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Abstract—Data-driven policy making is considered one of the 

most important aspects of decision-making systems and, as such, 

a lot of research is being carried out to provide the right tools and 

techniques to support it and make it more efficient. Towards this 

direction, the utilization of Artificial Intelligence (AI) approaches 

is widely being adopted to enhance current policies, create new 

ones and provide more accurate results. However, the way that 

those results are generated is often considered a black box, since 

the AI models are complicated, and the policy makers are not able 

to understand the reasoning behind the extracted results. To this 

context, Explainable AI (XAI) models have made their way into 

decision-making systems to address the aforementioned challenge. 

XAI, as its name suggests, provides the explanations with regards 

to the way that an AI model generates its results, thus enabling the 

end users to better understand its output. Nevertheless, XAI is not 

able to ensure the trustworthiness of an AI model’s output on its 

own, since the provided explanations, as well as the output of an 

AI model could potentially be malformed by a third party. To this 

end, in this paper the authors propose an approach for data-driven 

policy making that combines XAI with blockchain technology in 

order to not only provide explanations for the output of an AI 

model, but also ensure this output, and the corresponding 

explanations, are reliable. 
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machine learning, policy making 

I. INTRODUCTION 

According to a very recent survey [1], the AI market is 
around 244 billion US dollars in 2025 and is expected to reach 
and exceed the astonishing amount of 800 billion US dollars by 
2030, thus highlighting the adaptation of AI technologies in 
different domains and for a wide range of tasks. With regards to 
the policy making domain, AI models are utilized to foster the 
whole process and provide data-driven insights. The utilization 
of such models is expected to grow exponentially, thus it is 
imperative that their output should be explained to the policy 
makers and not remain a black box [2]. Towards this direction, 
XAI approaches are usually adopted to tackle this challenge and 
provide insights with regards to the output of AI models. 

Even though XAI approaches are a significant step towards 
trustworthy data-driven policies, they are not capable of 

ensuring the reliability of neither the AI models output, nor the 
integrity of the explanations that they provide. Systems that 
incorporate AI models to support policy makers, are usually 
deployed on a cloud infrastructure to which the policy makers 
have access over the Internet, through the corresponding User 
Interface (UI). This poses a great risk to the trustworthiness of 
the models’ output and the corresponding explanations (given 
that XAI is also adopted), since they can be malformed by any 
third-party. Ensuring the trustworthiness of the predictions and 
the explanations could be achieved by utilizing technologies like 
blockchain, which has already been used for validating data 
integrity [3]. 

To this end, in this paper the authors propose an approach 
for combining XAI with blockchain technology towards the 
formulation of trustworthy data-driven policies. The approach is 
incorporated into a developed policy making platform with a 
corresponding UI and is validated through specific use cases 
with regards to water management policies, thus highlighting its 
effectiveness and adaptability to real-life scenarios. 

The rest of this paper is organized as follows. Section I 
briefly describes the problem statement and the proposed 
approach. In Section II, a literature review is conducted, focused 
on the utilization of XAI and blockchain technology in the 
context of policy making. In Section III the proposed approach 
is analyzed along with the corresponding architecture, whilst in 
Section IV results from the deployment of the proposed 
approach in real-life use cases with regards to water 
management policy making are presented. Finally, Section V 
summarizes this research work and provides insights regarding 
potential future steps. 

II. LITERATURE REVIEW 

A. Explainable Artificial Intelligence (XAI) 

XAI consists of a set of algorithms and techniques that aim 
to support humans in better understanding and thus, trusting 
Machine Learning (ML) models. XAI has gained popularity 
over the last year, being applied in a plethora of different use 
cases, including policy making. For example, the authors in [4] 
develop an explainable and regulatory compliant approach for 



public policymaking in the context of smart parking and 
infrastructure maintenance. Similarly, XAI can also be adopted 
in developing evidence-based policies in finance [5], health [6] 
and education [7]. The abovementioned highlight the 
applicability of XAI approaches in the formulation of new 
policies and the enrichment of existing ones. 

