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Abstract

The integral form for the variance of the response of stochastic statically indeterminate structural systems involving
the so-called variability response function (VRF) and the spectral density function of the stochastic field modelling the
uncertain system properties is established for the first time in this paper using evolutionary spectra theory. The VRF is a
function depending on deterministic parameters related to the geometry, boundary conditions, (mean) material prop-
erties and loading of the structural system. No approximations are involved in the derivation of the integral form. How-
ever, a conjecture has to be made that is validated using Monte Carlo simulations. The uncertain system property
considered is the inverse of the elastic modulus (flexibility). Closed-form expressions can be derived in principle for
the VRF of any statically determinate or indeterminate frame system using a flexibility-based formulation. Alterna-
tively, a fast Monte Carlo simulation approach is provided to numerically evaluate the VRF. It is shown in closed-form
and numerically that the VRF for statically indeterminate structures is a function of the standard deviation rff of the
stochastic field modeling the inverse of the elastic modulus. Although the VRF depends on rff, it appears to be inde-
pendent of the functional form of the spectral density function of the stochastic field modeling the uncertain system
properties. For statically determinate structures, the VRF is independent of rff. The integral form can be used to com-
pute the variance of the system response as well as its upper bound with minimal computational effort. It also provides
an excellent insight into the mechanisms controlling the response variability. The upper bounds for the response var-
iance are spectral- and probability-distribution-free requiring knowledge of only the variance of the inverse of the elastic
modulus. The proposed bounds are realizable in the sense that it is possible to determine the probabilistic characteristics
of the stochastic field that produces them. Several numerical examples are provided demonstrating the capabilities of
the methodology.
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1. Introduction

The analysis of stochastic systems with material/geometric properties modelled by random fields has
been the subject of extensive research in the past two decades. The majority of the work has focused on
developing stochastic finite element methodologies (SFEM) for the numerical solution of the stochastic dif-
ferential equations involved in the problem. By far, the most widely used SFEM approaches are approxi-
mate expansion/perturbation based methods. Although such methods have proven to be highly accurate
and computationally efficient for a variety of problems, there is still a wide range of problems in stochastic
mechanics involving combinations of strong non-linearities, large variations of system properties and non-
Gaussian system properties that can be solved with reasonable accuracy only through a computationally
expensive Monte Carlo simulation approach.

Whether an expansion/perturbation based approach or a Monte Carlo simulation methodology is used
to estimate the response variability of a stochastic system, it is necessary to know the probability distribu-
tion function (PDF) and the spectral/correlation characteristics of the stochastic system properties. In most
practical engineering applications, there is a lack of experimental data that would enable a quantification of
such probabilistic characteristics of the stochastic system properties. Taking into account that many
researchers have clearly demonstrated that both the correlation structure and the PDF of the material/geo-
metric properties can have a significant (and in certain cases dramatic) effect on the stochastic response, a
SFEM or Monte Carlo analysis will not provide particularly useful results for real-life applications when
the probabilistic characteristics of the system properties are arbitrarily assumed.

A common approach to address the aforementioned problem is to perform a sensitivity analysis with
respect to the various parameters controlling the probabilistic characteristics of the stochastic system prop-
erties. Although such an approach has obvious advantages, it also has certain drawbacks. First, the com-
putational effort increases drastically as the number and range of the various parameters examined expand.
Then, there is no real insight on the effect of the various parameters on the response variability of the sys-
tem. And finally, it is practically impossible to determine upper bounds on the response variability as the
number of combinations of the various parameters is essentially infinite.

To address all three of the above drawbacks, the concept of variability response function (VRF) was
introduced in the late 1980s. The basic idea associated with the VRF is to express the variance of the re-
sponse (i.e. displacement) in the following integral form:
Var½u� ¼
Z 1

�1
VRFðjÞSff ðjÞdj; ð0aÞ
where the VRF is a function depending on deterministic parameters related to the geometry, boundary con-
ditions, (mean) material properties and loading of the structural system, Sff(j) is the spectral density function
of the stochastic field modeling the uncertain material/geometric properties, and j is the wave number.

It is straightforward to see how the concept of the VRF in conjunction with the integral form in Eq. (0a)
addresses all three drawbacks mentioned above. Once the VRF is determined, the variance of the response
can be estimated very easily through a simple integration given any form of the spectral density function
Sff(j) (the VRF is usually a smooth function of j). Eq. (0a) also provides an excellent insight of the effect
of the form of the spectral density function of the stochastic field modeling the uncertain material/geometric
properties on the response variability. Finally, a spectral- and probability-distribution-free upper bound for
the response variance can be computed in a straightforward way as:
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Var½u� 6 VRFðjmaxÞr2
ff ð0bÞ
with jmax being the wave number where the VRF attains its maximum value and r2
ff being the variance of

the stochastic field modeling the material/geometric properties.
Early work determined the VRF for a wide range of problems (beams, frames, plane stress/strain, plate

bending, random eigenvalue problem) using some kind of first-order approximation (usually of the re-
sponse displacement). An immediate consequence was that even the existence of the integral form in Eq.
(0a) depended on this approximation. The uncertain system property in this early work was always the elas-
tic modulus. A more detailed description of the early developments in this field, including a list of relevant
references until the present, can be found in [3] where it was attempted for the first time to establish the
integral form in Eq. (0a) without having to go through a first-order approximation. The key was to consider
the inverse of the elastic modulus as the uncertain system property. For the case of statically determinate
beam structures, the existence of the integral form in Eq. (0a) was easily established in a rigorous mathe-
matical way and closed-form expressions were provided for the VRF. For statically indeterminate beam
structures, however, a conjecture had to be made about the existence of an integral form like the one in
Eq. (0a) and the VRF was subsequently estimated numerically. The validity of this conjecture was demon-
strated numerically through a brute-force optimization scheme involving the computation of upper bounds
of the response variance. Consequently, because the conjecture was based mostly on insight and because of
the process followed to validate it, Papadopoulos et al. [3] used Eq. (0a) in an ad hoc way to determine only
upper bounds of the response variance (and not the response variance itself).

The present paper complements and extends the work done in [3] in the following ways. First, the inte-
gral form in Eq. (0a) for statically indeterminate structures is formulated in a different way using the con-
cept of non-homogeneous evolutionary fields developed by Priestley [4]. Although a rigorous mathematical
proof of the existence of the integral form in Eq. (0a) is still elusive for statically indeterminate structures, a
different conjecture is made now regarding the existence of a non-homogeneous evolutionary stochastic
field involving the uncertain elastic properties. Furthermore, this alternative conjecture is now validated
numerically by computing the response variance through Eq. (0a) and comparing it with Monte Carlo sim-
ulation predictions. There is still no first-order approximation involved as the inverse of the elastic modulus
is again considered as the uncertain system property. Closed-form expressions can be established in prin-
ciple for the variability response function of any statically determinate or indeterminate frame system using
a flexibility-based formulation. In contrast to the conclusions in [3], it is shown here that the VRF for stat-
ically indeterminate structures is a function of the standard deviation rff of the stochastic field modeling the
inverse of the elastic modulus. The dependence of VRF on rff is negligible in some cases and this is the rea-
son that it was not detected numerically in [3]. In the present paper, the dependence of the VRF on rff for
statically indeterminate structures is established in closed-form expressions. It is pointed out that although
the VRF depends on rff, it appears to be independent of the functional form of the spectral density function
Sff(j). For statically determinate structures, the VRF is independent of rff as well.

