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Abstract—The accurate human gait tracking is an important
factor for various robotic applications, such as robotic walkers
aiming to provide assistance to patients with different mobility
impairment, social robot companions, etc. A context-aware robot
control architecture needs constant knowledge of the user’s
kinematic state to assess the patient’s gait status and adjust its
movement properly to provide optimal assistance. In this work
we present a novel human gait tracking approach that uses two
Particle Filters (PFs) and Probabilistic Data Association (PDA)
with an Interacting Multiple Model (IMM) scheme for a real-
time selection of the appropriate motion model according to the
human gait analysis and the use of the Viterbi algorithm for an
augmented human gait state estimation. The gait state estimates
also interact with the IMM as a prior information that drives
the Markov sampling process, while the PDA ensures that the
legs of the same person are coupled. The observation data in this
work are provided by a Laser Range finder (LRF) mounted on
a robotic assistant walker. A detailed experimental validation is
presented using ground truth data from a motion capture system,
which was used in real experiments with elder subjects who
presented various mobility impairments. The validation analysis
regards the algorithm’s accuracy, robustness to occlusions and
clutter, and the gait state classification success, subject to the
effect of different number of samples used in the PFs. The
results for the elder subjects show the dynamics of the proposed
algorithm to be used in a real-time application due to its efficacy
to provide accurate and robust augmented human gait estimates
with a small number of particles.

Index Terms—Human detection and tracking, human-centered
robotics, physically assistive devices, automation in life sciences:
biotechnology, pharmaceutical and health care, medical robots
and systems.

I. INTRODUCTION

HUMAN detection and tracking is a common research
topic, and refers to the accurate estimation of a human’s

position w.r.t. various sensors. Surveillance, ambient living
environments, mobile robot companions and robotic assistants
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are some of the applications where human tracking is neces-
sary, [1]–[3]. Cameras are commonly used for human activity
detection, [4]. Recent research focus on using Laser Range
Finder (LRF) sensors for detection, due to the simple two-
dimensional representation of the world, the lower computa-
tional cost in extracting features and their faster frame rates.

Approaches for tracking people can be found in [5], where
the authors presented a method for tracking multiple persons
using data from an LRF mounted on a mobile robot, using
a Joint Probabilistic Data Association Filter on the samples
of a Particle Filter (PF), to associate measurements to the
respective tracked persons; a pedestrian tracking method using
multiple static LRFs is presented in [6], where a Kalman Filter
(KF) tracks the legs using a human walking model inducing
predefined constant velocities for the stance/swing phase. A
single person tracker for a mobile robot is presented in
[7], using a Multiple Hypothesis Tracking (MHT) framework
that incorporates a switched dynamic walking model for the
left/right leg in an extended KF.

A fusion of visual and laser data for a mobile service robot
has been implemented in [8] using Unscented KF for human
tracking. In [9], an approach for a MHT laser-based people
tracking for a mobile robot is presented. This framework uses
a KF for tracking legs separately and the MHT associates past
with current tracks, [10]. A detection and tracking framework
for a mobile service robot that follows and interacts with
humans is proposed in [11]. A robotic walker is presented
in [12], which has two LRFs mounted, each one for tracking
the user’s legs separately using PFs. A robotic walker for
Parkinson’s Disease patients is presented in [13], which is
equipped with a small LRF that detects the legs positions.
A legs tracking framework for a walker used for rehabilitation
in described in [14].

More recently, [15] presented a method based on two
parallel Interacting Multiple Model (IMM)-unscented KFs to
track human positions and velocities for a companion robot.
The IMM framework incorporates two kinematic models; one
for turning and one for constant heading motion. The IMM
method is commonly used for tracking targets that present
changes in their motion, thus cannot be modeled by a constant
motion model. It is also a framework closely linked to data
association problems. Although most IMM approaches use
a bank of filters that run in parallel to correctly track a
target [15], the PF can be easily used in the IMM framework
for target tracking [16]. IMM-PF implementations are also
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used for multiple target tracking with association probabilities
[17], but also in the field of fault diagnosis and systems
identification [18].

This paper presents a novel human gait tracking algorithm
that uses two PFs to track the legs and Probabilistic Data
Association (PDA) for correlating the two legs to the same
subject. An IMM is constructed as a first-order Markov model
using as states specific gait phases defined in the gait analysis
literature. The IMM guides the selection of the appropriate
motion model for the particles of each leg. Moreover, an
augmented human state estimate, regarding the corresponding
gait phase, is provided using the Viterbi algorithm. This human
gait state estimate is also the prior that drives the Markov
sampling from the IMM for the next motion model selection.
The data used in this work are provided by a single LRF that is
mounted on an assistant robotic walker. This algorithm can be
used for tracking a human who presents pathological gait, i.e.
it deviates from normal walking function, either when a person
changes its gait due to fatigue or when another person walks
closely by, then the selection of the correct motion model
along with the PDA helps the efficient tracking of the same
person.