XAI approaches can be classified in one of the categories of 
data explainability or model explainability [8]. With regards to 
data explainability, this can be achieved by performing 
exploratory analysis and visualizations on the data, as well as 
dimensionality reduction techniques. As for model 
explainability, there exist the white box models that are self-
explanatory, such as the Decision Tree (DT) algorithm or linear 
models [9], and black box models that are inherently complex 
and difficult to explain, such as Support Vector Machine (SVM) 
[10]. As for the latter, those can be explained either by featured-
based techniques or by example-based techniques. 

Feature-based techniques include feature importance, Partial 
Dependence Plots (PDPs), Individual Conditional Expectation 
(ICE) plots, Accumulated Local Effects (ALEs), Global 
Surrogates, Local Interpretable Model-Agnostic Explanations 
(LIME) and SHapley Additive exPlanations (SHAP). More 
specifically, feature importance is a type of measure that 
identifies the way that the change of a feature’s value affects a 
model’s outcome with comparison to other features [11]. Similar 
to feature importance, PDPs are graphs that allow end users to 
visually inspect and understand possible complicated 
connections between feature values and a model’s output [12]. 
Another type of plots that are used in XAI are ICE plots. The 
key difference between PDPs and ICE plots is the fact that the 
latter focus on individual data instances, while PDPs identify the 
average effect that data instances have on the corresponding 
predictions [13]. ALEs are also a type of plots used for 
explainability that are preferred over PDPs when it comes to 
highly correlated data [14]. As for Global Surrogates, those are 
interpretable models that are built across an entire data domain 
in order to provide a high-level view of the given task that the 
corresponding black box model aims to solve [15]. LIME is a 
type of local surrogate model that locally approximates a model 
with an interpretable one, thus explaining the corresponding 
predictions [16]. On the other hand, SHAP assigns values to 
each feature to indicate its contribution to a model’s output. As 
a result, it can be used to provide both global and local insights 
on a given model [17]. 

With regards to example-based techniques, those mainly 
consist of Anchors, Counterfactuals, Contrastive Explanations 
Method (CEM), Kernel and Tree SHAP, as well as Integrated 
Gradients (IG). Anchors focuses on producing conditions (i.e., 
anchors) for explaining a model’s prediction for a specific data 
instance, thus providing local explanations [18]. Counterfactual 
Explanations describe an outcome by also considering 
alternative events that could potentially occur. They provide 
explanations regarding the way that an outcome of an automated 
decision could be changed [19]. CEM is another type of XAI 
approach for local explanations that focuses mostly on 
classification models and features that are preferable (i.e., 
pertinent positives) and unwanted (i.e., pertinent negatives) [20]. 
Tree and Kernel SHAP are both variations of the SHAP. Tree 
SHAP is faster but can only be used in tree-based algorithms, 

whilst Kernel SHAP is model-agnostic and can explain 
anomalies by using Shapley values [21]. Lastly, IG computes 
the integral of gradients along the path from a baseline input to 
the actual one in order to calculate the importance of each 
feature to a model’s prediction [22]. 

B. Blockchain Technology 

Blockchain is a shared and decentralized ledger that is 
immutable and is based on hashing [23]. This means that any 
transactions that are recorded cannot be altered without 
changing all the other subsequent blocks and the consensus of 
the corresponding network. Blockchain technology is the 
foundation of all the cryptocurrency-related platforms and 
platforms that utilize smart contracts. However, in recent years 
blockchain has found its way into different domains that are not 
associated with cryptocurrencies [24].  

In deeper detail, blockchain is widely used in applications in 
financial services. Indicative examples include fraud prevention, 
credit score calculations, transactions monitoring and identity 
management and management of digital assets [25]. 
Furthermore, blockchain can be applied to the education domain 
in terms of data protection and scalability, since it allows the 
creation of decentralized education ecosystems while it supports 
credential issuance and management. Moreover, through 
blockchain, it is possible to digitalize and decentralize 
educational certifications, as well as manage learning records 
[26]. With regards to the healthcare domain, blockchain has 
been adopted in the corresponding systems in order to facilitate 
the sharing of records and images and support the monitoring of 
patients through Internet of Things (i.e., IoT) devices, whilst 
ensuring the secure transfer of the corresponding information 
[27]. It is also worth mentioning the exploitation of blockchain 
in digital data marketplaces [28], [29] to support decentralized 
and programmable data assets’ trading and pricing. 