The integral form in Eq. (0a) is therefore established in this paper using a different formulation involving
an alternative conjecture compared to [3]. In addition, the validation of the conjecture is done in a much
stricter way in this paper: by comparing the response variance predictions of Eq. (0a) with Monte Carlo
simulations (compared to a brute-force optimization validation in [3] involving the upper bound of the re-
sponse variance). Consequently, Eq. (0a) is used in this paper with confidence to compute the variance of
the response through a simple integration, as well as to estimate its upper bound (compare to [3] where it
was used only to estimate upper bounds).

The upper bounds established in this study for the response variability are spectral- and probability-dis-
tribution-free requiring knowledge of only the variance of the inverse of the elastic modulus. It should be
mentioned that the variance of the inverse of the elastic modulus can be obtained as easily as the variance of
the elastic modulus using the same experimental data. The proposed bounds are realizable in the sense that



V. Papadopoulos, G. Deodatis / Comput. Methods Appl. Mech. Engrg. 195 (2006) 1050–1074 1053
it is possible to determine the probabilistic characteristics (spectral density function and marginal probabil-
ity distribution function) of the stochastic field (modeling the inverse of the elastic modulus) that produces
them. Furthermore, it is possible to fully determine also the corresponding stochastic field modeling the
elastic modulus that produces these bounds.

Finally, it should be mentioned that the approach used in this paper to model the beam flexibility instead
of its rigidity has already been followed in a small number of earlier studies (e.g. [1]). In these studies, exact
expressions for the response variance were established for simple statically determinate beams under static
loading (but not in the form of Eq. (0a) involving the variability response function).
2. Statically determinate beams

Consider the statically determinate beam of length L shown in Fig. 1, carrying a deterministic uniformly
distributed load Q0. The inverse of the elastic modulus of the beam is assumed to vary randomly along its
length according to the following expression:
1

EðxÞ ¼ F 0ð1þ f ðxÞÞ; ð1Þ
where E is the elastic modulus, F0 is the mean value of the inverse of E, and f(x) is a zero-mean homoge-
neous stochastic field modeling the variation of 1/E around its mean value F0.

The response displacement of the beam u(x) is given by:
uðxÞ ¼ F 0Q0

2I

Z x

0

ðx� nÞðL� nÞ2ð1þ f ðnÞÞdn ¼
Z x

0

gðx; nÞð1þ f ðnÞÞdn; ð2Þ
where I is the moment of inertia and:
gðx; nÞ ¼ F 0Q0

2I
ðx� nÞðL� nÞ2. ð3Þ
As described in detail in [3], the variance of the response displacement can be expressed in the following
form:
Var½uðxÞ� ¼
Z 1

�1
VRFðx; jÞSff ðjÞdj; ð4Þ
where the variability response function (VRF) is given by:
VRFðx; jÞ ¼
Z x

0

gðx; nÞeijn dn
����

����2 ð5Þ
and Sff(j) denotes the power spectral density function of stochastic field f(x). As shown in [3], the expres-
sions for the Var[u(x)] and the VRF is Eqs. (4) and (5) are exact analytic expressions as no approximations
Fig. 1. Configuration of statically determinate beam.
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were made for their derivation. Furthermore, similar expressions can be established for any statically deter-
minate beam with any kind of boundary and loading conditions.
3. Statically indeterminate beams

Consider now the statically indeterminate beam of length L shown in Fig. 2, carrying a deterministic
uniformly distributed load Q0. The inverse of the elastic modulus is again assumed to vary randomly along
the length of the beam according to Eq. (1).

Using a force (flexibility) method formulation as in [3], the response displacement of this beam u(x) can
be expressed as:
uðxÞ ¼ u0ðxÞ � Ru1ðxÞ; ð6Þ

where u0(x) is the deflection of the associated statically determinate beam with uniform load Q0 obtained by
removing the simple support at the right end of the beam in Fig. 2, u1(x) is the deflection of the same asso-
ciated statically determinate beam due to a unit concentrated force acting at x = L, and R is the redundant
force (vertical reaction at the right end of the beam in Fig. 2).

Eq. (6) is then written as follows:
uðxÞ ¼ F 0Q0

2I

Z x

0

ðx� nÞðL� nÞ2ð1þ f ðnÞÞdn� F 0R
I

Z x

0

ðx� nÞðL� nÞð1þ f ðnÞÞdn

¼
Z x

0

g0ðx; nÞð1þ f ðnÞÞdnþ
Z x

0

g1ðx; nÞRð1þ f ðnÞÞdn; ð7aÞ
where
g0ðx; nÞ ¼
F 0Q0

2I
ðx� nÞðL� nÞ2 and g1ðx; nÞ ¼ � F 0

I
ðx� nÞðL� nÞ. ð7bÞ
The redundant force R is a random variable that can be computed from the boundary condition at x = L

as:
uðx ¼ LÞ ¼ 0 ) u0ðx ¼ LÞ ¼ Ru1ðx ¼ LÞ ) R ¼

Q0

2

Z L

0

ðL� nÞ3ð1þ f ðnÞÞdnZ L

0

ðL� nÞ2ð1þ f ðnÞÞdn
. ð8Þ
Taking now the expectation on both sides of Eq. (7a), the mean value of u(x) is computed as follows:
e½uðxÞ� ¼
Z x

0

g0ðx; nÞdnþ
Z x

0

g1ðx; nÞe½Rð1þ f ðnÞÞ�dn. ð9Þ
Combining now Eqs. (7a) and (9), the following expression is written for u(x) � e[u(x)]:
Fig. 2. Configuration of fixed-simply supported statically indeterminate beam.
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uðxÞ � e½uðxÞ� ¼
Z x

0

fg0ðx; nÞð1þ f ðnÞÞ þ g1ðx; nÞRð1þ f ðnÞÞ � g0ðx; nÞ � g1ðx; nÞe½Rð1þ f ðnÞÞ�gdn

¼
Z x

0

fg0ðx; nÞf ðnÞ þ g1ðx; nÞpðnÞgdn; ð10Þ
where
pðxÞ ¼ Rð1þ f ðxÞÞ � e½Rð1þ f ðxÞÞ� ð11Þ
can be easily shown to be a zero-mean, non-homogeneous stochastic field. The variance of the response
displacement u(x) is then computed as:
Var½uðxÞ� ¼ efðuðxÞ � e½uðxÞ�Þ2g

¼
Z x

0

Z x

0

fg0ðx; n1Þg0ðx; n2ÞRff ðn1 � n2Þ þ g1ðx; n1Þg1ðx; n2ÞRppðn1; n2Þ

þ g0ðx; n1Þg1ðx; n2Þe½f ðn1Þpðn2Þ� þ g0ðx; n2Þg1ðx; n1Þe½pðn1Þf ðn2Þ�gdn1 dn2; ð12Þ
where Rff(n1 � n2) and Rpp(n1,n2) denote the autocorrelation functions of stochastic fields f(x) and p(x)
respectively. The quantities e[f(n1)p(n2)] and e[p(n1)f(n2)] in Eq. (12) are the cross-correlation functions
Rfp(n1,n2) and Rpf(n1,n2) of stochastic fields f(x) and p(x). Since by definition Rpf(n1,n2) = Rfp(n2,n1), Eq.
(12) can be rewritten as follows:
Var½uðxÞ� ¼
Z x

0

Z x

0

fg0ðx; n1Þg0ðx; n2ÞRff ðn1 � n2Þ þ g1ðx; n1Þg1ðx; n2ÞRppðn1; n2Þ

þ 2g0ðx; n1Þg1ðx; n2ÞRfpðn1; n2Þgdn1 dn2. ð13Þ
The challenge at this point is to express Var[u(x)] of the statically indeterminate beam in a form similar
to the one derived in Eqs. (4) and (5) for the statically determinate beam.

