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Abstract— We present a methodology to steer the end effector
of a robotic manipulator, which is constrained in terms of
joint rates, on the surface within the workspace, to perform
surface tasks. We develop smooth controllers for stabilizing the
end effector to a point, and for tracking a trajectory on this
surface, while respecting the input constraints, and the same
time applying a specific force on it. We show that the resulting
closed loop system is uniformly asymptotically stable and we
verify our analytical development with computer simulations.

I. INTRODUCTION

Robotic applications where the manipulator is supposed

to perform a task along a particular surface, such as robotic

surface painting, surface cleaning, and surface inspection,

pose challenging control design problems. Our motivation

comes from the field of neuro-robotics, and specifically from

an application where a robot executes a task through inter-

facing with the neural system (Fig. 1), thus by processing

electromyographic activity. In most cases, neural signals are

noisy and inappropriate for controlling a robot directly. The

presence of obstacles in the environment, and consideration

of non-planar surfaces complicates the problem further. We

need a strategy to combine compliant behavior of the robot

with respect to its environment, and obstacle avoidance.

Fig. 1. The problem motivation. One of the main tasks of neuro-robotics
is to make a robot execute a task by interfacing with the neural system e.g.,
by processing electromyographic activity, etc.

Previous work has focused on the problem of automotive

painting of surfaces that are convex and have no holes, [1],

[2], [3]. In [1], the authors decompose the coverage trajectory

generation problem into three subproblems: selection of the

start curve, selection of the speed profiles along each pass,

This research project is co-financed by E.U.-European Social Fund (75%)
and the Greek Ministry of Development-GSRT (25%). Also, this work is
partially supported by the European Commission through contract “FP6 -
IST - 001917 - NEUROBOTICS: The fusion of Neuroscience and Robotics”,
and by Eugenides Foundation Scholarship.

X. Papageorgiou and K.J. Kyriakopoulos are with the Depart-
ment of Mechanical Engineering Department, National Technical Uni-
versity of Athens, Athens, Greece, xpapag@mail.ntua.gr;
kkyria@mail.ntua.gr

and selection of the spacing between the passes. At the other

hand literature is rich in the field of robot force control.

The main approaches in this area are impedance control,

[4], hybrid position/force control, [5], and parallel control,

[6], [7]. All these schemes are not applicable in the case of

cluttered environment or in presence of holes on the surface,

i.e. regions of the surface that the robot tip must avoid.

Also, there are several applications introducing only local

methods for redundant arm collision avoidance based on

cartesian subtasks priorization, but without any requirement

for surface’s tasks. The authors in [8] develop the real-time

collision avoidance for position-controlled dexterous 7 DOF

arms. The problem is formulated and solved as a position-

based force control problem by using virtual forces that rep-

resent the intrusion of the arm into the obstacle safety zone.

In [9] a collision avoidance and a self-collision avoidance

scheme for redundant manipulators is discussed. The method

is based on modeling the arm and its environment by simple

geometric primitives (cylinders and spheres). The authors

in [10] present a neural network approach for collision-free

motion control of redundant manipulators. The problem for-

mulation represents the collision free requirement as dynamic

inequality constraint and incorporates joint physical limits

into an optimization problem. The solution of the obstacle-

avoidance kinematics problem, is computed by a dual neural

network.

In our previous work [11], we presented a methodology

to drive the end-effector of a non-redundant manipulator to

a surface while avoiding obstacles. Once the end-effector is

in close proximity of the surface, a second controller takes

over to stabilize the end-effector at a predefined distance

to the surface. Motion planning and tracking tasks are then

considered, without however taking into account kinematic

input constraints. Also, in [12] the force control is added

in those surface tasks. For the problem of kinematic input

constraints, a non-smooth kinematic controller is proposed

in [13].