This tracking approach interweaves with our aim to more
general gait tracking applications, e.g. the augmented human
gait state estimate could provide in real-time the appropriate
information for gait analysis, in contrast with our previous
work that propagated the legs state information to an HMM,
[19], therefore needing more computational time. A real-time
gait analysis could infer the appropriate user-adaptation of the
control strategy for a robotic assistant walker in a context-
aware robot control architecture, [20]. Also, the augmented
human gait state estimation can provide the necessary infor-
mation for human identification and therefore could be used to
lock the tracking process to one person with a specific motion
model, consequently it could be used for multiple people
tracking and identification. Gait-based human identification
has also been presented in [21], where Deep Learning methods
on energy images of several subjects have been used. However,
to the best of our knowledge, there is no other method in
literature that performs such a tracking and identification task
based on augmented human state estimation from laser data.

In this work, we validate our IMM-PFs with the PDA
tracking algorithm (IMM-PDA-PF) using ground truth data
from a motion capture system, which was exploited during
experiments with real patients who used an assistant ro-
botic walker. Specifically, we evaluate the performance of
our algorithm regarding its tracking accuracy, its robustness
towards occlusions and environmental clutter and finally its
classification success on estimating the human gait state.

II. PROBLEM STATEMENT

The problem we aim to solve consists of performing effi-
cient and robust leg tracking and also estimating the human
gait state, i.e. to provide an augmented human state estimation
(both estimates of the legs states and the respective gait phase).
The estimated human gait state will also provide inference
regarding the desired motion model of the leg tracking system.
For the legs tracking, we aim to estimate the kinematic state

of the legs at each time instant, regardless of the cluttered
environment or occlusion cases. Let x f ,k be the state of each
leg, where f={left,right} at each time instant k. The state space
incorporates the Cartesian position vector p f ,k = [ x y ]

T and
the respective velocity vector v f ,k = [ υx υy ]

T . Thus, the
state vector of each leg is denoted as:

x f ,k = [ p f ,k
T v f ,k

T ]T (1)

For the human gait state estimation, we need to estimate the
current gait phase. The gait phase is a discrete parameter,
defined as θk and is drawn from a set of discrete states
Θ = {s1, ..,sM}, where M is the number of gait states. The
transition between those states is governed by a first-order
Markov chain, where the transition probability between two
states is denoted as:

ai j = P(θk = s j|θk−1 = si), ∀si,s j ∈Θ (2)

where i, j = 1, ..,M.
Thus, our problem evolves into estimating the augmented

human state {x f ,k,θk}, i.e. the posterior pdf p(x f ,k,θk|yk),
where yk is the measurement vector at time k. The legs’ states
estimates are computed by the marginal distribution of the
posterior pdf:

p(x f ,k|yk) =
M

∑
i=1

p(x f ,k|θk = si,yk) · p(θk = si|yk) (3)

Given this formulation the legs’ tracking problem is a two-step
iterative estimation problem:

1) the prediction step, where the state is propagated in
time according to the dynamics p(x f ,k|x f ,k−1,θk), i.e.
the probability density function describing the state
evolution given by the state transition equation:

x f ,k = g f ,k(x f ,k−1,θk,w f ) (4)

where gf ,k is a possibly non-linear function describing
the discrete time dynamics of the each leg given the
human state θk and w f is the process noise modelled as
white Gaussian with covariance matrix Σw f .

2) the correction step, where the state estimate is updated
according to measurements yk. The observations are
provided by a LRF that is located at the origin of
the coordinate system and contains observations of the
subject’s legs along with environmental clutter. The
observations that relate to each leg are described by the
measurement equation:

y f ,k = h f ,k(x f ,k,θk,n f ) (5)

where hf ,k is a possibly non-linear function and n f is
an independent & identically distributed measurement
noise vector.

For the estimation of the human gait state, we must compute
the marginal distribution of the posterior pdf:

p(θk|yk) =
∫

p(x f ,k,θk|yk)dx f ,k (6)

For addressing this augmented estimation problem, we
propose an IMM that describes the human gait states, but also
imposes a certain motion model for the human legs. The IMM
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Table I: Gait States Definition

s1 =LDS Left Double Support
s2 =LS/RW Left Stance/ Right Swing
s3 =RDS Right Double Support
s4 =RS/LW Right Stance/ Left Swing

Definition of the possible gait states of the IMM.

is incorporated into the leg tracking approach. In this approach,
we solve the problem of tracking the two legs as interacting
targets, i.e. we estimate the legs’ states x f ,k at each time instant
k, applying a PDA on the correction step of the filtering for
associating each leg to the correct measurement vector y f ,k and
keep the two legs coupled, in order to overcome problems of
leg occlusions and cluttered environment. The human gait state
estimate results from computing a joint likelihood for both legs
and the use of the Viterbi decoding algorithm, exploiting the
IMM’s Markov chain that describes the gait states transitions.