As for the environment, blockchain has also been adopted in 
related use cases such as waste management and water 
management. More specifically, blockchain can be combined 
with several waste management methods to encourage 
efficiency and accountability when handling plastic and 
electronic waste [30]. What is more, blockchain can support the 
recycling process in smart cities, by using digital asset tokens 
that provide traceability to the generated waste and the way that 
they are being processed, thus ensuring the protection of the 
environment for pollution [31]. As for water management, 
blockchain has been used to monitor shared water resources and 
ensure that they are effectively coordinated between different 
communities [32]. Blockchain-related approaches have also 
been adopted to support the management of both agricultural 
and urban water and ensure the corresponding quality, as well as 
contribute to achieving Sustainable Development Goals (SDGs) 
related to hydrology [33]. 

As for combining XAI with blockchain to ensure 
trustworthiness, there exist several approaches in the literature, 
focusing on domains such as finance [34] and healthcare [35]. 
However, there seems to be a lack of blockchain approaches that 
utilize state-of-the-art XAI methods to ensure the 
trustworthiness of generated predictions and explanations, 
especially in environment-related domain such as water 
management. To this end, the authors of this paper propose a 



platform that utilizes self-explaining Recurrent Neural 
Networks (RNNs) [36] to make predictions about different 
aspects of water management and blockchain technology to 
ensure the trustworthiness of the said predictions and the 
corresponding explanations. 

III. PROPOSED APPROACH 

The architecture of the proposed approached is depicted in 
Fig. 1 and analyzed below. 

 

Fig. 1. Proposed approach architecture 

More specifically, the sensor data coming from the 
appropriate smart devices (e.g., sensors located inside smart 
bins) are gathered through the corresponding Application 
Programming Interface (API) and are being preprocessed and 
cleaned to ensure their reliability, exploiting the approaches of 
[37] and [38]. Afterwards, the data are used to train the self-
explainable model while they are also being used to finetune it, 
whenever new data are available. In the context of this 
manuscript, the self-explainable model is a Long Short-Term 

Memory (LSTM) Recurrent Neural Network (RNN) [39] that 
consists of two (2) LSTM layers and a third component called 
“explanation component”, which is responsible for providing 
sufficient explanations, as presented in [40]. The output of the 
model (i.e., the predictions, the sufficient explanations and a plot 
(i.e., heatmap) showcasing the explanations) are also fed into a 
Large Language Model (LLM) to generate a textual explanation 
of them that is easily understandable by the end users. The 
explainability report (i.e., the textual explanation and the 
heatmap), as well as the predictions generated by the model are 
then anchored to the blockchain. Those are also available to the 
end users through the corresponding UI, through which the end 
users can validate the illustrated results with the results that were 
previously anchored to the blockchain. If the validation fails, 
this means that someone has altered the predictions and/or the 
explainability report that are available through the UI, thus they 
should not be trusted. On the other hand, if the validation 
succeeds, the end users can trust the illustrated results, since 
those are identical to the ones that are anchored to the 
blockchain, meaning that they have not been tampered with by 
any third-party.  

A. Self-explainable Neural Network 

As mentioned above, the model used for generating the 
predictions is an LSTM RNN which consists of two (2) LSTM 
layers and a third component called “explanation component”, 
which is responsible for providing sufficient explanations. Both 
the input and the output of the model are based on the needs of 
the corresponding use case. More specifically, in order to 
generate forecasts, the LSTM RNN has a predefined input size, 
based on the number of features present in the dataset, as well as 
the number of past records needed to perform the corresponding 
forecast. As for the output size, this is also related to the number 
of features that need to be predicted, as well as the forecast 
horizon (i.e., the future time steps for which the predictions are 
made). The “explanation component” makes the model self-
explainable since it enables it to generate the explanations along 
with the predictions. This particular XAI method is ante-hoc, 
since the model is intrinsically explainable, compared to other 
XAI approaches that are post-hoc, meaning that they are applied 
after the model training is performed. It is also worth mentioning 
that common local post-hoc XAI methods, such as LIME and 
SHAP, have a significant drawback when compared to the XAI 
method that is used in this proposed approach. This drawback 
lies in their implicit assumption of near-linear behavior of the 
model around the analyzed input [41], which may not apply to 
highly non-linear contemporary deep learning (i.e., DL) models 
like the LSTMs that are trained in this manuscript. 