In this paper, we consider the control design problem for a

kinematically redundant manipulator, the joint rate inputs of

which must remain within pre-specified bounds. We do so

by building navigation functions, in a simple way without

any need of non-smooth stability analysis, [14]. The system

switches between different controllers when it finds itself

within certain regions of the workspace (called belt zones,

[15]). The contribution of this paper is the development

of globally uniformly asymptotically stable controllers for

redundant articulated robot manipulators, subject to input

constraints, to achieve reference trajectory tracking or point

stabilization with obstacle avoidance on 2D manifolds em-
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bedded in 3D workspace.

II. PROBLEM STATEMENT

Considering the motion planning problem of a redundant

robotic manipulator, with kinematic input constraints, in a

workspace with obstacles. The objective is for the robot

to move towards the surface, and track a predefined tra-

jectory on it, while the end-effector is compliant with the

surface. We assume that we have a stationary environment

and that we have direct control on the manipulator joint

rates. Thus, the robot dynamics are: B (q) q̈ + C (q, q̇) +
Gr (q) + JT (q)F = τ, where B(q) is the inertia matrix,

C(q, q̇) is the Coriolis term, Gr(q) is the Gravity term,

J(q) is the geometric Jacobian matrix, F ∈ R
6 denotes

the wrench (vector of forces and torques) exerted by the

end-effector of the robot manipulator on the environment

(we can measure this vector by using a force/torque sensor

at the robot’s end-effector), q = [q1 . . . qm]T ∈ R
m is

the vector of arm joint variables and τ ∈ R
m the joint

torque inputs, [16]. Using inverse dynamics control (since

it is based on computation of manipulator inverse dynamics)

τ = B(q)·y+C(q, q̇)+Gr(q)+JT (q)F, the system becomes

q̈ = y (1)

where y represents a new input vector. The system (1) is

linear and decoupled with respect to the new input y. In other

words, the component yj influences, with a double integrator

relationship, only the joint variable qj , independently of the

motion of the other joints, where j = 1, . . . , m.

Detailed modeling and accurate parameter identification

is necessary for a successful implementation of a computed

torque approach. In our case, this process involves the use

of a non-linear friction model for the robot joints, coupled

with experimental parameter identification [17], [18]. The

stiffness effect of the joints is also identified through exper-

imental procedure in loaded conditions. The parameters of

the dynamic model are grouped to an identifiable form, and

identified through experiments.

Let the admissible and feasible configuration space

(workspace) for the manipulator be denoted W ⊂ R
m. The

obstacle free subset of the workspace is denoted Wfree ⊆
W . Define a vector valued C2 function g(s1, s2) : R

2 →
R(g) which represents a closed surface. The range R(g) ⊂
Wfree of the function expresses mathematically the bound-

ary of the surface across which the robot task is to take

place.

We can define the tangent vectors on the surface

gs1
(s1, s2) = ∂g(s1,s2)

∂s1
, and gs2

(s1, s2) = ∂g(s1,s2)
∂s2

, with

respect to parameters s1 and s2. Due to the C2 continuity

of g(s1, s2), we have that (gs1
× gs2

) 6= 0, ∀s1, s2 ∈ R,

[19]. A normalized vector, perpendicular to the surface is

then expressed as N =
gs1

×gs2

‖gs1
×gs2‖

.

The problem is stated as follows: Given a redundant revo-

lute joint robot manipulator, with kinematic input constraints

(joint velocity constraints), operating in a known static and

bounded environment, find a feedback dynamic control law

that allows the end-effector of the manipulator to execute

surface tasks as 1) navigation to any feasible surface point,

and 2) tracking a predefined trajectory across the surface,

and at the same time to be compliant with the surface.

III. CONTROLLER DESIGN

A. Workspace Decomposition

First of all we would like to drive the robot’s end-effector

towards the surface, and then to control it in order to execute

the desired surface task. To this end we can say that the task

is completed in two stages. In the first mode A, the end-

effector is driven close to the surface. In the second mode

B, the robot is steered to a specified point on the surface,

or is controlled to track a reference trajectory, and the same

time is applying a specific force on the surface.