III. IMM-PDA-PF AUGMENTED HUMAN STATE
ESTIMATION

A. Interacting Multiple Model for Gait Tracking

The IMM used in this work is inspired by human gait
analysis [22]. There are two main periods in gait cycle: the
stance, when the foot is on the ground, and the swing when
that same foot is no longer in contact with the ground and
is swinging through, in preparation for the next foot strike.
The stance period can be subdivided into three internal time
intervals: the initial Double Support (DS), the single leg
support and the terminal DS, Fig. 1. The initial DS begins
with the Heel Strike (HS) and it is the time when both feet
are on the ground. The single leg support is the period when
only one leg is at stance while the opposite leg is swinging.
The terminal DS begins with the HS of the contra lateral foot
and continues until the original stance leg begins to swing.
The gait cycle can be seen as an interacting model; when the
one leg is in stance phase the other one is swinging.

With this reasoning, we have defined the first-order Markov
model of Fig. 2 as the IMM for the human gait transition
model. In Fig. 2 the human gait states are defined, i.e. the
discrete states si ∈Θ, i= 1, ..,4 and the possible transitions ai j
between them are defined in (2). The gait states are described
in Table I. Each state si refers to both legs and imposes a
different motion model. Namely, each state si is characterized
by a set of velocity Gaussian Mixture Models (GMMs), that
alter the transition probability function p(x f ,k|x f ,k−1,θk = si),
according to the dynamics that govern the state si. Thus,
in the prediction step we use the imposed state transi-
tion model p(x f ,k|x f ,k−1,θk) to compute the predicted pdf:
p(x f ,k,θk|yk−1):

p(x f ,k,θk|yk−1) =
∫

p(x f ,k,x f ,k−1,θk|yk−1)dx f ,k−1 =∫
∑

θk−1

p(x f ,k|x f ,k−1,θk) · p(θk|θk−1) · p(x f ,k−1,θk−1|yk−1)dx f ,k−1

(7)
where p(θk|θk−1) is defined in (2) for the gait IMM and
p(x f ,k−1,θk−1|yk−1) is the posterior joint state estimate at time
(k-1). At time k, a new observation yk comes, and then the

Figure 1: Human gait cycle representation regarding Single Leg or
Double Leg Support (DS).

Figure 2: The gait IMM as a first-order Markov chain that represents
the possible transitions for the human gait states (Table I).

posterior can be computed as:

p(x f ,k,θk|yk) =
p(yk|x f ,k,θk) · p(x f ,k,θk|yk−1)∫
∑
θk

p(yk|x f ,k,θk) · p(x f ,k,θk|yk−1)
(8)

where p(yk|x f ,k,θk) is the gait state conditional likelihood
function for the correction step.

B. Human Gait State Estimate

Because the transition model of the gait IMM refers to
the movement of both legs, for the human gait state esti-
mate p(θk|yk) defined in (6), we have to account both legs’
estimated states x f ,k. Thus, we define a human-centred state
space defined as: xH

k = xle f t,k−xright,k and compute the joint
likelihood, i.e. (6) is re-written as

p(θk|yk) =
∫

p(xH
k ,θk|yk)dxH

k (9)

For estimating (9), we have defined GMMs regarding the joint
distribution of the xH

k for each state si in the gait IMM and
evaluate the conditional probabilities of being in state θk = s j,
given the human-centred state xH

k and the measurements yk at
time instant k computed as:

Lk =

{
p(θk = s j|xH

k ,yk,θk−1 = si), for j = {i, i+1}
0, for j 6= {i, i+1} (10)

The results of (10) are used as emission probabilities Lk in
the Viterbi algorithm with a one step back-propagation [23],
i.e the human gait state estimate results as the Maximum a
Posteriori (MAP) solution for the time interval (k−1,k):

θ̂
MAP
k = argmax(Lk)

xH
k−1:k

(11)
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The MAP estimate (11) is solved using optimization via
the dynamic programming of the Viterbi algorithm. In the fol-
lowing section we will describe how the IMM is incorporated
into a leg tracking method that used two PFs with Probabilistic
Data Association (PDA-PF), [24].

C. IMM-PFs Probabilistic Data Association Legs Tracking
Our implementation incorporates two filters for estimating

the position and velocity of each leg separately and associate
them probabilistically. The particles represent samples of the
posterior density distribution of the legs’ states xle f t,k and
xright,k at each time instant k for the left and right leg
respectively. Each state constitutes of the Cartesian position
and velocity along the axes. The implementation covers the
basic particle filter methodology [25], including initialization,
propagation in time, particles’ weights update, resampling and
posterior estimation.