3.1. Description of the non-homogeneous stochastic field p(x)

It will be shown that stochastic field p(x) defined in Eq. (11) can be expressed as a non-homogeneous
stochastic field with evolutionary power [4] that depends on the geometry, the loading and boundary con-
ditions of the beam (all assumed to be deterministic), as well as on the spectral density function Sff(j) of
stochastic field f(x) (assumed to be homogeneous).

Assuming that stochastic field p(x) is oscillatory [4], it can be expressed in the following form:
pðxÞ ¼
Z 1

�1
Aðx; jÞeijx dZðjÞ; ð14aÞ
where A(x,j) is a modulating function and Z(j) an orthogonal field with:
e½ðdZðjÞÞ2� ¼ dSppðjÞ. ð14bÞ

The evolutionary power spectrum of p(x), SE

ppðx; jÞ, is then given by:
SE
ppðx; jÞ ¼ A2ðx; jÞSppðjÞ; ð15Þ
where Spp(j) is a standard (homogeneous) power spectral density function.
The evolutionary power spectrum of p(x) in the above equation can be expressed alternatively as:
SE
ppðx; jÞ ¼ ½Aðx; jÞ�2SppðjÞ ¼ ½A�ðx; jÞ�2Sff ðjÞ. ð16Þ
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Eq. (16) displays two alternative evolutionary power spectral representations of the non-homogeneous
field p(x). If the modulating function and standard (homogeneous) power spectral density function of
one of these representations is known, then, assuming the power spectral density function of the other is
given, its modulating function can be easily determined using Eq. (16). From the (infinite) alternative evo-
lutionary power spectral representations of p(x), the one involving Sff(j) (shown in Eq. (16)) is selected for
the following reason: inspection of Eq. (11) indicates that stochastic fields f(x) and p(x) have similar fre-
quency contents.

Following [4], the autocorrelation function of the non-homogeneous field p(x) is expressed as follows:
Rppðx1; x2Þ ¼
Z 1

�1
A�ðx1; jÞA�ðx2; jÞeijðx2�x1ÞSff ðjÞdj; ð17Þ
while the cross-correlation function Rfp(x1,x2) between the homogeneous field f(x) and the non-homo-
geneous field p(x) is given by:
Rfpðx1; x2Þ ¼
Z 1

�1
eAðx1; jÞA�ðx2; jÞeijðx2�x1ÞSfpðjÞdj ¼

Z 1

�1
A�ðx2; jÞeijðx2�x1ÞSfpðjÞdj; ð18Þ
where Sfp(j) is a standard (homogeneous) cross-spectral density function and eAðx; jÞ denotes the modulat-
ing function of the homogeneous field f(x) which is equal to unity ðeAðx; jÞ ¼ 1Þ.

The evolutionary cross-spectrum between f(x) and p(x) is then given by:
SE
fpðx; jÞ ¼ eAðx; jÞA�ðx; jÞSfpðjÞ ¼ A�ðx; jÞSfpðjÞ. ð19Þ
In general, the homogeneous cross-spectral density function Sfp(j) is a complex function of j:
SfpðjÞ ¼ CfpðjÞ � iQfpðjÞ; ð20Þ
where Cfp(j) denotes the co-spectrum (a real-valued even function of j) and Qfp(j) denotes the quad-spec-
trum (a real-valued odd function of j).

Substituting Eq. (20) into Eq. (18), the cross-correlation function Rfp(x1,x2) becomes:
Rfpðx1; x2Þ ¼
Z 1

�1
A�ðx2; jÞeijðx2�x1ÞCfpðjÞdj� i

Z 1

�1
A�ðx2; jÞeijðx2�x1ÞQfpðjÞdj

� �
. ð21Þ
Using now a procedure similar to the one in Eqs. (16) and (21) can be expressed alternatively as:
Rfpðx1; x2Þ ¼
Z 1

�1
A��ðx2; jÞeijðx2�x1ÞSff ðjÞdj� i

Z 1

�1
A���ðx2; jÞeijðx2�x1ÞSff ðjÞdj

� �
; ð22Þ
where A��(x,j) is an even function of j and A���(x,j) is an odd function of j (note that A�(x,j) is an even
function of j).

The corresponding alternative expression of the evolutionary cross-spectrum SE
fpðx; jÞ is:
SE
fpðx; jÞ ¼ A�ðx; jÞCfpðjÞ � iA�ðx; jÞQfpðjÞ ¼ A��ðx; jÞSff ðjÞ � iA���ðx; jÞSff ðjÞ. ð23Þ
3.2. Closed-form expression for the variance of the response displacement

Substituting finally Eqs. (17) and (22) into Eq. (13), the following expression for the variance of the
response displacement can be established:
Var½uðxÞ� ¼
Z 1

�1
VRFðx; j; rff ÞSff ðjÞdj; ð24Þ
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where
VRFðx; j; rff Þ ¼
Z x

0

Z x

0

fg0ðx; n1Þg0ðx; n2Þ þ g1ðx; n1Þg1ðx; n2ÞA�ðn1; jÞA�ðn2; jÞ

þ 2g0ðx; n1Þg1ðx; n2ÞA��ðn2; jÞ þ 2g0ðx; n1Þg1ðx; n2Þð�iÞA���ðn2; jÞgeijðn2�n1Þ dn1 dn2
ð25Þ
or
VRFðx; j; rff Þ ¼
Z x

0

Z x

0

fg0ðx; n1Þg0ðx; n2Þ cos½jðn2 � n1Þ�

þ g1ðx; n1Þg1ðx; n2ÞA�ðn1; jÞA�ðn2; jÞ cos½jðn2 � n1Þ�
þ 2g0ðx; n1Þg1ðx; n2ÞA��ðn2; jÞ cos½jðn2 � n1Þ�
þ 2g0ðx; n1Þg1ðx; n2ÞA���ðn2; jÞ sin½jðn2 � n1Þ�gdn1 dn2. ð26Þ
It is reminded that A�(x,j) and A��(x,j) are both even functions of j and A���(x,j) is an odd function of j,
so that VRF(x,j,rff) is an overall even function of j.

The integral form of Var[u(x)] in Eq. (24) and the closed-form expression of VRF(x,j,rff) in Eq. (26) are
based on the following two assumptions that have not been proven yet: (1) the existence of the evolutionary
power spectral representation of stochastic field p(x), and (2) the independence of VRF(x,j,rff) from Sff(j).
Regarding the second assumption, it has to be demonstrated that the alternative evolutionary power spec-
tral expressions in Eqs. (16) and (23) do not yield an expression for VRF(x,j,rff) that depends on Sff(j)
(although the closed-form expression in Eq. (26) will be shown to depend of rff). The aforementioned
two assumptions cannot be proven in a rigorous mathematical way. Consequently, we consider that they
form a conjecture that is validated in the following way.

If the assumptions of existence and independence mentioned above are valid, then it should be possible
to estimate VRF(x,j,rff) using the so-called fast Monte Carlo simulation (FMCS) approach (e.g. [3]) that
computes the variability response function at each wave number j by considering that stochastic field f(x)
modeling the inverse of the elastic modulus becomes a random sinusoid. The basic steps of this approach
are described in the following.

1. Generate N sample functions of a random sinusoid with standard deviation rff and wave number �j
modeling the inverse of the elastic modulus:
fjðxÞ ¼
ffiffiffi
2

p
rff cosð�jxþ /jÞ; j ¼ 1; 2; . . . ;N ; ð27Þ
where /j are random phase angles uniformly distributed in the range [0,2p].
2. Using these N generated sample functions of fj(x) and the exact analytic deterministic expression for the

response displacement of the statically indeterminate beam (Eqs. (7) and (8)), it is straightforward to
compute the corresponding N displacement responses. Then, the variance of the response Var½uðxÞ��j
can be easily estimated numerically for a specific value of �j by ensemble averaging the N computed
responses.