Fig. 2. Representation of Belt Zones, in a part of a surface.

Thus, we need to decompose the workspace. This

workspace decomposition requires the definition of a region

in which the transition from the one mode to the other

occurs. To do so, we use the concept of belt zones [11],

Fig. 2. The “belt zone” is the region close to the surface’s

boundary, consisting of an “internal belt” and an “external

belt”. We assume that the widths of the internal and external

belt regions are fixed.

Assume that the surface of interest g(s1, s2) is modeled

as a spring with Ke its (homogenous) stiffness matrix. When

the robot’s end-effector interact with this surface, in order to

apply a constant force on it, it is assumed that the robot pen-

etrate the surface by the meaning of ǫ⊥ displacement from

the surface’s boundary (Fig. 2). Let Fd ∈ R is the desired

force that we would like the robot apply perpendicular to the

surface, that denote a displacement from the boundary of the

surface ǫ⊥d = K−1
e Fd.

Let us define the vector valued bijective functions that

describe the belt zones

g′(s1, s2) = g(s1, s2) − ǫ⊥d N (2)

g1(s1, s2) = g(s1, s2) − (δ + ǫ⊥d )N (3)

g2(s1, s2) = g(s1, s2) + (δ − ǫ⊥d )N (4)

with 0 < 2 · δ < ρm, where ρm as described in [15]. Surface

processing tasks require stabilization of the end-effector on

the surface g′(s1, s2), defined above.

The internal and external belts are defined as (Fig. 2),

I = {q : k(q) = (1 − λ)g′ + λg1, λ ∈ [0, 1]} (5)

E = {q : k(q) = (1 − λ)g′ + λg2, λ ∈ (0, 1]} (6)
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Since functions g, g′, g1, g2 are bijective ( [15]), for every

k(q) ∈ E
⋃

I there is a unique couple (s1, s2), where k(q)
is the vector of robot’s position in operational space (direct

kinematics).

B. Navigation Function

The controller’s design is based on the navigation function,

[20]. Modes A and B use a different navigation function,

because of the motion’s nature. The navigation function

active in mode A brings the end-effector inside the belt zone.

Then the system switches to mode B, and another controller

is activated, enabling the end-effector to navigate on the

surface. Navigation on the surface may involve stabilization

to a particular point (time invariant destination), or tracking a

reference trajectory (time varying destination) on the surface,

and the same time applying a specific force on it by the robot

end-effector.

The volume of the manipulator is represented by a point,

using a series of transformations. The obstacles presented in

the environment are modeled by the navigation function. In

order to construct such function, we need to introduce the

following parameter z = q − qd, with q, qd ∈ R
m, which

is the error between the manipulator’s joint angles, and the

desired joint angles. Redundancy is resolved by calculating

joint rates that implement the desired trajectory in operational

space.

1) Mode A: The navigation function ϕA : Wws → [0, 1]
used in mode A, is defined as follows:

ϕA(z) =
γκ+1

A
(z)

[γκ
A

(z)+βA(z)βO(z)βs(z)βb(z)]
1
κ

,

where γA(z) = ‖z‖2 is the distance to goal function, and

βA(z) = −‖q− q0‖
2 + r2

0 provides the workspace potential,

with q0 ∈ R
m is the joint angles at the center of the

workspace (e.g. the center of the smallest ball containing

W), and r0 ∈ R is the workspace’s radius. In order to

consider the volume occupied by the manipulator, we have

used the function βO(z), as defined in [11], that represents

a measure of proximity of the robot to the obstacles. The

functions βs(z) and βb represent the virtual obstacles, in

order to achieve singularities avoidance, according to [11],

and in order to avoid the joint’s limits, respectively. Finally,

κ > 0 is a parameter.

