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Abstract— When designing a user-friendly Mobility Assistive
Device (MAD) for mobility constrained people, it is important
to take into account the diverse spectrum of disabilities, which
results to completely different needs to be covered by the
MAD for each specific user. An intelligent adaptive behavior is
necessary. In this work we present experimental results, using
an in house developed methodology for assessing the gait of
users with different mobility status while interacting with a
robotic MAD. We use data from a laser scanner, mounted
on the MAD to track the legs using Particle Filters and
Probabilistic Data Association (PDA-PF). The legs’ states are
fed to an HMM-based pathological gait cycle recognition system
to compute in real-time the gait parameters that are crucial for
the mobility status characterization of the user. We aim to show
that a gait assessment system would be an important feedback
for an intelligent MAD. Thus, we use this system to compare
the gaits of the subjects using two different control settings
of the MAD and we experimentally validate the ability of our
system to recognize the impact of the control designs on the
users’ walking performance. The results demonstrate that a
generic control scheme does not meet every patient’s needs,
and therefore, an Adaptive Context-Aware MAD (ACA MAD),
that can understand the specific needs of the user, is important
for enhancing the human-robot physical interaction.

I. INTRODUCTION

Mobility problems are common in the elderly, as older
adults have to cope with instability and lower walking
speed, [1]. Medical experts commonly use the Performance-
Oriented Mobility Assessment (POMA) tool to assess the
mobility status of patients, [2], in order to propose a proper
rehabilitation treatment. Certain pathologies are responsible
for changes in stride length and in walking phases, [3],
while it seems that basic gait parameters of normal subjects
are affected with aging, [4]. Medical studies for past-stroke
patients establish the significance of evaluating the gait
parameters for rehabilitation purposes, [S]. Fall prevention
of elders is equally important and researches associate gait
speed with the functional independence and mobility impair-
ment of the elderly, [6].

Robotics seems to fit naturally to the role of assistance,
since it can incorporate features such as posture support and
stability, walking assistance, health monitoring, etc. These
goals closely interweave; while the ethical goal is to increase
the user mobility, its constrain leads to user dissatisfaction,
anxiety and frustration, and finally rejection of the system.
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Fig. 1: On the left: a CAD representation of a robotic MAD. On
the right: a robotic platform, constructed with financial support of
EU project MOBOT, equipped with a Hokuyo Laser Sensor aiming
to record the experimental gait data of the user (below knee level).

The development of MADs for elders that provide physical,
sensorial and cognitive assistance is a common research
topic in recent years [7]. The automatic classification and
modeling of specific physical activities of human beings is
very useful for the development of smart walking support
devices, aiming to assist motor-impaired persons and elderly
in standing, walking, as well as to detect abnormalities and
to assess rehabilitation procedures [8], [9]. Recent control
architectures for mobile robots include adaptive admittance
control schemes, [10]. In [11], the authors developed an
admittance control for a passive walker with servo brakes
and used a fall-prevention function considering the position
and velocity of the user, utilizing measurements from a
laser range finder. A control strategy for a robotic walker
is presented in [12]. The control parameters are the linear/
angular velocities and the orientation of the human and the
walker; those define a desired distance and angle in the
human-robot formation. An adaptive shared control for a
mobility assistance robot is presented in [13], which was
developped for the MAD of Fig. 1.

For extracting gait motions, different types of sensors have
been used, from gyroscopes and accelerometers to cameras,
e.g. [14], [15]. The development of a low-cost pathological
walking assessment tool was presented in [16], where the
user is followed by a robotic platform equipped with a Kinect
sensor that detects targets placed on the subject’s heels and
estimates the stride length.

Gait analysis can be achieved by using Hidden Markov
Models (HMMs), which can model the dynamic properties
of walking. HMMs are currently used for gait modelling
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Fig. 2: Gait recognition system: from left to right: a CAD representation of a user walking with physical support of the MAD while the
laser sensor records the legs motion; the laser data are fed into the gait tracking module; the estimated legs states are the observations of
the HMM gait cycle recognition system;for each gait cycle we extract the respective gait parameters.

employing data from wearable sensors, like gyroscopes
mounted on human’s feet, [17]. In our previous work, we
have analyzed extensively the properties of our HMM system
and its applications for modeling normal human gait, [18], as
well as for pathological human gait recognition, [19]. Finally,
we have validated the extraction of gait parameters from the
range data based on HMM in [20].