The predictions and the explanations are incorporated into a 
heatmap and are also fed into an LLM to provide a textual 
explanation of the heatmap and the corresponding predictions so 
that the end users can easily understand them. The LLM that is 
used is the Microsoft Phi-3-Mini-4K-Instruct [42], which is 
finetuned specifically for memory/compute constrained 
environments. The generated heatmap and the textual 
explanation are then incorporated into the explainability report, 
which, along with the generated predictions, are included into a 
JavaScript Object Notation (JSON) file that is both anchored to 
the blockchain and returned to the end users and visualized 
through the corresponding UI. 



B. Blockchain 

To ensure the validity, and immutability of the model’s 
output with a transparent way, a data anchoring mechanism is 
leveraged using blockchain technology, as mentioned above. 
Specifically, the anchoring process involves storing a 
cryptographic hash as a digital fingerprint of the model’s output 
on the blockchain. This approach allows verification of the data 
integrity without exposing the content itself. The blockchain 
infrastructure adopted in this work is Hyperledger Fabric (HLF). 
HLF is an open-source, permissioned Distributed Ledger 
Technology (DLT) tailored for enterprise applications. Its 
modular and highly configurable architecture supports Smart 
Contracts, referred to as “chain code” within the HLF ecosystem 
[43]. 

Two (2) categories of data are relevant in this context: on-
chain and off-chain. On-chain data is stored directly within the 
blockchain ledger, while off-chain data resides in external 
storage systems, such as databases or file servers. In the off-
chain approach, a reference which could be a hash (e.g., SHA-
256) is written to the blockchain, linking it to the externally 
stored data. The off-chain model is particularly advantageous in 
terms of scalability and resource efficiency, as it minimizes the 
volume of data stored on-chain. Despite being stored externally, 
the integrity of the off-chain data can be reliably verified by 
comparing it with its corresponding on-chain hash. If the 
recalculated hash of the retrieved off-chain report does not 
match with the blockchain record, it indicates that the data has 
been tampered. In the case of the model’s output, this 
mechanism ensures their authenticity and provenance. Every 
time an explainability report and a prediction are generated, their 
hash is recorded on the blockchain. This immutable hash then 
serves as a verification anchor, allowing any end user to confirm 
that the report has not been malformed since its original creation. 

IV. EXPERIMENTAL RESULTS 

A. Performance Evaluation 

The proposed approach was tested and validated in two (2) 
use cases related to water management, in the context of the 
European-funded project AI4Gov [44]. The first use case is 
related to drinking water management and the goal is to predict 
the quality of the water based on data received from sensors that 
are installed in Drinking Water Treatment Plants (DWTPs). The 
data consist of six (6) features, namely observation date, entity 
ID, pH, chlorides, water level and instant output quantity. The 
observation date corresponds to the date that the corresponding 
measurement refers to, and entity ID refers to the ID of the 
treatment plant, since the data originate from sensors installed in 
three (3) different treatment plants. The other four (4) features 
are related to the quality of the water and are the ones that need 
to be predicted by the RNN. The data are timeseries data ranging 
from 2022 up to 2023, whilst the frequency is one (1) hour. An 
overview of the dataset is shown in Table I, including the 
number of values per feature (i.e., Count), the mean and the 
standard deviation (i.e., Std) of each feature, as well as the 
minimum (i.e., Min) and the maximum (i.e., Max) value of each 
one. 

 

 