2) Mode B: We need to define a navigation function

across the 2-D manifold, that will provide the navigation

vector field. Although theoretically a system that flows

according to the tangent space of the 2-D, surface-wrapped

navigation field, remains in that 2-D surface, various sources

of uncertainty, like sensor noise, model uncertainties and

numerical diffusion cause the system to deviate from this

surface. To compensate for this problem, we designed an

additional vector field perpendicular to the 2-D surface

wrapped vector field, which attracts the system on the surface

of interest.

This navigation function is analytically expressed as:

ϕB(z, t) =
γκ+1

B
(z,t)

[γκ
B
(z,t)+βB(z,t)βO(z,t)βs(z,t)βb(z,t)]

1/κ ,

and it can be time-varying depending on whether the surface

task is point stabilization or trajectory tracking. The functions

βO , βs and βb are exactly the same functions as in case of

ϕA, and κ > 0 is a parameter. The function γB is defined as

γB(z, t) =

∥

∥

∥

∥

[

q
h(q)

]

−

[

qd

hd

]∥

∥

∥

∥

2

,

where h(q) is the distance from the surface g1(s1, s2) on

the belt zones. Additionally, we have h = 0 on the surface

defined by g1 (boundary of internal region), and hext = 2δ
on the surface defined by g2 (boundary of external region).

Also, the desired distance from the surface g(s1, s2) is at

hd = δ, on the surface g′(s1, s2), at ǫ⊥d distance inside of g.

Thus, the second term on this vectors is used to attract the

end-effector to the surface g1.

Also, the function βB is called the “perpendicular”

workspace function which is given from the equation

βB(z) = (hext−hd)2−(h(q)−hd)2

(hext−hd)2
.

It holds that βB(z) = 0 when the robot’s end-effector is

in the outer boundary of the belt zone’s external region

(where h(q) = 2δ), or in the inner boundary of the belt

zone’s internal region (where h(q) = 0). Also, βB(z) = 1
in the middle surface (where h(q) = δ). Thus, it makes the

boundaries of the belt zone repulsive and the middle surface

attractive. This construction of βB guarantees that the robot’s

end-effector cannot leave the belt zone, (Fig. 2).

C. Vector Fields - Controller Synthesis

Assume that the robot’s initial position is away from the

surface, where the system operates in mode A. The desired

position is defined to be in the interior of the belt zone. The

controller in this mode drives the robot towards the surface,

until the robot’s end-effector intersect the external boundary

of the belt zone, the surface g2(s1, s2).
Therefore there exists finite time T for which the system

enters the belt zones. When in the belt zone a mode switch

occurs that activates mode B. Once the robot end-effector

enters the belt zone, it remains there as the boundaries of

the belt zone are repulsive due to the construction of the

workspace. Therefore, it has to execute the stabilization over

the surface task (simple time invariant case, since we set

constant target position), and the trajectory tracking task

(time varying case, since we set time varying target position)

while it has to apply a specific force on the surface.

We define the following vector field which is applicable

for any mode:

f(z, t) , −k1∇ϕi(z, t) − k2D,

with D = ∇ϕi

∇ϕT
i ·(umax◦∇ϕi)

· ∂ϕi

∂t , where umax is the vector

of maximum joint velocity values, the ◦ operator is the

Hadamard product of the vectors (entry-wise product), for

all operational modes i ∈ {A,B} (e.g., when the robot

is operating in mode A then the desired configuration is

time invariant and D = 0, which is the simplest case,

i.e., f(z) = −k1∇ϕA(z)), and k1, k2 > 0 are constant

parameters.
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In order to compensate the manipulator’s kinematics input

constraints, we have to construct an appropriate controller for

each of the above modes. We have introduced the following

vector field’s form, inspired by [21]:

fnew =
umax ◦ f

ν + ‖f‖
(7)

where ν > 0 is a parameter.

Corollary 1: The control law defined in (7) satisfies the

input constraints |uj| ≤ |uj
max|, for every j = 1, . . . , m.

Proof: By using (7), we have for the j component of

u that: |uj | = |fnew
j | = uj

max ·
|fj |

ν+‖f‖ ≤ uj
max, since it holds

that |f j| ≤ ν + ‖f‖, ∀ν > 0.