Our aim is to use intelligent MADs (Fig.1), which can
monitor and understand the patient’s walking state and
will autonomously reason on performing assistive actions
regarding the patient’s mobility and ambulation. For a robotic
walker that aims to support patients of different mobility
status and also assist their rehabilitation progress, a generic
control architecture will not affect the same way all patients.
A MAD system that enhances mobility for one category of
users might lead to mobility restriction for another one. As
a result, a deployable MAD system has to be able to assess
the mobility state of the user and to adapt its strategies
accordingly, i.e. user-adaptation is important.

A MAD should provide physical interaction and optimal
support to each user regardless of his mobility status. Thus,
a context-aware robot control architecture should be imple-
mented. Such a control strategy should use feedback from
multiple modalities and the use of only one cue for the
development of a generic control scheme is not effective and
will not meet the special needs of people with variable motor
inabilities. An intelligent MAD should also serve the pur-
poses of medical monitoring, contributing to rehabilitation
progress and fall prevention. Therefore, an on-line system for
detecting gait parameters, that are used for medical diagnosis
and are also associated with fall risk, will be a crucial
part that should be incorporated in a user-adaptive context-
aware control strategy. In such a control framework the real-
time gait status assessment will trigger assistive actions and
behaviors (velocity adjustment, approach of the patient due
to changes in gait patterns) from the robotic assistant that
tracks the user.

This paper presents a first experimental study of our
in-house developed framework that provides a user gait
status characterization for a robotic assistant platform, by
validating its ablity to recognize the impact of different
generic control designs on the patient’s gait status. We exper-
imentally validate the affect of custom-made control designs
on the patient’s walking performance, relative to his medical
categorization (POMA score), through the estimation of
appropriate gait parameters. The measured data used in this

work are provided by a standard laser rangefinder sensor
mounted on the robotic rollator platform, Fig. 1. Our system
provides an on-board non-intrusive analysis of the patients’
mobility state. While the patient uses the robotic assistant,
the laser sensor provides the data for a tracking system that
estimates the position and velocity of the legs by using two
PFs with Probabilistic Data Association (PDA-PF), a method
that achieves robust tracking of the user while performing
complex maneuvers in cluttered environments, [21]. The
estimated kinematic parameters of the user are the input of an
HMM-based system that performs a pathological gait cycle
recognition, [20]. Given the gait cycle time segmentation we
can extract spatiotemporal gait parameters, which will be
used for the gait status assessment. In this work, we enrich
the list of the extracted gait parameters as compared to [20],
in order to explore the use of those parameters in the control
design of the MAD.

We present a statistical analysis to demonstrate the ca-
pability of our framework to provide on-line gait status
information, by comparing the effect of generic custom-
made control strategies on the estimated gait parameters
regarding patients with variable POMA scores. We aim to
validate that the gait parameters will be an appropriate
and important feedback for a context-aware MAD, which
will enhance the human-robot physical interaction and will
assist each patient according to his mobility status. The first
experimental results demonstrate that generic off the shelf
control designs do not affect in the same way patients with
different POMA scores; one control strategy may benefit
some patients while it may decrease walking performance
for others. Initial results show a correlation of the user gait
status with his medical categorization, thus we aim to use this
information for the design of a control strategy that will lead
to a user-adaptive robotic personal assistant, by taking on-
line feedback from our framework for a real-time adjustmet
of the controller’s parameters according to the user’s needs.

II. GAIT PARAMETERS EXTRACTION SYSTEM
BASED ON HIDDEN MARKOV MODEL

The sequential estimation of the gait parameters are ne-
cessary for the gait status assessment of the user. Those
parameters are extracted by employing the raw laser data,
provided by the laser sensor mounted on the robotic rollator,
Fig. 2. The laser data are the observations of a PDA-PF
leg tracking system, that sequentially estimates the relative
position and velocity of the patient’s legs w.r.t. the robotic



rollator. The posterior estimates of the legs’ states are fed
into an HMM (Fig. 2), which recognizes the gait cycles and
segments them into the corresponding gait phases. We, then,
extract the gait parameters corresponding to each gait cycle,
[19], [20], which are used for the exploration of the control
effect on the users gait status.