TABLE I.  DESCRIPTION OF DRINKING WATER MANAGEMENT DATASET 

Feature Count Mean Min Max Std 

observation 
date 

20235 - 01/06/2022 08/03/2023 - 

entity ID 3 - - - - 

pH 20235 7.65 7.03 8.29 0.30 

chlorides 20235 0.65 0.01 5.00 0.32 

water level 20235 91.23 0.07 115.64 7.88 

instant 
output 

quantity 
20235 13.07 0.60 50.40 12.68 

 
With regards to the second use case, this is related to sewage 

water management and the goal is to predict the energy 
consumption of Wastewater Treatment Plants (WWTPs) based 
on data received from sensors that are installed in the WWTPs. 
The data also consist of six (6) features, namely observation 
date, entity ID, consumed energy, reactive energy consumed, 
total active power and total reactive power. The observation date 
corresponds to the date that the corresponding measurement 
refers to and entity ID refers to the ID of the treatment plant, 
since the data originate from sensors installed in three (3) 
WWTPs. The other four (4) features are related to energy 
consumption of the WWTPs and are the ones that need to be 
predicted by the RNN. The data are timeseries data ranging from 
2019 up to 2020, whilst the frequency is one (1) day. An 
overview of the dataset is shown in Table II, including the 
number of values (i.e., Count), the mean and the standard 
deviation (i.e., Std), as well as the minimum (i.e., Min) and the 
maximum (i.e., Max) value of each feature.  

TABLE II.  DESCRIPTION OF SEWAGE WATER MANAGEMENT DATASET 

Feature Count Mean Min Max Std 

observation 
date 

522 - 
05/12/201

9 
01/06/2020 - 

entity ID 3 - - - - 

consumed 
energy 

522 307284 7661 859364 355311 

reactive 
energy 

consumed 
522 297595 6939 784176 313010 

total active 
power 

522 3406 2 20118 4171 

total 
reactive 
power 

522 3735 2 16865 4080 

 
In the context of this manuscript, several self-explainable 

LSTMs have been trained, one for each DWTP and WWTP. All 
LSTMs have similar architectures, however, there exist some 
differences that are analyzed below. 

In deeper detail, regarding the drinking water use case, the 
input of the corresponding LSTM is twenty-four (24) past 
observations, and the output is the predicted values per each of 
the four (4) features (i.e., pH, chlorides, water level and instant 
output quantity) for a time horizon of six (6) hours into the 



future. Apart from the predicted values, the LSTM also provides 
the corresponding sufficient explanations that describe which of 
the input values, including the corresponding time points, 
directly affect the provided predictions. 

As for the sewage water use case, the input of the LSTM is 
seven (7) past observations, and the output is the predicted 
values per each of the four (4) features (i.e., pH, chlorides, water 
level and instant output quantity) for a time horizon of one (1) 
day into the future. Apart from the predicted values, the LSTM 
also provides the corresponding sufficient explanations that 
describe which of the input values, including the corresponding 
time points, directly affect the provided predictions. 

There existed two (2) options for training the corresponding 
LSTMs for both the use cases. The first approach was to train a 
global model per use case based on the three (3) entities that 
exist in each use case. The other option was to train a separate 
LSTM per entity. In order to select the best approach, rigorous 
experiments were conducted so that the best approach was 
selected in terms of Mean Square Error (MSE). A 
summarization of the results of the testing datasets for the 
drinking water and the sewage water are depicted in Table III 
and Table IV respectively. All the LSTM architectures were 
implemented using PyTorch [45] and in each experiment 
different learning rate and gamma value were used. The gamma 
value is used in the “explanation component” and acts as a 
weight for the regularization term that influences the sparsity of 
the explanations. As for the optimizer that was utilized, this was 
the Adam optimizer, since it is a widely used one in LSTMs for 
time series forecasting [46].  