IV. STABILITY ANALYSIS

We design the controller that renders (1), asymptotically

stable for the general case of time varying system. Conver-

gence to belt zone and point stabilization inside the belt zone

can be treated as special cases, where the controller (and

therefore the closed loop system) is time invariant.

Our main goal is to develop motion controllers that

enable redundant manipulators to perform surface tasks. The

dynamic representation of the system is given by (1). For

the dynamic control of this system we use the backstepping

methodology, and to do so, we need to establish the closed

loop control for the kinematic subsystem [22]

q̇ = u (8)

where u is the kinematic control input. The above subsystem

(kinematic) needs to be asymptotically stable, [22]. Thus, the

kinematic controller which compose an intermediate step to

the dynamic controller synthesis, is analyzed.

A. Kinematic Controller Design

Proposition 1: The solution of the system ż = v, where

z = q−qd, and v = u− q̇d, with u the input of (8), under the

control law v = fnew(z, t) as is defined in (7), is uniformly

asymptotically stable almost everywhere1.

B. Dynamic Controller Design

We design the controller that renders (1), asymptotically

stable for the general case of time varying system. Conver-

gence to belt zone and point stabilization inside the belt zone

can be treated as simple cases, where the controller (and

therefore the closed loop system) is time invariant.

Proposition 2: Consider the system z̈(t) = U(t), where

z(t) = q−qd(t), and U = y− q̈d(t), with y the control input

of (1). This system becomes uniformly asymptotically stable

to zero a.e.1, under the control input

U = −c · (ż − fnew) + ḟnew −∇ϕi (9)

where fnew as is defined in (7), and c is a positive definite

constant matrix.

1i.e. everywhere except a set of initial conditions of measure zero.

V. SIMULATION RESULTS

Computer simulations have been carried out to verify

the feasibility and efficacy of the proposed methodology.

The robot manipulator that we use for the implementation

of the simulations, is the model of Mitsubishi PA10-

7C, in the configuration of Fig. 1, with m = 7 d.o.f.

The vector of joint’s velocity and angle limitation

in (rad/sec), and (rad) respectively, are umax =
[

0.6 0.6 1.2 1.2 1.2 1.2π 1.2π
]T

, and qlim =
[

±3.1 ±1.6 ±3.0 ±2.4 ±4.5 ±2.9 ±4.5
]T

.

The scenario of the simulation contains two 3D

(ellipsoid) obstacles centered at O1 : (−0.3,−0.4, 0.1)
and O2 : (0.35,−0.3,−0.5), both having semi-axes lengths

of (0.05, 0.10, 0.20) (referred to x, y, and z coordinates,

respectively). The surface of interest g(s1, s2) is assumed to

be an ellipsoid, centered at (0, 0, 0) with semi-axes lengths

(0.75, 0.25, 0.35) and uniform stiffness Ke = 102N/m.

In order to be able for the robot’s end-effector to apply a

constant force in the perpendicular to the surface direction,

F d = 2N , we have adjusted the displacement from the

surface’s boundary, ǫ⊥d = 0.02m.

Fig. 3. Simulation results during Point Stabilization.

Fig. 4. Simulation results during Trajectory Tracking.

The obstacle regions on the surface are centered at

Og1 : (−0.33,−0.08, 0.18), Og2 : (0.33,−0.08,−0.18)
and Og3 : (−0.33,−0.08,−0.18). The robot manip-

ulator’s initial end-effector configuration is p(0) =
(−0.61,−0.39,−0.13, 0.0, 0.0, 0.0), and the target con-

figuration in the operational space is set at pd =
(0.49,−0.16, 0.13, 1.33, 0.87,−1.33). The components of
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those vectors are the x, y, and z coordinates (the first

three numbers), and the euler’s angles of the end-effector’s

orientation (the last three numbers).