For the PDA-PF leg tracking, we have designed a system
that uses two PFs for estimating the position and velocity
of each leg separately and associate them probabilistically
at each time instant, [21], using as input raw laser data
converted from polar to Cartesian coordinates, Fig. 2. The
users’ legs’ states posteriors, at time instant ¢, are denoted
as: X',f = [ Xy U ]T, where the first two components
are the positions and the last two the velocities of the legs
along the axes and f = {L,R} is the label for the left and
right leg. Each time instant ¢, a set of N new particles for each
state is sampled from an importance density function: Xf "t
p(x! |xf71), where i denotes the i particle. This probability
density function represents the transition probability of the
state from time (z-1) to time ¢ and constitutes the motion
model, that propagates the particles’ state of each leg at each
time instant ¢, given the previously estimated state X‘tf_l. We
model the velocity of each leg by a Gaussian Mixture Model
(GMM) of two mixtures and we draw N velocity samples
for each leg. Those samples are then used for updating the
particles position through time.

A weight is assigned to each particle, which is equal to the
observation likelihood. Each particle regards as observations
only the laser points that fall inside an observation window.
Thus, every particle refers to a different cluster of laser
points. We considered that each particle is a probable leg
center and we expect the observations-laser points to be in a
circular circumference around it. The observation likelihood
is computed based on three factors: a) the distribution of
the Euclidean distances of the laser points, which have been
detected inside the observation window w.r.t. the particle’s
position, which serves as a probable leg center; b) the number
of laser points inside each observation window that are on
the circular circumference of the particle; ¢) an association
probability that accounts the Euclidean distance between the
positions of the two legs, [21]. To overcome the problems of
weight degeneracy and sample impoverishment, we apply a
Metropolis-Hastings based resampling method.

We find the maximum likelihood particle for each leg
based on their weights and then collect the “best” particles,
i.e those having a weight greater or equal than 80% of
the maximum weight. The posterior state estimate results
from the weighted mean of the “best” particles, providing
smoother estimates.

The posterior estimates of the legs’ states along with the
distance between the legs are the observables of the HMM
gait cycle recognition system. We consider seven hidden
states according to the seven gait phases of human gait, [22],
as shown in Fig. 2. The observation data are modeled using
a GMM. This model can provide temporal segmentation
of the time sequence of the legs’ states, by estimating an
optimal gait phases sequence, which is found using the
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Fig. 3: Map of the experimentation scene. There were 3 areas with
obstacles along the corridors (noted as numbers 1-3), and a turning
point (noted as number 4).
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POMA score.

Percentage Change of Gait Speed

Percentage change (%)
a

10 14 16 18 19 20 22 23
POMAscore

(b) Percentage change of Gait Speed w.r.t POMA
score.

Fig. 4: Stride Length’s and Gait Speed’s percentage changes from
Scenario 1 to Scenario 2 for all subjects w.r.t. their POMA score.

Viterbi algorithm, [19].

The recognized segmentation of gait phases is used to
compute the gait parameters from the range data, Fig. 2. We
are computing the gait parameters: 1) stride length, i.e. the
distance traveled by both feet in a gait cycle, 2) stride time:
the duration of each recognized gait cycle, 3) stance time:
the stance phase duration in one cycle, i.e. the time between
the gait phases IC and PW (Fig. 2), 4) gait speed: results as
the velocity through the stride, i.e. it was computed as the
ratio of the stride length to the stride time and 5) cadence:
the ratio of steps per minute, computed as the total number of
steps divided by the total walking time. These gait parameters
are used for the statistical analysis of the affect of generic
control designs on the gait status of patients with variant
POMA scores.

IIT. EXPERIMENTAL ANALYSIS & RESULTS
A. Experimental setup and data description

The experimental data used in this work were collected
in Agaplesion Bethanien Hospital - Geriatric Center, under
ethical approval by the ethics committee of the Medical
Department of the University of Heidelberg. All subjects had
signed written consent for participating in the experiments.