TABLE III.  CALCULATED MSE FOR DRINKING WATER FORECASTING 

MODELS 

Entity ID Learning 
rate 

Gamma 
value 

Epochs MSE 

ALL 1.00E-04 1.00E-06 7 0.3839 

1.00E-04 1.00E-07 4 0.3854 

1.00E-04 1.00E-08 3 0.3877 

1.00E-05 1.00E-06 1 0.3984 

1.00E-05 1.00E-07 3 0.3926 

1.00E-05 1.00E-08 1 0.3967 

DWTP1 1.00E-04 1.00E-06 3 0.0350 

1.00E-04 1.00E-07 5 0.0061 

1.00E-04 1.00E-08 1 0.0146 

1.00E-05 1.00E-06 13 0.0018 

1.00E-05 1.00E-07 26 0.0042 

1.00E-05 1.00E-08 24 0.0034 

DWTP2 1.00E-04 1.00E-06 1 0.1940 

1.00E-04 1.00E-07 4 0.1434 

1.00E-04 1.00E-08 1 0.3096 

1.00E-05 1.00E-06 10 0.0707 

1.00E-05 1.00E-07 38 0.0306 

1.00E-05 1.00E-08 11 0.0343 

DWTP3 1.00E-04 1.00E-06 1 0.7485 

1.00E-04 1.00E-07 2 0.5751 

1.00E-04 1.00E-08 4 0.4493 

1.00E-05 1.00E-06 15 0.5492 

1.00E-05 1.00E-07 14 0.3919 

1.00E-05 1.00E-08 89 0.0303 

TABLE IV.  CALCULATED MSE FOR SEWAGE WATER FORECASTING 

MODELS 

Entity ID Learning 
rate 

Gamma 
value 

Epochs MSE 

ALL 1.00E-04 1.00E-06 9 0.7899 

1.00E-04 1.00E-07 3 0.7919 

1.00E-04 1.00E-08 1 0.8111 

1.00E-05 1.00E-06 14 0.7861 

1.00E-05 1.00E-07 2 0.7915 

1.00E-05 1.00E-08 4 0.7982 

WWTP1 1.00E-04 1.00E-06 17 1.4561 

1.00E-04 1.00E-07 1 1.3187 

1.00E-04 1.00E-08 5 0.1806 

1.00E-05 1.00E-06 7 1.6138 

1.00E-05 1.00E-07 1 1.4599 

1.00E-05 1.00E-08 3 1.8775 

WWTP2 1.00E-04 1.00E-06 3 0.8389 

1.00E-04 1.00E-07 7 0.8148 

1.00E-04 1.00E-08 3 0.9392 

1.00E-05 1.00E-06 7 1.0009 

1.00E-05 1.00E-07 4 0.9704 

1.00E-05 1.00E-08 2 0.8957 

WWTP3 1.00E-04 1.00E-06 1 0.0979 

1.00E-04 1.00E-07 9 0.0862 

1.00E-04 1.00E-08 3 0.8596 

1.00E-05 1.00E-06 17 0.8474 

1.00E-05 1.00E-07 1 0.8334 

1.00E-05 1.00E-08 1 0.8453 

 
According to the results of the experiments, a global model 

is underperforming when compared to custom models that are 
trained on each DWTP and WWTP. As a result, based on the 
corresponding MSE values, the models that are highlighted with 
grey color in Table III and Table IV were selected and deployed 
in the context of the proposed approach. A summarization of the 
developed models is depicted in Table V. 

TABLE V.  SELECTED MODEL PER DWTP AND WWTP 

Entity ID Learning 
rate 

Gamma 
value 

Epochs MSE 



DWTP1 1.00E-05 1.00E-06 13 0.0018 

DWTP2 1.00E-05 1.00E-07 38 0.0306 

DWTP3 1.00E-05 1.00E-08 89 0.0303 

WWTP1 1.00E-04 1.00E-08 5 0.1806 

WWTP2 1.00E-04 1.00E-07 7 0.8148 

WWTP3 1.00E-04 1.00E-07 9 0.0862 

 

B. Functional Evaluation 

As mentioned above, the proposed approach and the trained 
models have also been validated by the corresponding end users 
in the context of the AI4Gov project in terms of the quality and 
the reliability of predictions and explanations, as well as the 
usability of the UI. More specifically, a validation workshop was 
carried out, where the end users tested the proposed approach 
and answered a user experience questionnaire (i.e., UEQ). The 
results of the UEQ showcased an overall positive user 
experience both with regards to the users’ trust in the predictions 
provided and the usability of the proposed approach.  

The end users are public workers in the water management 
department of the municipality of Badajoz in Spain. More 
specifically, the end users can gain access to the UI through a 
web browser. There, they are able to upload their data based on 
which the corresponding trained model will provide predictions 
and explanations. Regarding the drinking water use case, the end 
users select from a given map the DWTP for which they would 
like to predict the future quality of the drinking water, as shown 
in Fig. 2. Similarly, as for the sewage water, the end users select 
from a given map the WWTP for which they would like to 
predict the future energy consumption. 

 

Fig. 2. Selection of DWTP through the UI 

After the model generates the predictions and the 
explainability report is also formulated, those are 
simultaneously anchored to the blockchain and returned to the 
UI. This process is the same for both the drinking water and the 
sewage water use cases. In deeper detail, the information that are 
illustrated in the UI are: (i) the predicted value per feature and 
(ii) the textual explanation that is generated by the LLM, as well 
as the sufficient explanations heatmap. An example of the 
above-mentioned related to the drinking water use case are 
depicted in Fig. 3 and Fig. 4 respectively. 