In the first part of the simulation the robot is starting

to move in order for the end-effector to reach its desired

configuration (Fig. 3), while each part of the robotic arm

successfully avoids any environmental obstacle. The second

part of the simulation is to make the end-effector to track

a predefined trajectory, while again the collision avoidance

with the obstacles takes place (Fig. 4). Another significant

issue from this simulation is to avoid the violation of velocity

constraints, and angle limitations of each joint of the robot,

and to make the robot end-effector complaint to the surface.
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Fig. 5. Cartesian position.
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Fig. 9. End-effector’s distance from
the surface (bottom), and force that
the robot produce in its contact with
the surface (top), during point stabi-
lization.

0 500 1000 1500 2000
1

1.2

1.4

1.6

1.8

2

Time

[N
]

Force During Trajectory Tracking

0 500 1000 1500 2000
0.01

0.012

0.014

0.016

0.018

0.02

Time

[m
]

Displacement During Trajectory Tracking
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and the produced force by the end-
effector (top), during the trajectory
tracking task.

Fig. 5, 7, and 8, present the cartesian and joint position

as well as the joint’s velocity, respectively (the time axis

is refered to both point stabilization and trajectory tracking

tasks). The time axis represents time steps. Each time step

is 2.5 msec. In the representation of the velocities it is clear

that the robot’s joint velocity constraints are not violated

(flat regions). Fig. 6 depicts the error in (m), between

the real cartesian position and the desired position during

tracking (the time axis is refered only on this task). At the

beginning when the end-effector is away from the desired

configuration the error is about 0.16 m, and therefore the

robot is accelerating to track the reference trajectory and

therefore to reduce the error between its position and the

desired position. Thus, this error during the simulation is

bounded by 1 mm. Our algorithm allows the end effector to

successfully converge to the goal configuration, and track the

predefined trajectory avoiding obstacles, applying specific

force on the surface, and satisfying the input constraints.

Fig. 9 depicts the distance of the end-effector’s position

from the surface during the point stabilization task (bottom),

and the force that the robot end-effector produce when it is

in contact with the surface (top). The contact is occurred at

the time instant n = 250. Fig. 10 present the displacement

inside the surface, ǫ⊥ (bottom), and the produced force (top),

during the trajectory tracking task (robot motion in contact

with the surface). It is obvious that the produced force is

kindly dependent on the surface’s stiffness. As stiff is the

surface, as difficult is to produce a constant force on it.

VI. CONCLUSION

We presented a methodology for performing complaint

motion and tracking tasks over a two-dimensional mani-

fold embedded in a three-dimensional workspace applicable

to articulated robotic manipulators, with kinematic input

constraints. After safely navigating the manipulator’s end-

effector to the 2D manifold, task specific vector fields direct

the end-effector towards accomplishing a navigation or a

trajectory tracking task across the 2D manifold, and at

the same time applying force on it. The methodology has

theoretically guaranteed global convergence and collision

avoidance properties.

The dynamic control approach is using the backstepping

methodology, by using the established closed loop control

for the kinematic subsystem (8).

APPENDIX

A. Proofs of Propositions

Proof: (Proposition 1) We set a time-varying, continu-

ously differentiable Lyapunov function candidate V (z, t) ,

ϕi(z, t). As it is proved in [13], it holds that V1(‖z‖) ≤
V (z, t) ≤ V2(‖z‖).

We examine the time derivative of V (z, t):

V̇ = ∂V
∂t +∇V T ·fnew = ∂V

∂t +∇V T · umax◦f
ν+‖f‖ = − k1

ν+‖f‖ ·

∇V T · (umax ◦ ∇V ) + ∂V
∂t ·

(

1 − k2

ν+‖f‖

)

= −E + ∂V
∂t ·

(

1 − k2

ν+‖f‖

)

, where E = k1

ν+‖f‖ ·∇V T · (umax ◦ ∇V ) ≥ 0,

∀q ∈ R
m.
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Also, it holds that ∂V
∂t = −

