depth sensor

is provided in [24]. Another particularly important task is

body parts segmentation, which is a prerequisite not only for

decision making in the Supervisory Control Unit but also for

motion planning, is the body parts segmentation and labeling,

[19]–[21]. Segmentation algorithms use as training data a

great amount of depth images depicting the user in different

poses and perform segmentation and labeling of the regions

of interest, providing as an output Point-Cloud data of the

recognized body parts as shown in Fig. 4.

A. Proposed Approach

The proposed approach, that meets the above mentioned

challenges, is a grid based, incremental 3D mapping ap-

proach, which exploits the advantages of the Octree data

structure, [25]. All the Point-Cloud data obtained from the

depth sensors are inserted in the octree. Each leaf node of this

tree structure corresponds to a certain volume defined by the

resolution of the tree, as depicted in Fig. 3. For example, the

leaves of an octree with resolution α correspond to a cube

with edge of α meters. Every intermediate node divides the

space into eight octants and its volume equals to the sum of

the volumes of its children.

Moreover, the octree data structure can perform a down

sampling of points due to its resolution attribute (e.g. two

different points whose distance is less than the resolution

will both be assigned to the same node), dealing with

the high number of points coming as an input from the

depth sensors and resulting in higher efficiency. This multi-

resolutional representation of the environment, except for a

simple 3D occupancy grid, can also give collision detection

benefits, since the traversal of the tree at higher levels can

give direct occupancy feedback related to bigger volumes

and possible obstacle inflation, leading to safer obstacle

avoidance techniques.

(a) (b)

(c) (d)

Fig. 4: Point-Cloud representation of the back of the seated

subject. (a) Subject is seated with its back straight. (b)

Subject is seated with its back bending forward. (c) Subject

twists its back right (occlusion of the right arm in the field

of view). (d) Subject twists its back left (occlusion of the

left arm in the field of view).

The surface characterization of the regions of interest, that

result from the segmentation algorithm mentioned above,

is implemented by calculating local attributes (e.g. normal

vector) in proper neighborhoods of points (according to the

task execution and the actual size of the body part) already

stored in the octree. The sense of space is conceived in

the octree data structure, therefore the notion of vicinity

has direct correspondence to the physical environment. Each

calculation is implemented by gathering a group of points p
that lie within a certain volume:

pk = [xk yk zk]
T � [pk

x pk
y pk

z ]
T

where xk, yk, zk, are the cartesian coordinates for the number

of points k = 1, ...,n, and applying eigenvalue decomposition

to the covariance matrix computed from these points, as

follows:

C =

⎡
⎣

Cxx Cxy Cxz
Cyx Cyy Cyz
Czx Czy Czz

⎤
⎦ ,
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TABLE I: Results: Computational Aspects

Number of Insertion Initialization
Points Time (s) Time (s)

50718 0.0119 0.084

Algorithm performance parameters in terms of time. The average
number of points per frame is presented along with the Insertion
time required for the storage into the Octree data structure and
the Initialization time for the computation of the local geometrical
attributes.

where

Ci j =
1

n

n

∑
k=1

(pk
i −mi)(pk

j −m j),

and

m =
1

n

n

∑
k=1

pk � [mx my mz]
T

with i, j = {x,y,z}. The eigenvectors resulting from this

decomposition will correspond to the principal axis of the

gathered data and the length of each axes is determined by

the square root of the corresponding eigenvalue. In particular,

the local normal direction is the axis that corresponds to

the minimum eigenvalue, i.e. the direction of minimum

variance of the data, and the rest two of the components are

defining the tangential plane of the considered region. These

attributes are calculated in every level of the tree, providing

more detailed attributes in lower levels and more abstract in

higher levels taking into account bigger parts of the region

describing the body part.

B. Results

In order to test the proposed approach, an experimental

setup is used that includes a Kinect camera recording and

providing depth data for the back of a randomly moving

subject. The segmentation of the back region of the subject

is implemented, for the purposes of of this experiment, by

simply keeping the points within a window of the camera

field of view, as shown in Fig. 4.

In Table I, the time performance results of the algorithm

are presented. The depicted values are the average over all

the frames. Both the insertion of the points into the tree and

the multi-level attribute estimation (i.e. Initialization Time)

execution times are low (at the order of 10 and 80 msecs,

respectively), making the proposed computationally efficient

for online procedures. It means that the overall algorithm,

as currently implemented, can run in near real-time (10Hz).

The execution times were measured in a computer system

with Intel(R) Core(TM) i7-4710HQ CPU @ 2.50 Ghz and

16Gb Ram. Experimental results of the body part region

characterization algorithm are depicted in Fig. 5. The green

vectors correspond to the normal, while the blue and the

red vectors correspond to the other two principal axis that

characterize the considered region. The length of each vector

is calculated through the corresponding eigenvalue, giving a

rough idea of the geometric structure of the region. Despite

(a) (b)

(c) (d)

Fig. 5: Point-Cloud representation of the back of the seated

subject with one resolution level of local geometric attributes

overlaid on the data, for the same subject configurations (a)

to (d) depicted in Fig. 4. (a) Subject is seated with its back

straight. (b) Subject is seated with its back bending forward.

(c) Subject twists its back right (occlusion of the right arm in

the field of view). (d) Subject twists its back left (occlusion

of the left arm in the field of view).

the motion of the subject (e.g. twisting Fig. 5(d), Fig. 5(c),

and bending Fig. 5(b)) and the upper arms occlusion, the

algorithm is able to calculate robust attributes locally.

V. CONCLUSIONS

This paper presents a modular description of a bath robotic

system emphasizing on the basic components that contribute

to the control of the system. Moreover, a brief description

of the overall control architecture is given and an efficient

data manipulation and region characterization algorithm is

proposed. This algorithm is the initial step for several surface

reconstruction and robot motion planning algorithms. For

further research we aim to reduce the complexity of the

problem by planning motions on a 2D “canonical” space,

learned by demonstration of professional carers, with the

aid of Dynamic Motion Primitives (DMP) approach [26],
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[27]. The planned trajectories will be transformed to the task

space, i.e. the region that the robot will operate. The latter

procedure should take into account the motion of the user

and be adaptive to the user needs. The tracking of these

trajectories will be implemented by hybrid (force/position)

control schemes. The above described approach along with

the integration of cost-effective, soft-robotic arms will pro-

vide an innovative and safe solution for assisting frail older

adults in showering activities, improving their quality of life.
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