3. The value of the variability response function of the statically indeterminate beam at wave number �j is
then computed from:
VRFðx; �j; rff Þ ¼
Var½uðxÞ��j

r2
ff

. ð28Þ
4. Steps 1–3 are repeated for different values of the wave number �j of the random sinusoid and the
VRF(x,j,rff) is computed over a wide range of wave numbers, wave number by wave number.
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Eq. (28) is a direct consequence of Eq. (24), when the stochastic field f(x) modeling the inverse of the
elastic modulus becomes a random sinusoid.

Once VRF(x,j,rff) is computed numerically for a given value of rff as described above, the variance of
the response displacement Var[u(x)] for a given spectral density function Sff(j) of stochastic field f(x) (hav-
ing of course the same value of rff) is easily determined through the simple integration depicted in Eq. (24).
If either one of the two assumptions of existence and independence is not valid, the integration in Eq. (24)––
using the numerically computed VRF(x,j,rff) via FMCS––should lead to an erroneous value for Var[u(x)].
As it is easy to compute the exact value of Var[u(x)] through brute-force Monte Carlo simulations (by sim-
ulating sample realizations of f(x) according to a prescribed Sff(j) and probability distribution function
(PDF), solving the resulting beam problems deterministically, and estimating eventually the variance of
the response displacement through ensemble averaging), it is also straightforward to verify whether the
integration in Eq. (24) is providing the right answers for Var[u(x)].

The validity of the two assumptions of existence and independence will be therefore demonstrated
numerically by estimating Var[u(x)] using the integration in Eq. (24) and through brute-force Monte Carlo
simulations, and showing that the results are identical. Several different combinations of Sff(j) and PDF
will be considered for a set of different values of rff. It is particularly interesting to note that the integral
form for Var[u(x)] in Eq. (24) indicates that the variance of the response depends only on the spectral den-
sity function of stochastic field f(x) modeling the inverse of the elastic modulus, and not on its probability
distribution function.

3.2.1. Numerical demonstration of the validity of the assumptions of existence and independence

Consider the statically indeterminate beam shown in Fig. 2 having length L = 10 m and carrying a
(deterministic) uniformly distributed load Q0 = 1000 N/m. The inverse of the elastic modulus of the beam
is assumed to vary randomly along its length according to Eq. (1) with F0 = 8 · 10�9 m2/N and I = 0.1 m4.

Fig. 3 displays plots of VRF(x = L/2,j,rff) for various values of the standard deviation rff, calculated
using the FMCS approach described earlier. These plots indicate that the VRF is a function of the standard
deviation rff. However, the differences observed among the four VRF curves obtained for the four values of
rff considered are relatively small (and become negligible for rff < 0.4).

Three different non-Gaussian stochastic fields are selected to model f(x) for the brute-force Monte Carlo
simulations: (1) truncated Gaussian field, (2) lognormal translation field, and (3) triangular PDF transla-
tion field. All three of the aforementioned non-Gaussian fields are obtained from underlying Gaussian fields
(denoted by g(x)) with the following two spectral density functions:
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Fig. 3. Variability response function calculated using the FMCS approach for the beam shown in Fig. 2. Four different values of rff are
considered.
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SDF1: SggðjÞ ¼
1

4
r2
ggb

3j2e�bjjj; ð29Þ

SDF2: SggðjÞ ¼
1

2p
r2
gg

ffiffiffiffiffiffi
pb

p
e�

1
4bj

2

. ð30Þ
Spectrum SDF1 has zero power at j = 0, while spectrum SDF2 has its maximum value at j = 0. For both
spectra, b is a correlation length parameter. Fig. 4 provides plots of SDF1 and SDF2 for different values of
b and rgg = 0.2.

The underlying Gaussian field g(x) is simulated according to SDF1 and SDF2 using the spectral repre-
sentation method (e.g. [5]). Then the truncated Gaussian field fTG(x) is obtained by simply truncating the
simulated Gaussian field g(x) in the following way: �0.9 6 g(x) 6 0.9, while the lognormal translation field
fL(x) and the triangular PDF translation field fT(x) are obtained through the following non-linear transfor-
mations of Grigoriu�s translation process theory (e.g. [2]):
fLðxÞ ¼ F �1
L fG½gðxÞ�g ð31Þ
and
fTðxÞ ¼ F �1
T fG½gðxÞ�g; ð32Þ
where FL, FT, and G denote the cumulative probability distribution functions of the lognormal, triangular
and Gaussian distributions, respectively.

Because the simulated non-Gaussian fields fTG(x), fL(x) and fT(x) used in the brute-force Monte Carlo
simulations are obtained as non-linear transformations of the underlying Gaussian field g(x) with pre-
scribed spectral density function SDF1 or SDF2, their spectral density functions SfTGfTGðjÞ, SfLfLðjÞ and
SfTfTðjÞ will be different from SDF1 and SDF2. These spectral density functions are however necessary
in order to estimate Var[u(x)] using the integral form in Eq. (24). They are computed using the following
formula:
SfifiðjÞ ¼
1

2pLx

Z Lx

0

fiðxÞe�ijx dx

����
����
2

; i ¼ TG; L; or T ð33Þ
where Lx is the length of the sample functions of the non-Gaussian fields modeling the inverse of the elastic
modulus. The Sff(j) used in Eq. (24) is eventually determined by ensemble averaging.
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For the truncated Gaussian field, Var[u(x = L/2)] is computed through brute-force Monte Carlo simu-
lations for various values of the correlation length parameter b in SDF1 and SDF2, and five different values
of the standard deviation rgg of the underlying Gaussian field g(x): rgg = 0.2, rgg = 0.4, rgg = 0.6, rgg = 0.8
and rgg = 1.0. The corresponding standard deviations of the truncated Gaussian field fTG(x) are estimated
as: rfTGfTG ¼ 0:2, rfTGfTG ¼ 0:3925, rfTGfTG ¼ 0:5313, rfTGfTG ¼ 0:6184 and rfTGfTG ¼ 0:675, respectively.
Var[u(x = L/2)] is also computed via the integration in Eq. (24) in conjunction with the FMCS procedure
to estimate the variability response function. This computation is carried out with a sufficiently refined dis-
cretization of the integrand in Eq. (24) to achieve a sufficiently high level of accuracy. Fig. 5(a) provides
plots of Var[u(x = L/2)] as a function of rfTGfTG when SDF1 is used as the spectral density function of
the underlying Gaussian field g(x). Three different values of the correlation length parameter b are consi-
dered. Fig. 5(b) presents similar results for SDF2. Fig. 5(a) and (b) demonstrates that the values of
Var[u(x = L/2)] computed using the integration in Eq. (24) and through brute-force Monte Carlo simula-
tions practically coincide, regardless of the value of the standard deviation used for modeling the inverse of
the modulus of elasticity.

The evolution of the relative error between the values of Var[u(x = L/2)] computed using the aforemen-
tioned two approaches is demonstrated in Fig. 6, by selecting two of the cases displayed in Fig. 5. Speci-
fically, Fig. 6(a) presents the evolution of this error for SDF1 with b = 2 and rfTGfTG ¼ 0:6184, while
Fig. 6(b) presents corresponding results for SDF2 with the same values for b and rfTGfTG . The evolution
of the relative error is plotted as a function of the number of samples in the brute-force Monte Carlo sim-
ulations (denoted by Nsamp). Fig. 6(a) and (b) clearly indicates that the relative error approaches zero. Sim-
ilar behavior of the relative error was observed in all cases considered. It is therefore claimed that the results
of the aforementioned two approaches are identical in all cases considered in this study.