Initialization: At the first time instant k=1, we initialize
a set of N particles for each leg. Let the position of the nth

particle, for n = 1, ..,N, be noted as: pn
f ,k = [ x y ]T and its

velocity as: vn
f ,k = [ υx υy ]T , where f : {left,right} is the

label of each leg. The particles’ states are denoted as:

xn
f ,k = [ pn

f ,k
T vn

f ,k
T ]T (12)

Only for initialization we detect the initial positions of the
legs with respect to the robotic platform inside an observation
window and discriminate the left from the right leg using K-
means clustering and circle fitting. The particles’ positions
are initialized to be equal to the detected positions. We also
draw N samples for the legs’ velocity from an initial zero-
mean GMM distribution (we consider that both legs are still
in front of the robot for initialization). The particles’ weights
ω

f ,n
k of each leg are initialized equal to: 1/N, with n = 1, ..,N.

The initial posterior estimate is approximated by the Minimum
Mean Square Error:

x f ,k =
N

∑
n=1

ω
n
f ,k ·x

n
f ,k = [ p f ,k

T v f ,k
T ]T (13)

Regarding the human gait state estimation, only for initial-
ization we deviate from (10), in the sense that we calculate the
probabilities L1 = p(θ1 = s j|xH

k ), ∀si ∈ Θ. The initial human
gait state estimate θ1 results from the maximum likelihood:
θ̂1 = argmax(L1).

IMM Particles’ Propagation: At each time frame k=2,..,T
(where T is the total tracking time) the particles’ states are
propagated in time using the IMM and the state transition
pdf p(x f ,k|x f ,k−1,θk). We use Markov Chain Monte Carlo
sampling using the gait IMM transition model to draw N
samples for the human gait state at time k, noted as θ n

k , given
the estimated gait state at time (k-1), θ̂k−1. Each gait state θ n

k
imposes a different motion model for the respective nth particle
of each leg according to certain velocity GMMs that describe
the states si. The selected GMMs from the respective θ n

k are
centred around the previously estimated velocities v f ,k−1. Let
vn

f ,k be the nth velocity sample drawn from the respective
GMM of the state θ n

k at time instant k. Then, the position of
the nth particle is propagated in time according to the equation:

pn
f ,k = p f ,k−1 +vn

f ,k ·∆t (14)

where p f ,k−1, is the estimated position vector of each leg for
the (k−1) time frame.

IMM-PDA Observation Likelihood computation: One of
the main objectives is to correctly associate each leg with the
respective cluster of laser points y f ,k, where f = {le f t,right}.
The problem, however, is that the legs do not have an explicit
observation, but a cluster of laser points form the observation.
The cluster of laser points that represents a leg has variable
number of points, has a deformable shape and often contains
outliers. Thus, inspired by the methods used in data association
literature, [26], we considered the legs to be two interacting
targets and we implemented a data association, to associate
each leg to the most representative cluster of laser points, but
also keep the formation of the two legs that belong to the same
person by taking into consideration the IMM formulation.

At each time instant k, the particles’ weights have to be
updated according to the observations. The observations are
the Cartesian positions of the laser points in the sagittal plane.
In this implementation, we use an observation window for
each leg, which is an experimentally defined rectangular area,
centred around each particle, so that every sample xn

f ,k is
associated with a different cluster of laser points, yn

f ,k. Given
the IMM formulation the particle weights depend on the gait
state conditional observation likelihood:

ω
n
f ,k =

p(yk|xn
f ,k,θ

n
k ) · p(θ

n
k |θ̂k−1)∫

∑
θ n

k

p(yk|xn
f ,k,θ

n
k ) · p(θ

n
k |θ̂k−1)

(15)

We treat each particle as a possible leg center and we
expect the observations to be on the circular circumference
of this center. We set the observation window centred on
the nth particle and we associate it with the corresponding
observations, i.e. the laser points yn

f ,k detected inside the
window. The observation likelihood that will provide the
weight of the particles is computed based on three factors:

1. The distribution of the laser points in the circular contour
given the center (i.e. the respective particle): In Fig. 3 an
example of the circular representation of the legs from the
laser points w.r.t. the laser scanner is presented. On the right
of Fig. 3, there is a depiction of the detected laser points with
black stars, the green and magenta circles are the circular
representations of the right and left leg respectively. The
labels R0, R1, R2, R3, R4 represent the segmentation of
the circle into regions (the regions’ boundaries are depicted
with orange lines) based on which we have computed the
observation likelihood for the IMM-PDA-PF. We have divided
horizontally the circle into two semicircles. Laser points in
the upper semicircle R0 do not contribute to the observation
likelihood. The lower semicircle is split into four regions
(R1,..,R4) of equal angle range. We have calculated the normal
distribution of the Euclidean distances of the laser points of
each region w.r.t. the corresponding center. Let dRm be the
vector of distances of the laser points w.r.t. the corresponding
circle center for the Rm region, with m ∈ 1, ...,4. Thus, each
region Rm is described by a normal distribution of the distances
N (dRm |µRm ,ΣRm), with µRm the mean distance and ΣRm is the
covariance matrix.
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Figure 3: Example of the circular representation of the legs from
the laser points w.r.t. the laser scanner. Left: a snapshot of a subject
walking with the rollator while the Hokuyo LRF scans the walking
area; Right: a presentation of the detected laser points, the circular
representations of the legs and the regions based on which we
compute the observation likelihood.