 
Fig. 3. Indicative example of textual explanation for the prediction of pH value 

 
Fig. 4. Indicative example of sufficient explanations heatmap for the prediction 

of pH value 

In the example shown above, the predicted value for the pH 
is depicted in bold and is accompanied by the textual 
explanation that is related to the heatmap that is shown to the 
end users. The heatmap visualizes the output of the explanation 
component of the LSTM RNN and, in the context of the drinking 
water use case, it shows four (4) types of features in the 24 hours 
prior to the pH prediction, used to make the pH prediction. In 
green are the features (in respective time points) that, together, 
are sufficient for the pH prediction. That is, fixing their values, 
the values of the red features can reasonably change, and the pH 
prediction will remain similar. The end users are able to view 
the explainability reports and the predictions for all of the four 
(4) variables, whilst the same functionalities are available for the 
sewage water use case. 

Finally, the end users can validate the predictions and the 
explainability report based on the JSON data that are anchored 
to the blockchain, by pressing the corresponding button. If the 
validation of the prediction and the explainability report is 
successful, the end user is notified that those have not been 
tampered by any third-party entity. Otherwise, if the validation 
fails, this means that the results have been altered and thus, they 
should be discarded. An indicative example of a successful 
validation through the blockchain is shown in Fig. 5, where the 
end users are notified through the UI. 



 
Fig. 5. Successful validation of predictions and explainability report through 

the blockchain 

Overall, the proposed approach combines state-of-the-art 
methods and technologies, such as self-explainable neural 
networks, LLMs and blockchain, to provide accurate, 
explainable and interpretable predictions whilst ensuring their 
reliability. However, it should be noted that further 
improvements could be made, especially with regards to the 
optimizer that is being utilized in the LSTMs, since the selection 
of an optimizer can affect a model in terms of bias [47]. 
Moreover, in order to ensure the integrity of the trained models 
and the corresponding data, blockchain-based auditing 
mechanisms should also be integrated. 

V. CONCLUSIONS 

Overall, data-driven policy making is a key aspect of 
decision-making systems, thus numerous approaches have been 
proposed to make it more efficient. Those approaches mainly 
consist of AI algorithms. However, most of the time those 
algorithms are complicated and not easy to be interpreted by the 
end users. This highlights the need for XAI approaches that turn 
a black box AI model into an explainable one. However, the 
trustworthiness of the said model is not guaranteed since its 
predictions, as well as its explanations can potentially be altered 
by a third-party. To this end, in this paper the authors propose a 
method for combining a self-explainable neural network with an 
LLM and blockchain technology, in order to provide both 
explainable and trustworthy predictions. The proposed approach 
is validated in two (2) use case scenarios related to water 
management, thus being one of the first that combines such 
technologies and methods in the context of this domain. The 
generated results, as well as the feedback received from the 

corresponding experts, highlighted not only the accuracy of the 
predictions, but also the quality of the provided explanations and 
the trustworthiness of both the predictions and the explanations. 

With regards to any potential future steps, the authors aim to 
experiment on other domains, such as waste management, 
focusing on the evaluation of the self-explained neural network 
architecture and the quality of the provided explanations on 
larger datasets. In this context, the authors also aim to 
experiment with other optimizers to assess them in terms of the 
bias that they might introduce to the model. What is more, it 
would be interesting to implement and review other types of 
self-explainable RNNs, such as Gated Recurrent Units (GRUs), 
with regards to the quality of the provided explanations. As for 
the integrity of the trained models and the corresponding data, 
blockchain-based auditing mechanisms could also be adopted. 
Moreover, additional research could be conducted in order to 
evaluate the utilization of blockchain technology in this type of 
use case scenarios and investigate potential points of 
improvement in terms of performance and computational 
resources, especially when it comes to supporting large number 
of public policy making transactions. To this end, a comparative 
study of the proposed approach with other similar approaches 
from other domains would also be highly beneficial. Lastly, 
further research will take place to enhance the overall 
environmental sustainability of the developed system and its 
underlying resources [48].  
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