TABLE I: Demographics

Subject 1 2 3 4 5 6 7 8
Age 88 83 83 81 & 71 77 84

Sex F F F F F F F M
POMA 10 14 16 18 19 20 22 23
Falls yes yes yes yes yes yes no yes

Demographics for the subjects that participated in the experiments.

TABLE II: Extracted Gait Parameters

Subject  Parameter Unit Scenario 1  Scenario 2  p-value*
stride length m 0.32+£0.06 0.36+0.05 < 0.0001
1 stride time s 1.61+£021 1.48+0.30 < 0.0001
stance time s 1.27£0.22 1.10+£0.20 < 0.0001
gait speed m/s 0.20+£0.03 0.21+£0.04 0.0086
cadence steps/min 75.73 81.58
stride length m 0.32+0.04 0.34+0.04 0.0497
5 stride time s 1.75+£0.16 1.63+0.19 < 0.0001
stance time s 1.39+£0.16 1.29+0.18 < 0.0001
gait speed m/s 0.18+£0.03 0.20£0.02 < 0.0001
cadence steps/min 69.70 74.28
stride length m 0.41+0.05 0.44+0.04 0.0015
3 stride time s 1.85+£0.29 1.73£0.22 0.0123
stance time s 1.59+0.25 1.49+0.21 0.0131
gait speed m/s 0.23+0.04 0.26+0.04 < 0.0001
cadence steps/min 65.87 69.93
stride length m 0.25+0.03 0.26+£0.02 0.0178
4 stride time s 1.59+£0.16 1.52+0.13 0.0146
stance time s 1.11£0.20 1.03+0.12 0.0138
gait speed m/s 0.16£0.03 0.17+0.02  0.5866
cadence steps/min 76.82 80.17
stride length m 0.33+0.05 0.34+0.05 0.0471
5 stride time s 1.53£0.26  1.31+0.12 < 0.0001
stance time s 1.24+0.25 1.03+0.18 < 0.0001
gait speed m/s 0.22+0.04 0.25+0.04 0.0018
cadence steps/min 79.63 92.27
stride length m 0.48+0.08 0.48+0.08 0.6331
6 stride time s 1.46+£0.09 1.41+£0.16 0.056
stance time s 1.16£0.09 1.10%+0.15 0.0383
gait speed m/s 0.33+0.06 0.34+0.07 04119
cadence steps/min 83.76 86.64
stride length m 0.49+0.09 0.49+0.10 0.8093
7 stride time s 1.29+£0.17 1.25+0.14 0.1411
stance time S 1.05+0.16 0.96+0.14 0.0128
gait speed m/s 0.39+0.08 0.40+0.08 0.3554
cadence steps/min 94.52 99
stride length m 0.61+£0.11 0.56£0.12 0.0742
3 stride time s 1.29+£0.16 1.25+0.14 0.1369
stance time s 1.05+0.16 1.01+0.14 0.1406
gait speed m/s 0.48+0.12 0.46+0.13 0.5373
cadence steps/min 95.05 98.46

Gait parameters means and standard deviations for the two scenarios
along with the p-values (¥ p < 0.05)

In this work, we provide results for 8 elderly subjects, 7
women and 1 man, with average age 81.5+£5.5.

The subjects presented mobility impairments, according to
clinical evaluation of the medical experts, with an average
POMA score of 17.754+4.30 and high risk of falling, with
87.5% of the subjects having had fallen once or twice
in the last year. Table I provides analytical demographic
information about the participants. The subjects have been
arranged according to their POMA score. Patients with
POMA score <= 18 present high risk of falling, while a
POMA score between 18 and 23 indicates a moderate risk
of fall, [23]. The participants were wearing their normal
clothes (no need for specific clothing or wearable sensors)
and they were currently using conventional passive walkers
in their everyday life. We have used a Hokuyo rapid laser
sensor (UBG-04LX-F01 with mean sampling period of about
28msec), mounted on the robotic platform of Fig. 1 for
detecting the patients’ legs. In Fig. 3 the experimentation
scene that was prepared in Bethanien Hospital is shown.
It contained three corridors with certain obstacles placed at
points 1 to 3 and a roundabout at point 4. The blue star