Figure 4: Left: A snapshot from the experimentation scene. A patient
with his normal clothes wears a set of visual markers while walking
with support of the passive rollator. Right: a representation of the
visual markers from MOKKA visualization system.

2. The number of laser points inside each observation
window: A normal kernel distribution, noted as λn for every
particle with n= 1, ..,N, describes the likelihood of the number
of laser points detected on the circular contour that represents
the leg.

3. Association probability We compute an association pro-
bability about the Euclidean distance between the two legs.
The human legs are two interacting moving targets, and thus
we introduce an association probability βi, modelled by a
Gamma distribution. This probability regulates the observation
likelihood of the one leg w.r.t. the other; we account how
probable is the current state of the nth particle of the one
leg w.r.t. the estimated position of the other leg at (k− 1).
By inserting the association probability, we achieve to control
the relative positions of the two legs, especially in cases of
leg occlusions or cluttered environment, but also to assign the
correct observations to each leg.

For the nth particle of each leg we compute the observation
likelihood using the following function:

p(yn
f ,k|x

n
f ,k,θ

n
k ) = βn ·

[
λn ·

4

∑
m=1

πRm ·N (dRm |µRm ,ΣRm)

]
(16)

We assume as πRm , the importance weights of the four
regions, which were set experimentally so that the extreme
regions R1 and R4, which often contain many outliers have less
importance than the inner regions R2 and R3. All parameters
have been experimentally defined. The weights are normalized

for all particles n = 1, ...,N according to:

ω̂
n
f ,k = ω

n
f ,k/

N

∑
j=1

ω
j
f ,k (17)

Resampling: For confronting the problems of weight de-
generacy and sample impoverishment [25], at each time
frame we check whether the effective sampling size Ne f f =

1/
N
∑

n=1
ω̂n

f ,k is less than the threshold Nthr =N/2. If so, we apply

a random walk on the current particles’ state providing new
particles ∗xn|θ n

k
f ,k given the sampled state θ n

k . Then, we evaluate
the weights of the new particles, according to the IMM-PDA
Observation Likelihood computation, which provides the new
weights: ∗ω̂n

f ,k. Having the old pairs of particles and their

weights (xn|θ n
k

f ,k , ω̂n
f ,k) and the new ones (∗xn|θ n

k
f ,k ,∗ω̂n

f ,k), we
apply the Metropolis-Hastings algorithm, [27]. Based on this
algorithm we can decide whether or not we have to replace
the nth pair (xn|θ n

k
f ,k , ω̂n

f ,k) with the new samples (∗xn|θ n
k

f ,k ,∗ω̂n
f ,k).

Posterior Estimation: For the posterior state estimate
p(x f ,k|y f ,k) (from the marginalized posterior pdf of (3)), we
apply maximum likelihood for finding the particle with the
highest weight and collect the “best” particles, i.e. those having
a weight greater or equal than 80% of the maximum weight:

s = argmax
i

[ω̂n
f ,k > 0,8 ·max(ω̂n

f ,k)] (18)

where s is the index of the “best” particles, i.e. s ∈ S ⊆
{1, ...,N}. In that way, we have a dynamic system, that leaves
out particles that may track outliers and could contaminate
the posterior estimation, and therefore provides smoother
estimates. The posterior state estimate is then approximated
by the weighted mean of the “best” particles:

p(x f ,k|y f ,k) =

(
∑
s

xs
f ,k · ω̂

s
f ,k

)/(
∑
s

ω̂s
f ,k

)
(19)

IV. EXPERIMENTAL ANALYSIS & VALIDATION

A. Experimental setup and data description

Experiments with real patients were conducted in Agaple-
sion Bethanien Hospital - Geriatric Center, under ethical
approval by the ethics committee of the Medical Department of
the University of Heidelberg. All subjects had signed written
consent for participating in the experiments. The participants
presented moderate to mild mobility impairment, according to
clinical evaluation. The patients were wearing their normal
clothes. For Ground Truth (GT), a set of markers from a
VICON Motion Capture system was placed on certain areas of
the subjects’ body. In this work we employ data from a dataset
of 23 patients aged over 65 years old. The subjects participated
in a walking scenario having physical support of a rollator,
where they had to walk in a room and make some turning
manoeuvres to avoid obstacles. All patients performed the
experimental scenarios under appropriate carer’s supervision.