The same procedure is followed for the translation fields with lognormal and triangular PDFs.
Var[u(x = L/2)] is again computed through brute-force Monte Carlo simulations using an underlying
Gaussian field with spectral density functions SDF1 and SDF2. Different values are considered for the
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Fig. 5. (a) Variance of response displacement at x = L/2 for the beam shown in Fig. 2 as a function of the standard deviation rfTGfTG :
Comparison of results from the integration of Eq. (24) and from brute-force Monte Carlo simulations (MCS). Plots correspond to
three different values of correlation length parameter b of spectral density function SDF1. The corresponding PDF is a truncated
Gaussian. (b) Variance of response displacement at x = L/2 for the beam shown in Fig. 2 as a function of the standard deviation
rfTGfTG : Comparison of results from the integration of Eq. (24) and from brute-force Monte Carlo simulations (MCS). Plots correspond
to three different values of correlation length parameter b of spectral density function SDF2. The corresponding PDF is a truncated
Gaussian.
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correlation length parameter b. Four different values are considered for the standard deviations rfLfL and
rfTfT of stochastic fields fL(x) and fT(x) respectively. They are displayed in Tables 1 and 2 together with the
corresponding lower limits of the lognormal and triangular PDFs. Var[u(x = L/2)] is also computed via the
integration in Eq. (24) in conjunction with the FMCS procedure to estimate the variability response func-
tion. Fig. 7(a) provides plots of Var[u(x = L/2)] as a function of rfLfL for the case of the lognormal trans-
lation field, while Fig. 7(b) presents similar results for the case of the translation field with triangular PDF.
As with Figs. 5(a) and 5(b), Figs. 7(a) and 7(b) demonstrate again that the values of Var[u(x = L/2)] com-
puted using the integration in Eq. (24) and through brute-force Monte Carlo simulations practically coin-
cide, regardless of the value of the standard deviation used for modeling the inverse of the modulus of
elasticity. As mentioned above, the evolution of the relative error in these two cases (lognormal and trian-
gular PDF�s) is similar to that of the truncated Gaussian field (refer to Fig. 6).

The validity of the two assumptions of existence and independence (that have been considered to form a
conjecture) has been demonstrated numerically in this section for a wide range of stochastic fields f(x).
Although such a numerical demonstration does not constitute a formal mathematical proof, the results dis-
played in Figs. 5 and 7 provide ‘‘very strong numerical evidence’’ for the validity of the conjecture.
Table 1
Values of standard deviation rfLfL considered and corresponding lower bounds of the lognormal PDF

rfLfL 0.2 0.4 0.6 0.7
Lower limit �0.40 �0.60 �0.80 �0.95

Table 2
Values of standard deviation rfTfT considered and corresponding lower bounds of the triangular PDF

rfTfT 0.20 0.40 0.60 0.70
Lower limit �0.28 �0.56 �0.85 �0.99
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3.2.2. Limitation in FMCS procedure

The following limitation is implied when the Fast Monte Carlo Simulation procedure is used to estimate
the variability response function: as the flexibility cannot become negative at any point of the structure, the
standard deviation rff of the random sinusoids modeling the inverse of the elastic modulus cannot exceed
the value of 1=

ffiffiffi
2

p
(refer to Eq. (27)). For values greater than this limit, FMCS cannot be applied in the

form presented in this paper, as this will result in negative values of the flexibility. Although extending
the applicability of FMCS beyond this limiting value of rff is beyond the scope of this paper, the following
general concept is provided here: it is believed that for values of rff larger than 1=

ffiffiffi
2

p
, the random sinusoid

should be replaced with a zero mean field taking only positive values and having a spectral density function
as close as possible to the delta-function SDF of the corresponding random sinusoid (at the desired wave
number). The full development of this concept is the subject of future research.

3.2.3. Closed-form expression for the variability response function in Eq. (26)

An important consequence of the validity of the two assumptions mentioned in the previous section is
that the VRF(x,j,rff) in Eq. (26) can be computed using the fast Monte Carlo simulation (FMCS) ap-
proach described earlier. There is no need therefore for establishing closed-form analytic expressions for
A�(x,j), A��(x,j) and A���(x,j) in Eq. (26). Although this is true, it will be demonstrated now how to ob-
tain such closed-form analytic expressions in order to show that the VRF(x,j,rff) is indeed a function of rff
as claimed earlier and as demonstrated numerically in Fig. 3.

To accomplish this, Eq. (22) is rewritten in the following way:
Rfpðx1; x2Þ ¼
Z 1

�1
Bðx1; x2; jÞSff ðjÞdj; ð34Þ
where
Bðx1; x2; jÞ ¼ A��ðx2; jÞ cos½jðx2 � x1Þ� þ A���ðx2; jÞ sin½jðx2 � x1Þ� ð35Þ

is an even function of j.
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Closed-form analytic expressions for A�(x,j) and B(x1,x2,j) can be obtained now by assuming that
stochastic field f(x) in Eqs. (17) and (34) becomes a random sinusoid at wave number �j:
f ðxÞ ¼
ffiffiffi
2

p
rff cosð�jxþ /Þ ð36Þ
with corresponding spectral density function a delta function at �j:
Sff ðjÞ ¼ r2
ff dðj� �jÞ. ð37Þ
This operation on Eqs. (17) and (34) yields the following expressions for j ¼ �j:
A�ðx1; jÞA�ðx2; jÞ ¼
1

r2
ff

½Rppðx1; x2Þ�j
eijðx1�x2Þ

; ð38Þ

Bðx1; x2; jÞ ¼
1

r2
ff

½Rfpðx1; x2Þ�j; ð39Þ
where [Rpp(x1,x2)]j and [Rfp(x1,x2)]j denote the autocorrelation and cross-correlation functions Rpp(x1,x2)
and Rfp(x1,x2) evaluated when stochastic field f(x) becomes a random sinusoid. Considering the expressions
in Eqs. (36) and (11), it is straightforward to show that:
A�ðx; jÞ ¼ 1

rff
e½R2

jð1þ
ffiffiffi
2

p
rff cosðjxþ /ÞÞ2� � e½Rjð1þ

ffiffiffi
2

p
rff cosðjxþ /ÞÞ�2

n o
; ð40Þ

Bðx1; x2; jÞ ¼
1

r2
ff

e½Rj

ffiffiffi
2

p
rff cosðjx1 þ /Þ� þ e½2Rjr

2
ff cosðjx1 þ /Þ cosðjx2 þ /Þ�

n o
; ð41Þ
where Rj denotes the redundant force defined in Eq. (8) for the particular case considered here involving
stochastic field f(x) as a random sinusoid:
Rj ¼

Q0

2

Z L

0

ðL� nÞ3ð1þ
ffiffiffi
2

p
rff cosðjnþ /ÞÞdnZ L

0

ðL� nÞ2ð1þ
ffiffiffi
2

p
rff cosðjnþ /ÞÞdn

. ð42Þ
The only uncertain quantity involved in the expectations shown in Eqs. (40) and (41) is the random phase
angle / that is uniformly distributed in the range [0,2p]. It is therefore possible to establish closed-form
analytic expressions for A�(x,j) and B(x1,x2,j) using any symbolic algebra software. The resulting expres-
sions are very complicated and for this reason are not provided here. However, it is obvious that the result-
ing expressions for A�(x,j) and B(x1,x2,j) will be functions of the standard deviation rff of stochastic field
f(x) and of the (deterministic) geometry, loading and boundary conditions of the beam (note that the
expressions for A�(x,j) and B(x1,x2,j) will be independent of the random phase angle /, since the evalu-
ation of the expectations in Eqs. (40) and (41) involves integration with respect to /). Finally, it should be
mentioned that the establishment of Eqs. (38)–(41) is based on the assumption that A�(x,j) and B(x1,x2,j)
are independent from Sff(j).