indicates the experiment’s starting/ending point, while the
blue and red arrows represent the possible walking path. The
subjects had to walk in this test area with support of the
robotic rollator of Fig. 1, trying to avoid the obstacles and
return back to the initial position. This complex experimental
scenario was performed twice using each time a different
control setting for the MAD: Scenario 1: the controller
provided walking assistance with a constant virtual inertia
and damping but without an obstacle avoidance module,
[13]. Scenario 2: the controller incorporated walking assi-
stance with an obstacle avoidance functionality based on a
decision-making algorithm for the developed shared-control
architecture analyzed in [13]. The controller of Scenario 1 is
a simple control design that is commonly implemented in a
human - mobile robot formation, while the control strategy
of Scenario 2 is a more sophisticated one, developped in the
context of EU project MOBOT for the MAD of Fig. 1.

B. Validation Strategy

The aim of the experimental study is to examine whether
there were changes in the walking performance of the pa-
tients, Table I, associated with the control design. To this end,
we exploit the gait parameters extracted by our framework
of Fig. 2 for the two scenarios. We have used 500 particles
per PF to track the users’ legs in both scenarios. The HMM
training procedure comprises data from the tracking system
for 12 patients that performed simple walking scenarios in
initial data collection experiments.

We aim to show that generic control strategies do not
always enhance the walking performance of patients with
different POMA scores and to evaluate the affect of those
different control schemes through the gait parameters. Thus,
we statistically analyzed the extracted gait parameters from
the walking Scenarios 1 and 2; firstly, we performed a one-
way analysis of variances (ANOVA) and searched for stat-
istical significance on the mean values of the gait parameters
between the two scenarios for each subject. Continuing this
analysis, we provide graphical results for the comparison
of the within-subjects gait parameters evolution between
scenarios, in order to inspect the walking behavior of subjects
with different mobility impairment status w.r.t. each control-
ler. Finally, we present graphs of the percentage change of
gait parameters from Scenario 1 to Scenario 2, to evaluate
the improvement or not of the walking performance of the
subjects according to their POMA scores.

C. Experimental Results

Table II presents the mean and standard deviations of the
extracted gait parameters for Scenarios 1 and 2 along with
the p-value that resulted by ANOVA. Inspecting Table II,
we can generally say that during Scenario 2 the patients
walked significantly faster in most cases, with increased
cadence, decreased stride time and longer stride lengths.
We will contradict the results of a subject that presented
high mobility frailty with a POMA score 14 (subject #2),
and of a subject with moderate mobility problems having
a POMA score of 22 (subject #7). Subject #2 significantly



improved her walking performance as she increased the stride
length with an important decrease of stride time, that resulted
in better gait speed. Also, subject #2 spent significantly
less time in stance phase, and therefore spent more time
in swing phase. On the other hand, subject #7 had no
significant difference in stride length and gait speed, while
performing Scenario 1 and 2. But, we should mention that
although stride time did not differ significantly between the
two Scenarios, the stance time was significantly decreased,
meaning that the swing time was increased for subject #7.
It is, however, obvious that the control strategy of Scenario
2 did not significantly improve the walking performance of
the patients with higher POMA scores. To further justify, we
will elaborate on qualitative examples.

In Fig. 5, we present the gait parameters Stride Time and
Gait Speed evolutions for the same subjects for the respective
Scenarios 1 & 2. We have isolated the time sequences that
contain the first pass of the experimental path of Fig. 3.
Considering the different cadence of each patient, we can
instantly see from Fig. 5, that patient #2 with the low POMA
score (and the respective low cadence, Table II), needs more
time to complete the first pass than subject #7 (with the
higher POMA score and cadence). Inspecting Fig. 5a, we can
see that the Stride Time is significantly lower in Scenario
1 than in Scenario 2, as shown also in Table II. In the
vicinity of the obstacles during Scenario 2, we can notice that
the controller affects the walking behavior, since the patient
manages to perform strides of lower duration. Respectively,
in Fig Sc, it is obvious that the gait speed of the patient
with the lower POMA score is significantly higher during
Scenario 2 than Scenario 1, achieving lower speeds while
approaching the obstacles and speeding up after passing them
through.