A snapshot of the experimentation scene with a subject
walking supported by the robotic rollator while wearing a
set of visual markers is shown on the left of Fig. 4; on
the right, a representation of the markers from the MOKKA
visualization system is provided. Two types of GT data are



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2017

needed for the validation of our work: a) the GT data of the
tibia movement for validating the tracking accuracy, and b) the
GT data of the gait phases for evaluating the classification. In
Fig. 4, marked with red are the tibia markers and with blue
the rollator markers, which are used for extracting the GT of
the legs’ movement w.r.t. the rollator. To extract GT data we
apply a series of interpolation, cyllinder fitting and smoothing
algorithms for the positions, as well as simple differentiation
for the velocities. Heel and toe markers (marked green) are
also used to extract GT gait phases, based on an automatic
gait phase detection algorithm thoroughly described in [28].

The extracted GT data from the 15 subjects constitute
the training dataset (comprising approximately 60.000 frames,
75% of the whole dataset), dedicated to training the GMMs of
the motion models, the pdfs that describe the gait states and
the Transition Probability Matrix of the gait IMM of Fig. 2.
In particular, 2 mixture-GMMs were used for modelling the
DS phases and 5-mixtures for the stance/swing phase of the
left and right legs in the IMM of Fig. 2. The data from the
remaining 8 subjects formed the testing set, containing appro-
ximately 25.000 scanning frames, 25% of the whole dataset,
or else ∼12 minutes of walking. It is important to mention,
that all the subjects had various mobility impairments, giving
a rich dataset of different gaits, i.e. different gait speeds and
variable gait phases durations. In this work we have used as
training set a randomly selected group of subjects. In future
work we plan to perform a systematic cross-validation study
using different partitions of the training/testing dataset.

The laser data were provided by a Hokuyo rapid laser sensor
UBG-04LX-F01, mounted on the robotic platform of Fig. 4 for
the detection of the patients’ legs. The laser sensor is placed
at a height of about 40 cm from the ground in order to capture
the motion of the subject’s tibia.

B. Validation Strategy

Our validation strategy comprises the testing of our al-
gorithm regarding: i) its accuracy, by computing its average
position and velocity Root Mean Square Error (RMSE) w.r.t.
the ground truth data from the visual markers, ii) its robustness
evaluating the algorithm’s behaviour in cases of leg occlusions,
environmental clutter or loss of detection, by computing the
percentage of the frames when the algorithm successfully
tracked both legs to the total recorded frames (frames were
hand-annotated), and iii) the gait state classification given the
extracted ground truth gait states by assessing three measures.
a) The classification accuracy: the quotient of the correct
predictions to the total number of predictions and is a measure
of how good the proposed model is, b) the recall: RE is
a measure of how many actual positive observations were
predicted correctly, c) the precision: PR is a measure of how
many positive predictions were actual positive observations,
and d) the F1-score: F1 is the weighted average of precision
and recall,

RE =
T P

(T P+FN)
, PR =

T P
(T P+FP)

, F1 =
2(RE ·PR)
(RE +PR)

(20)

where TP: True Positives, FN: False Negatives and FP: False
Positives. We present a sensitivity analysis of the above metrics
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Figure 5: Tracking accuracy as the position and velocity average
RMSE according to different number of particles of the proposed
IMM-PDA-PF and the baseline PDA-PF w.r.t. GT.

w.r.t. the number of samples used in the PFs, to evaluate
how the performance of the algorithm is affected by the
number of particles. In this work, we evaluate the algorithm’s
performance for a range of particles from 50 to 500 samples.
To evaluate the performance of the proposed method with
respect to other state of the art approaches, we choose to
compare the IMM-PDA-PF method with a recently published
one, proposed in [24], which we here denote as the baseline
PDA-PF method. We choose this method, following an ex-
tensive literature survey, as being the most relevant one for
comparative evaluation purposes. This baseline method also
employs PF tracking of legs using on-board LRF data, but uses
a single motion model without any IMM-based human state
estimation. We comparatively evaluate the performance of the
two methods regarding their tracking accuracy and robustness
for the same range of particles sets. We also combine the
baseline PDA-PF tracking method with the human gait state
estimate of Section III-B (i.e. without the proposed IMM
framework), and provide comparative classification results on
the aforementioned testing dataset (in terms of accuracy and
F1-score only, due to space limitations).