3.3. Generality of integral expression in Eq. (24)

Whether the variability response function (VRF) is computed from the closed-form expressions in Eqs.
(26), (35), (40) and (41), or using the fast Monte Carlo simulation (FMCS) approach, it should be men-
tioned that there were no first-order approximations made whatsoever. Furthermore, similar closed-form
expressions can be established in principle for any statically indeterminate beam/frame with any kind of
boundary and loading conditions, as far as it can be analysed using a flexibility-based formulation similar
to the one in Eq. (6) (with no limitation in the number of redundant forces). As such closed-form expres-
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sions for the VRF become exceedingly complicated as the number of redundant forces increases, the VRF is
usually computed using the FMCS approach.
4. Upper bounds on response variability

Using Eq. (4), upper bounds on the response displacement variance of a statically determinate beam can
be established in a straightforward way as follows:
Var½uðxÞ� ¼
Z 1

�1
VRFðx; jÞSff ðjÞdj 6 VRFðx; jmaxÞr2

ff ; ð43Þ
where jmax is the wave number at which the VRF takes its maximum value, and r2
ff is the variance of sto-

chastic field f(x) modeling the inverse of the elastic modulus. Eq. (24) is used to determine the correspond-
ing bounds for statically indeterminate beams:
Var½uðxÞ� ¼
Z 1

�1
VRFðx; j; rff ÞSff ðjÞdj 6 VRFðx; jmax; rff Þr2

ff ; ð44Þ
where jmax is the wave number at which the VRF corresponding to a given value of rff takes its maximum
value, and r2

ff is the variance of stochastic field f(x) modeling the inverse of the elastic modulus.
The upper bounds shown in Eqs. (43) and (44) are physically realizable since the form of stochastic field

f(x) that produces them is known. Specifically, the variance of u(x) attains its maximum value when random
field f(x) becomes a random sinusoid:
f ðxÞ ¼
ffiffiffi
2

p
rff cosðjmaxxþ /Þ; ð45Þ
where / is a random phase angle uniformly distributed in [0,2p]. In this case, the corresponding spectral
density function of f(x) is a delta function at wave number jmax:
Sff ðjÞ ¼ r2
ff dðj� jmaxÞ; ð46Þ
while its PDF is a beta probability distribution function given by:
pf ðsÞ ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

ff � s2
q with�

ffiffiffi
2

p
rff 6 s 6

ffiffiffi
2

p
rff . ð47Þ
The upper bounds shown in Eqs. (43) and (44) are spectral- and probability-distribution-free, as the only
probabilistic parameter they depend on is the standard deviation of the inverse of the elastic modulus.

4.1. Bound generating fields

The concept of bound generating fields was introduced in [3]. It is summarized here as it will be used later
in the numerical examples section.

Whether a statically determinate or indeterminate beam is considered, the variance of the response dis-
placement attains its maximum value when random field f(x) becomes a random sinusoid (Eq. (45)). Con-
sequently, the following expression can be written for the inverse of the elastic modulus that produces the
upper bounds:
1

EðxÞ ¼ F 0½1þ f ðxÞ� ¼ F 0½1þ
ffiffiffi
2

p
rff cosðjmaxxþ /Þ�. ð48Þ
A new stochastic field f �(x) modeling the elastic modulus and corresponding to stochastic field f(x) mod-
eling the inverse of the elastic modulus can be defined now for this case that produces the upper bounds:
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EðxÞ ¼ 1

F 0

1

½1þ f ðxÞ� ¼ E0½1þ f �ðxÞ�; ð49Þ
where E0 is the mean value of the elastic modulus which is related to F0 via:
E0 ¼
1

F 0

e
1

ð1þ f ðxÞÞ

� �
ð50Þ
f �(x) is a zero-mean, homogeneous stochastic field related to f(x) through the following relationship:
f �ðxÞ ¼
1� e

1

ð1þ f ðxÞÞ

� �
ð1þ f ðxÞÞ

e
1

ð1þ f ðxÞÞ

� �
ð1þ f ðxÞÞ

. ð51Þ
Stochastic field f �(x) is called a bound generating field (BGF) since it produces realizable upper bounds.
Sample functions of f �(x) can be easily obtained from generated realizations of the random sinusoid f(x)
using Eq. (51). A closed-form analytic expression for the PDF of f �(x) is available, and its spectral density
function can be easily estimated from generated sample functions of f �(x) (refer to [3] for a detailed descrip-
tion of BGFs and their properties).

4.2. Three alternative ways to perform fast Monte Carlo simulation

Eq. (51) indicates that when random field f(x) modeling the inverse of the elastic modulus is a random
sinusoid, random field f �(x) modeling the elastic modulus can be fully determined, i.e. a sample function of
f �(x) can be computed from a given sample function of f(x). Consequently, there are essentially three alter-
native ways to perform the fast Monte Carlo simulation to estimate Var½uðxÞ��j in Eq. (28):

1. By generating sample functions of f(x) (in this case a random sinusoid) and then using a closed-form
analytic expression for the response displacement (Eq. (7)). This approach is called ANA � f(x).

2. By generating sample functions of f(x) (in this case a random sinusoid), computing the corresponding
sample functions of f �(x) using Eq. (51), and then using a closed-form analytic expression for the
response displacement. This approach is called ANA � f �(x).

3. By generating sample functions of f(x) (in this case a random sinusoid), computing the corresponding
sample functions of f �(x) using Eq. (51), and then using a deterministic finite element code to estimate
the response displacement. This approach is called FEM � f �(x).

It is obvious that the third approach is not requiring the existence of a closed-form analytic expression for
the response displacement. All three approaches provide identical estimates of Var½uðxÞ��j (and consequently
of the variability response function too).

At this juncture, it should be mentioned that although in the case of statically determinate beams the
variability response function can be computed from the closed-form analytic expression shown in Eq.
(5), alternatively, the VRF(x,j) can also be estimated using the fast Monte Carlo simulation approach de-
scribed earlier for statically indeterminate beams. This is very helpful in cases where function g(x,n) of the
statically determinate problem becomes too cumbersome.
5. Numerical examples

Example 1. Consider again the fixed-simply supported beam of length L = 10 m shown in Fig. 2. Two load
cases are considered: LC1 consisting of a uniformly distributed load Q0 = 1000 N/m and LC2 consisting of
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the same uniformly distributed load Q0 = 1000 N/m and a concentrated moment M0 = �10,000 Nm
applied at its right end (please note that this concentrated moment is not indicated in Fig. 2). All loads are
assumed again to be deterministic. The inverse of the elastic modulus of the beam is assumed to vary
randomly along its length according to Eq. (1) with F0 = 8 · 10�9 m2/N and I = 0.1 m4.
5.1. Analysis of response variability

For LC1, an extensive numerical investigation was performed in section ‘‘Demonstration of the validity of

the assumptions of existence and independence’’ where Var[u(x = L/2)] was estimated using the integration in
Eq. (24) in conjunction with the ANA � f(x) technique for calculating the VRF, and through brute-force
Monte Carlo simulations. As can be observed in Figs. 5–7, the two approaches produced practically iden-
tical results in all cases considered.