γκ+1

i

κ·(γκ
i +B)

κ+1
κ

· ∂B
∂t +

(κ+1)·γκ
i

(γκ
i +B)

1
κ
·

∂γi

∂t −
γ2·κ

i

(γκ
i +B)

κ+1
κ

· ∂γi

∂t , where B = (βi · βO · βs · βb), where

i ∈ {A,B}. It can therefore be bounded as follows:
∣

∣

∂V
∂t

∣

∣ <
1
κ

∣

∣

∂B
∂t

∣

∣+(κ+2) ·γκ−1
i ·

∣

∣

∣

∂γi

∂t

∣

∣

∣
. Thus, let P = 1

κ sup
W/M

∣

∣

∂B
∂t

∣

∣+

(κ + 2) ·max
(

γκ−1
i

)

· sup
W/M

∣

∣

∣

∂γi

∂t

∣

∣

∣
, in which sup

W/M

∣

∣

∂B
∂t

∣

∣, and

sup
W/M

∣

∣

∣

∂γi

∂t

∣

∣

∣
depends on sup

W/M

‖q̇d‖.

The properties of the navigation function ensure bound-

edness of its gradient within the workspace, and therefore

ensure the existence of a positive bound k3 = max
W/M

‖f‖,

where M is a set of measure zero, including the unstable

saddle points of the navigation function as well as the

destination configuration. We can then choose 0 ≤ k2 ≤ ν,

∀ν > 0, and thus it holds that
(

1 − k2

ν+‖f‖

)

≥ 0.

Thus, it holds: V̇ ≤ −E + P ·
(

1 − k2

ν+‖f‖

)

. For

appropriate choice of the parameter k1, such that k1 ≥
ν+k3

‖umax‖−∞
, it is true that E ≥ ‖∇V ‖2, and therefore

V̇ ≤ −‖∇V ‖2 + P ·
(

1 − k2

ν+‖f‖

)

. In the region where

‖∇V ‖ >

√

P ·
(

1 − k2

ν+‖f‖

)

the Lyapunov function is de-

creasing, and therefore, z converges to 0 which corresponds

to the destination configuration (qd(t)). Thus, z is uniformly

ultimately bounded in the region where the above condition

holds.

In the neighborhood of z = 0, ∇V does not vanish

except for z = 0, since V is defined to be equal to a

navigation function of z. Thus, ‖∇V ‖ is a positive definite

scalar function, and thus there exist V3(‖z‖), V4(‖z‖) class

K functions for which V3(‖z‖) ≤ ‖∇V ‖ ≤ V4(‖z‖). Using

the lower bounding function V3, if ‖z‖ ≥ V3(‖z‖)
−1 ·

√

P ·
(

1 − k2

ν+‖f‖

)

∈ K, then, for the gradient of V we can

write ‖∇V ‖ ≥ V3(‖z‖) ≥

√

P ·
(

1 − k2

ν+‖f‖

)

, implying

that V̇ is strictly negative in the region defined above.

Application of a Theorem in [23], ensures that z is globally

uniformly ultimately bounded.

Proof: (Proposition 2) The control law construction and

the proof structure are inspired by the backstepping controller

design proposed by [22].

We form the Lyapunov function candidate: Va(z, t) ,

V (z, t)+ 1
2 ·(ż−fnew)2, where V (z, t) = ϕi(z, t). Taking the

time derivative of Va, V̇a = ∂V
∂t +

(

∂V
∂z

)T
·ż+

(

U − ḟnew
)T

·

(ż − fnew), and substituting U from (9), we have that

V̇a = −c·(ż−fnew)T ·(ż−fnew)−E+ ∂V
∂t ·

(

1 − k2

ν+‖f‖

)

, in

the same notation of the proof of Proposition 1, and it holds

that V̇a ≤ −c·(ż−fnew)T ·(ż−fnew)−E+P ·
(

1 − k2

ν+‖f‖

)

.

Thus, we conclude that V̇a is negative definite.
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