C. Validation Results and Discussion

The validation results regarding the tracking accuracy are
depicted in Fig. 5. The blue lines depict the average (position
and velocity) RMSE of the proposed IMM-PDA-PF method,
for an increasing number of particles, while the red lines on
the same figures depict the respective comparative results of
the baseline PDA-PF method. Inspecting the results of Fig. 5,
we can deduce that, as far as the position tracking accuracy
is concerned, the proposed IMM-PDA-PF method achieves
significantly better results than the baseline PDA-PF method,
for all sets of particles. In particular, when 50 particles are
used the average position tracking RMSE for the IMM-PDA-
PF is decreased by 38% (as compared to the baseline method)
and this significant decrease is consistent for all different
sizes of particle sets, achieving a value of 46% improvement
in tracking accuracy for 500 particles (average RMSE of
6.69cm for the proposed method over 12.45cm for the baseline
method). In average, over all particle sets of different sizes,
the IMM-PDA-PF method achieves an ameliorated position
tracking accuracy with a mean value of approximately 41%
performance gain.
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Table II: Comparative robustness evaluation

Method
particles 50 100 150 200 300 500

IMM-PDA-PF 98.49 99.83 100.00 100.00 100.00 100.00
Baseline PDA-PF 86.72 90.53 90.58 91.00 92.12 93.84

Robustness evaluation of the proposed IMM-PDA-PF vs. the baseline
PDA-PF method according to different number of particles.

Regarding the velocity RMSE, the IMM-PDA-PF again
achieves better results than the baseline approach for all
particle sets, achieving an average RMSE decrease of approxi-
mately 20% w.r.t. the baseline. Generally, the relatively higher
errors in velocity estimation can be explained by the compu-
tation of the GT velocity (simple differentiation of markers’
positions) that induces random noise; also the laser clusters are
highly deformable due to clothing further adding considerable
noise to the observations. The particles’ propagation motion
model described in Eq. (14), favours the position estimation
convergence; hence a higher order kinematic model should be
used to minimize estimation error in velocity.

Table II presents a comparative evaluation of the robustness
performance of the proposed IMM-PDA-PF method in contrast
to the baseline PDA-PF tracking algorithm. Evaluating the
cumulative results from the eight subjects of the test set, we
can observe that even with as few as 50 particles the IMM-
PDA-PF method achieves highly robust tracking performance
(98.49% success rate), while for 150 particles or more there
are apparently no false detections or tracking failures (100%
tracking success rate). On the other hand, the baseline PDA-
PF method achieves a mediocre performance (in terms of
robustness) when using a small set of 50 particles (a low
86.72% tracking success rate), while even with 500 particles
it still exhibits considerable failure rate, tracking successfully
only 93.84% of all the frames of the eight subjects. The
results of Table II clearly show that the proposed tracking
algorithm can efficiently handle problems of leg occlusions
and environmental clutter, i.e. noise or another person’s legs in
the proximity of the tracked person, using much fewer particles
than the baseline PDA-PF. It suffices to mention that even in
cases when tracking losses occurred (sample sizes of 50 or
100 particles), the algorithm, due to the PDA and the motion
model selection from the IMM, managed in all cases to quickly
re-detect the subject’s legs and continue the tracking process.

Table III presents the classification results for the human
gait state estimation, regarding the four states of the Markov
model in Fig. 2. We aim to evaluate the ability of the proposed
IMM scheme to reliably predict the human gait phases in real-
time, hence providing an augmented human state estimation.
Inspecting the results, we can notice high mean accuracies
(over 90%) for the proposed IMM-PDA-PF implementations
of 100 particles and over, with a peak value of 94% accuracy
for 500 particles. Embarking on the classification problem,
we have to check the recall and precision results. All recall
results are approximately over 70% with maximum recall 88%
at 300 and 500 particles. Regarding precision, the results are
over 60% for all implementations, presenting an ascending
pattern w.r.t. the increasing number of particles, reaching an
80% precision at 500 particles. It is also important to observe

and separately analyse the results for individual classes (i.e.
gait phases), since it seems that gait states s1 and s4 are more
easily recognized than states s2 and s3; indeed, the last two
refer to the DS phases that correspond to very short time
intervals and are hence difficult to capture.

The F1-score helps assessing the overall model perform-
ance. According to Table III the tracking implementations
with 150 particles or more achieve F1-scores over 70%, with
the best score of 82% classification success achieved for 500
particles. For comparison, Table IV depicts the classification
results (accuracy and F1-scores) achieved when the baseline
PDA-PF tracking algorithm is used (instead of the proposed
IMM scheme) in combination with the human gait state
estimation. It is evident that both the accuracy and F1-scores
are much lower than the proposed method; e.g. for 500
particles the IMM-PDA-PF achieves 51% better classification
performance (according to the F1-score) than the baseline. All
these results lead to the conclusion that the gait IMM-PDA-PF
scheme, proposed in this paper, is a robust method that can
provide accurate and real-time augmented human gait state
estimation.