The same procedure is followed now for LC2. Fig. 8 displays plots of VRF(x = 3L/4,j,rff) calculated
using the ANA � f(x) approach for various values of the standard deviation rff. As with LC1 (Fig. 3),
Fig. 8 indicates that the VRF of LC2 is again a function of the standard deviation rff, while the differences
observed among the different VRF curves obtained for the four values of rff considered are relatively small
(and become negligible for rff < 0.4). Numerical results for LC2 are obtained for a truncated Gaussian field
only (having the same definition as before). Fig. 9 provides plots of Var[u(x = 3L/4)] as a function of rfTGfTG

when SDF1 and SDF2 are used as the spectral density function of the underlying Gaussian field g(x). Two
different values of the correlation length parameter b are considered. Fig. 9 indicates that the values of
Var[u(x = 3L/4)] computed using the integration in Eq. (24) and through brute-force Monte Carlo simula-
tions practically coincide, regardless of the value of the standard deviation used for modeling the inverse of
the modulus of elasticity. The evolution of the relative error for LC2 is similar to that shown in Fig. 6.

The variance of the response displacement can be calculated with minimal computational effort using the
integration in Eq. (24) for prescribed forms of the spectral density function Sff(j). Fig. 10(a) and (b) dis-
plays results of such calculations for LC1 and LC2 respectively. SDF1 and SDF2 are used to model Sff(j)
with standard deviation rff = 0.4. The computed results are plotted as a function of correlation distance
parameter b.

5.1.1. Spectral- and probability-distribution-free upper bounds

Spectral- and probability-distribution-free upper bounds for the variance of the response displacement
are computed now using Eq. (44). For LC1, upper bounds are determined for Var[u(x = L/2)] for various
values of the standard deviation rff of the inverse of the elastic modulus:
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values rff are considered.
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Var½uðx ¼ L=2Þ� 6 VRFðx ¼ L=2; jmax; rff ¼ 0:2Þ � 0:22 ¼ 7:00� 10�7; jmax ¼ 0; ð52Þ

Var½uðx ¼ L=2Þ� 6 VRFðx ¼ L=2; jmax; rff ¼ 0:4Þ � 0:42 ¼ 2:78� 10�6; jmax ¼ 0; ð53Þ

Var½uðx ¼ L=2Þ� 6 VRFðx ¼ L=2; jmax; rff ¼ 0:6Þ � 0:62 ¼ 6:26� 10�6; jmax ¼ 0; ð54Þ

Var½uðx ¼ L=2Þ� 6 VRFðx ¼ L=2; jmax; rff ¼ 0:7Þ � 0:72 ¼ 8:53� 10�6; jmax ¼ 0. ð55Þ
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For LC2, upper bounds are determined for Var[u(x = 3L/4)]:
Fig. 12
values
Var½uðx ¼ 3L=4Þ� 6 VRFðx ¼ 3L=4; jmax; rff ¼ 0:2Þ � 0:22 ¼ 5:56� 10�8; jmax ¼ 1:1; ð56Þ
Var½uðx ¼ 3L=4Þ� 6 VRFðx ¼ 3L=4; jmax; rff ¼ 0:4Þ � 0:42 ¼ 2:24� 10�7; jmax ¼ 1:1; ð57Þ
Var½uðx ¼ 3L=4Þ� 6 VRFðx ¼ 3L=4; jmax; rff ¼ 0:6Þ � 0:62 ¼ 5:09� 10�7; jmax ¼ 1:1; ð58Þ
Var½uðx ¼ 3L=4Þ� 6 VRFðx ¼ 3L=4; jmax; rff ¼ 0:7Þ � 0:72 ¼ 7:01� 10�7; jmax ¼ 1:1. ð59Þ
For LC1, the upper bounds shown in Eqs. (52)–(55) are obtained when stochastic field f(x) modeling the
inverse of the elastic modulus degenerates into a random variable (as jmax = 0). For LC2, the upper bounds
shown in Eqs. (56)–(59) are obtained when stochastic field f(x) becomes a random sinusoid with wave num-
ber jmax = 1.1. In this case, the bound generating field f �(x) modelling the elastic modulus can be easily
determined from Eq. (51).

Example 2. Consider now the twice-statically-indeterminate fixed beam of length L = 10 m shown in
Fig. 11. Two load cases are considered in this example: LC1 consisting of a concentrated force
P0 = 10,000 N acting at the midspan (x = L/2), and LC2 consisting of the same concentrated force
P0 = 10,000 N and a concentrated moment M0 = 10,000 N m acting also at x = L/2 (please note that this
concentrated moment is not indicated in Fig. 2). All loads are assumed again to be deterministic. The
inverse of the elastic modulus of the beam is assumed to vary randomly along its length according to Eq. (1)
with F0 = 8 · 10�9 m2/N and I = 0.1 m4.
5.2. Analysis of response variability

The same procedure as in Example 1 is followed here. Fig. 12 displays plots of VRF(x = 3L/4,j,rff) cal-
culated using the FEM � f �(x) approach for LC1, while Fig. 13 displays similar plots for LC2. For the
Fig. 11. Configuration of fixed statically indeterminate beam.

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

0 1.5 2
κ

0.5 1

V
R

F(
x

=
L

/2
,κ

σ ,
ff
)

σ ff = 0.2

σ ff = 0.4

σ ff = 0.6

σ ff = 0.7

. Variability response function calculated using the FMCS approach for the beam in Example 2 and for LC1. Four different
rff are considered.



0.00E+00

2.00E-06

4.00E-06

6.00E-06

0 0.5 1 1.5 2
κ

V
R

F(
x

=
3L

/4
,κ

σ ,
ff
)

σ ff = 0.2

σ ff = 0.4

σ ff = 0.6

σ ff = 0.7

Fig. 13. Variability response function calculated using the FMCS approach for the beam in Example 2 and for LC2. Four different
values rff are considered.

V. Papadopoulos, G. Deodatis / Comput. Methods Appl. Mech. Engrg. 195 (2006) 1050–1074 1069
FEM analysis, the beam is discretized into 100 finite elements. As in Example 1, Figs. 12 and 13 indicate
that the VRF is again a function of rff, while the differences observed among the four VRF curves obtained
for the four values of rff considered are relatively small (and become negligible for rff < 0.4). In this exam-
ple, only the truncated Gaussian field is considered (having the same definition as before). Fig. 14 provides
plots of Var[u(x = L/2)] for LC1 as a function of rfTGfTG when SDF1 and SDF2 are used as the spectral
density function of the underlying Gaussian field g(x). Two different values of the correlation length para-
meter b are considered. Fig. 15 provides similar plots for Var[u(x = 3L/4)] and LC2. Figs. 14 and 15 indi-
cate that the values for the variance of the response displacement computed using the integration in Eq. (24)
and through brute-force Monte Carlo simulations practically coincide, regardless of the value of the stan-
dard deviation used for modeling the inverse of the modulus of elasticity. The evolution of the relative error
for both LC1 and LC2 is similar to that shown in Fig. 6.

Fig. 16(a) and (b) displays results for Var[u(x = L/2)] and Var[u(x = 3L/4)] corresponding to LC1 and
LC2, respectively, calculated using the integration in Eq. (24). SDF1 and SDF2 are used to model Sff(j)
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Fig. 14. Example 2 and LC1: Variance of response displacement at x = L/2 as a function of standard deviation rfTGfTG : Comparison of
results from the integration of Eq. (24) and from brute-force Monte Carlo simulations (MCS). Plots correspond to two values of
correlation length parameter b of spectral density functions SDF1 and SDF2. The corresponding PDF is a truncated Gaussian.
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with standard deviation rff = 0.4. The computed results are plotted as a function of correlation distance
parameter b.