On the other hand, inspecting in Fig. 5c the Stride Time
evolution of patient #7 with the high POMA score, we can
notice that in Scenario 2 the controller stalls the patient in
the vicinity of the obstacles, making her need more time
to approach the obstacles than in Scenario 1. In Fig. 5d,
where patient’s #7 Gait Speed evolution is presented, we can
more easily observe the delay in approaching the obstacles,
although the Gait Speed evolution in Scenario 2 seems to
follow quite the same pattern as in Scenario 1, leading to
no significant differences between the two scenarios as it
is also mentioned in Table II. The examination of those
results leads to some important conclusions. Firstly, there
is a strong evidence that the controller design affects the
gait performance of the patients, as presented in Table II
and Fig. 5, but not all patients are affected in the same
way, justifying our claim that a robotic personal assistance
should be user-adaptive. Secondly, there seems to be an
important correlation between the POMA score and the gait
parameters extracted by our framework. This remark will
have to be further examined since it could lead to an on-line
automated mobility impairment characterization of the user
that would be incorporated in a context-aware robot control
architecture. We, also, present the percentage change of the
parameters Stride Length and Gait Speed from Scenario 1 to

Scenario 2 w.r.t. the POMA scores of the participants in Fig.
4. The percentage change of the Stride Lengths, shown in
Fig. 4a, is descending w.r.t. the increase in POMA score. This
means that the use of a different control design in Scenario 2
seems to have affected positively the walking perfomance of
patients with low POMA scores (positive percentage change
for POMA scores 10-19), had no influence on subjects with
POMA scores 20-22; more importantly, it had deteriorated
the gait status of the subject with POMA score 23 (negative
percentage change). In Fig. 4b, we examine the percentage
change in Gait Speed. This plot also has a descending trend
especially for patients with moderate mobility impairment.
We observe variable yet positive changes in the gait speed
of subjects with POMA 10-19, a very small positive effect
on the walking speed of subjects with POMA 20-22 and a
negative percentage change for the patient with the higher
POMA score, which is an important outcome since Gait
Speed is associated with falling risks, [6]. Therefore, a
general remark is that the controller of Scenario 2 seems
to improve the walking performance of patients with lower
POMA, while it either does not affect significantly or even
deteriorates the gait status of subjects with higher POMA
scores. It can be safely deduced from these figures, that the
application of a general control design does not benefit in
the same way all patients. This shows the need of a user-
adaptive control strategy that would take on-line feedback
from the patient’s gait status estimation.

IV. CONCLUSIONS AND FUTURE WORK

We aim to develop a completely non-invasive pathological
walking analysis and assessment system, as a subsystem
of a context-aware robot control for an intelligent robotic
walker. We utilize data from a laser scanner mounted on
a robotic assistant platform to track the user’s legs using
PDA-PF method and an HMM-based pathological gait cycle
recognition system, constituting a non-invasive approach
using a non-wearable device. We compute gait parameters,
which are commonly used for medical diagnosis. We test
our on-board framework with patients of variable mobility
impairment according to medical assessment (low to mod-
erate POMA scores), who performed walking scenarios in
cluttered environments that required difficult maneuvers, and
we evaluate the effect of different controllers on patients’
walking performance by using the gait parametrers. We
provide strong evidence that the control design affects, in
a different way, the users’ walking status according to their
POMA scores. Thus, we believe that it is crucial to design an
adaptive control architecture with an on-line feedback from
the extracted gait parameters, to provide optimal support to
each patient by real-time tuning the controller according to
the patient’s gait status assessment.

Our ongoing research includes a thorough analysis of how
generic control strategies of the MAD affect the walking
performance of a larger number of patients with variable
POMA scores. We will work along with medical experts to
examine the correlation of the POMA score and the gait
status to provide a full characterization of the user. Our
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Fig. 5: Evolution of the parameters Stride Time and Gait Speed w.r.t. time: a,c) Stride Time and Gait Speed evolution of subject #2 with
low POMA score. b,d) Stride Time and Gait Speed evolution of subject #7 with moderate POMA score.

immediate goal is to design a more sophisticated control
architecture that will take on-line feedback from the extracted
gait parameters, to adjust the platform’s motion according to
the user’s gait status.
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