Summing up, we can claim that the IMM-PDA-PF suc-
ceeded to perform accurate and robust tracking of the hu-
mans legs with a small number of particles, in contrast to
the baseline PDA-PF, i.e. thus reducing the computational
load for a real-time implementation. The contribution of the
IMM in the selection of the motion model during gaiting
is particularly related to the fewer number of particles. We
present strong evidence that the proposed methodology can
provide efficient human gait state estimates with small sets
of particles. Even with as few as 150 particles the proposed
algorithm can achieve efficient augmented human state esti-
mation, constituting a novel approach that provides real-time
tracking of humans with various mobility impairments and
a potential tool for on-line gait analysis and identification.
It is however important to augment the training dataset with
more pathological gait data and to test new GMMs in order
to achieve better classification results.

V. CONCLUSIONS & FUTURE WORK

We introduce a novel gait tracking algorithm for an augmen-
ted human state estimation that uses two PFs to track the legs
and PDA to associate them, an IMM for the selection of the
appropriate motion model and a gait state estimation using
the Viterbi algorithm. The human gait state estimate drives
the selection of the motion model from the Markov model
of the gait IMM. We utilize data from an LRF mounted on
a robotic assistant platform designed for mobility impaired
subjects, constituting a non-invasive approach using a non-
wearable device. We validate the performance of our human
gait tracking algorithm regarding its accuracy, robustness to
occlusions and clutter, and its classification abilities according
to different number of particles. The GT data used in this work
were extracted from visual markers.

The experimental results show that the proposed gait track-
ing method has the ability to track users with various mobility
impairments, providing accurate and robust estimates even
with a small number of particles, which is very important for a
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Table III: Classification results (IMM-PDA-PF)

Accuracy

gait state
particles 50 100 150 200 300 500

s1 89.78 91.73 93.92 94.16 93.45 90.20
s2 86.37 89.78 89.54 90.02 94.78 94.12
s3 88.56 89.29 88.08 87.35 92.31 98.04
s4 88.08 90.75 92.46 91.48 90.88 94.12

mean 88.20 90.39 91.00 90.75 92.88 94.12
Recall

gait state
particles 50 100 150 200 300 500

s1 60.87 78.26 89.29 87.10 88.00 80.00
s2 84.62 86.75 84.57 91.28 89.86 77.27
s3 57.89 61.54 55.88 51.02 94.74 100.00
s4 75.26 79.78 83.33 80.77 80.50 95.00

mean 69.66 76.58 78.27 77.54 88.28 88.07

Precision

gait state
particles 50 100 150 200 300 500

s1 29.79 38.30 53.19 57.45 52.38 44.44
s2 80.49 87.80 90.24 82.93 97.79 94.44
s3 41.51 45.28 35.85 47.17 40.91 80.00
s4 99.32 99.32 98.64 100.00 99.22 100.00

mean 62.78 67.68 69.48 71.89 72.58 79.72
F1-score

gait state
particles 50 100 150 200 300 500

s1 40.00 51.43 66.67 69.23 65.67 57.14
s2 82.50 87.27 87.32 86.90 93.66 85.00
s3 48.35 51.27 43.68 49.02 57.14 88.89
s4 85.63 88.48 90.34 89.36 88.89 97.44

mean 64.12 69.61 72.00 73.63 76.34 82.12

Gait state classification results (accuracy, recall, precision, and F1-
score) using the IMM-PDA-PF method with an increasing number of
particles.

Table IV: Classification results (PDA-PF)

Accuracy

gait state
particles 50 100 150 200 300 500

s1 77.69 78.81 79.16 79.11 77.10 79.50
s2 76.56 79.11 76.41 80.65 75.48 78.72
s3 74.69 79.50 77.93 77.15 74.99 76.66
s4 76.12 75.58 77.93 76.75 75.43 76.66

mean 76.26 78.25 77.81 78.42 75.75 77.88
F1-score

gait state
particles 50 100 150 200 300 500

s1 43.90 45.86 42.18 48.43 39.27 45.14
s2 63.17 67.58 65.81 69.17 62.06 65.06
s3 38.42 52.06 48.86 45.81 43.58 47.46
s4 56.94 54.48 57.01 57.45 53.91 59.25

mean 50.61 55.00 53.47 55.22 49.71 54.23

Gait state classification results (accuracy and overall F1-score) for
the baseline PDA-PF method with an increasing number of particles.

real-time application. The classification results seem promising
and could be incorporated in a real-time gait analysis system
for a user-adaptive context aware robot controller.

Our ongoing research comprises the development of differ-
ent motion models that would stochastically describe different
classes of mobility impairment, an on-line user classification
according to the selected motion model and specific gait
features, the adaptation of the number of particles according
to the type of walking and the real time implementation and
evaluation of the algorithm.
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