5.2.1. Spectral- and probability-distribution-free upper bounds
Spectral- and probability-distribution-free upper bounds for the variance of the response displacement

are computed now using Eq. (44). For LC1, upper bounds are determined for Var[u(x = L/2)] for various
values of the standard deviation rff of the inverse of the elastic modulus:
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Var½uðx ¼ L=2Þ� 6 VRFðx ¼ L=2; jmax; rff ¼ 0:2Þ � 0:22 ¼ 6:92� 10�6; jmax ¼ 0; ð60Þ
Var½uðx ¼ L=2Þ� 6 VRFðx ¼ L=2; jmax; rff ¼ 0:4Þ � 0:42 ¼ 2:77� 10�6; jmax ¼ 0; ð61Þ
Var½uðx ¼ L=2Þ� 6 VRFðx ¼ L=2; jmax; rff ¼ 0:6Þ � 0:62 ¼ 6:20� 10�6; jmax ¼ 0; ð62Þ
Var½uðx ¼ L=2Þ� 6 VRFðx ¼ L=2; jmax; rff ¼ 0:7Þ � 0:72 ¼ 8:48� 10�6; jmax ¼ 0. ð63Þ
For LC2, upper bounds are determined for Var[u(x = 3L/4)]:
Var½uðx ¼ 3L=4Þ� 6 VRFðx ¼ 3L=4; jmax; rff ¼ 0:2Þ � 0:22 ¼ 2:04� 10�7; jmax ¼ 0; ð64Þ
Var½uðx ¼ 3L=4Þ� 6 VRFðx ¼ 3L=4; jmax; rff ¼ 0:4Þ � 0:42 ¼ 8:16� 10�7; jmax ¼ 0; ð65Þ
Var½uðx ¼ 3L=4Þ� 6 VRFðx ¼ 3L=4; jmax; rff ¼ 0:6Þ � 0:62 ¼ 1:83� 10�6; jmax ¼ 0; ð66Þ
Var½uðx ¼ 3L=4Þ� 6 VRFðx ¼ 3L=4; jmax; rff ¼ 0:7Þ � 0:72 ¼ 2:50� 10�6; jmax ¼ 0. ð67Þ
For both LC1 and LC2, the upper bounds shown in Eqs. (60)–(67) are obtained when stochastic field f(x)
modeling the inverse of the elastic modulus degenerates into a random variable (as jmax = 0).

Example 3. Consider finally the statically indeterminate portal plane frame shown in Fig. 17 with L = 4 m.
The two base nodes are assumed fixed against translations and rotations. The loading consists of a
deterministic horizontal force equal to P0 = 10,000 N applied at node A (refer to Fig. 17). The inverse of
the elastic modulus of the frame is assumed to vary randomly along its length according to Eq. (1) with
F0 = 8 · 10�9 m2/N and I = 0.1 m4.
5.3. Analysis of response variability

The same procedure as in Examples 1 and 2 is also followed here. Denoting by uAh
the horizontal dis-

placement of node A and by VRFAh
ðj; rff Þ the corresponding variability response function, Fig. 18 dis-

plays plots of VRFAh
ðj; rff Þ calculated using the FEM � f �(x) approach. For the FEM analysis, the

frame is discretized into 120 finite elements. As in Examples 1 and 2, Fig. 18 indicates that the VRF is again
a function of rff, while the differences observed among the four VRF curves obtained for the four values of
rff considered are relatively small (and become negligible for rff < 0.4). In this example, only the truncated
Gaussian field is considered with SDF1 and b = 2. Fig. 19 provides plots of VarðuAh

Þ as a function of
rfTGfTG . Fig. 19 indicates that the values for the variance of the response displacement computed using
Fig. 17. Portal frame considered in Example 3.
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the integration in Eq. (24) and through brute-force Monte Carlo simulations practically coincide, regardless
of the value of the standard deviation used for modeling the inverse of the modulus of elasticity. The evo-
lution of the relative error is similar to that shown in Fig. 6. Fig. 20 displays results for VarðuAh

Þ calculated
using the integration in Eq. (24). SDF1 is used to model Sff(j) with standard deviation rff = 0.4. The com-
puted results are plotted as a function of correlation distance parameter b.

Figs. 10, 16 and 20 provide information about the behavior of the variance of the response displacement
over the entire range of values of the correlation length parameter of the spectral density function consid-
ered. With other available methodologies, the corresponding calculations would require a significant com-
putational effort. The concept of the variability response function not only makes the computational effort
trivial, but it also provides an excellent insight on the effect of the shape of Sff(j) through the integral form
in Eq. (24).



0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

0 5 10 15 20 25 30 35 40
b

V
ar

 (
u A

h)
SDF1

Fig. 20. Example 3: Variance of response displacement uAh
calculated through the integration in Eq. (24) and using SDF1 to model the

spectral density function Sff(j). Curve is established for rff = 0.4 and plotted as a function of correlation length parameter b.

V. Papadopoulos, G. Deodatis / Comput. Methods Appl. Mech. Engrg. 195 (2006) 1050–1074 1073
5.3.1. Spectral- and probability-distribution-free upper bounds

Spectral- and probability-distribution-free upper bounds for the variance of the response displacement
are computed now using Eq. (44). Upper bounds are determined for VarðuAh

Þ for various values of the stan-
dard deviation rff of the inverse of the elastic modulus:
VarðuAh
Þ 6 VRFAh

ðjmax; rff ¼ 0:2Þ � 0:22 ¼ 8:81� 10�7; jmax ¼ 0; ð68Þ
VarðuAh

Þ 6 VRFAh
ðjmax; rff ¼ 0:4Þ � 0:42 ¼ 3:53� 10�6; jmax ¼ 0; ð69Þ

VarðuAh
Þ 6 VRFAh

ðjmax; rff ¼ 0:6Þ � 0:62 ¼ 7:92� 10�6; jmax ¼ 0; ð70Þ
VarðuAh

Þ 6 VRFAh
ðjmax; rff ¼ 0:7Þ � 0:72 ¼ 1:08� 10�5; jmax ¼ 0. ð71Þ
6. Conclusions

The present paper complemented and extended work done in an earlier study of the authors [3] dealing
with the analysis of the response variability of stochastic frame structures. The well-known integral form
for the response displacement variance was established in this paper for statically indeterminate structures
using a different formulation (applying the concept of non-homogeneous evolutionary fields) that involved
an alternative conjecture. The validation of the conjecture was done by comparing the response variance
predictions of the integral form with Monte Carlo simulations.

A methodology was provided to determine the variability response function (VRF) (involved in the inte-
gral form) numerically through a so-called fast Monte Carlo simulation (FMCS) technique. In addition,
closed-form expressions were established for the VRF that indicate a dependence on the standard deviation
of the stochastic field modeling the inverse of the elastic modulus, a fact that was validated numerically
through the FMCS technique.

Several numerical examples were provided estimating the variance of the response displacement using
the integral form in Eq. (24) (in conjunction with a FMCS computation of the VRF) and through
brute-force Monte Carlo simulations. The results of the two approaches practically coincided for all cases
considered (validating the aforementioned conjecture). Additional numerical examples demonstrated the
excellent insight on the effect of the form of the spectral density function of the stochastic field modeling
the inverse of the elastic modulus on the response variability. Finally, upper bounds were provided for sev-
eral cases as a function of the standard deviation of the stochastic field modeling the inverse of the elastic
modulus. All computations involving Eq. (24) (determining variance of response and upper bounds) were
carried out with minimal computational effort.
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