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Abstract

Spectral- and probability-distribution-free upper bounds on the response variability of both statically determinate

and indeterminate beams are established in the present paper based on exact closed-form analytic expressions derived

for the variance of the response displacement. A conjecture has to be made in the case of statically indeterminate beams

in order to establish these bounds. The conjecture is supported through an argument postulating the existence of an

integral form for the variance of the response displacement and through a brute-force optimization procedure providing

numerical validation. Such bounds require knowledge of only the variance of the stochastic field modeling the inverse of

the elastic modulus and are realizable in the sense that it is possible to fully determine the probabilistic characteristics of

the stochastic field (modeling the inverse of the elastic modulus) that produces them. Furthermore, it is possible to fully

determine also the corresponding stochastic field modeling the elastic modulus that produces these bounds. These spec-

tral- and probability-distribution-free bounds can also be computed numerically using a so-called fast Monte Carlo sim-

ulation procedure that does not require a closed-form analytic expression for the response displacement, making this

approach much more general. Numerical examples are provided involving a statically determinate and a statically inde-

terminate beam.
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1. Introduction

The analysis of stochastic systems with material/geometric properties modelled by random fields has

been the subject of extensive research in the past two decades. Over these years, very few analytic solutions

have been established, mainly for simple linear elastic structures under static loads. Meanwhile, the major-
ity of the work has focused on developing Stochastic Finite Element Methodologies (SFEM) for the numer-

ical solution of the stochastic differential equations involved in the problem. By far, the most widely used

SFEM approaches are approximate expansion/perturbation based methods. Although such methods have

proven to be highly accurate and computationally efficient for a wide range of problems, there are still sev-

eral classes of problems in stochastic mechanics involving combinations of strong nonlinearities, large var-

iations of system properties and non-Gaussian system properties that can be solved with reasonable

accuracy only through a computationally expensive Monte Carlo simulation approach.

Whether an expansion/perturbation based approach or a Monte Carlo simulation methodology is used
to estimate the response variability of a stochastic system, it is necessary to know the marginal probability

distribution function (pdf) and the spectral/correlation characteristics of the stochastic system properties.

Unfortunately, in most practical engineering applications, there is a lack of experimental data that would

enable a quantification of such probabilistic characteristics of the stochastic system properties. Taking into

account that many researchers have clearly demonstrated that both the correlation structure and the mar-

ginal pdf of the material/geometric properties can have a significant (and in certain cases dramatic) effect on

the stochastic response, a SFEM or Monte Carlo analysis will not provide particularly useful results for

real-life applications when the probabilistic characteristics of the system properties are arbitrarily assumed.
Actually, there is no way to check in such a case whether the results will be conservative or unconservative

with respect to structural safety without performing an extensive (and in most cases computationally pro-

hibitive) sensitivity analysis. The aforementioned observations demonstrate clearly the importance of estab-

lishing spectral- and probability-distribution-free upper bounds on the response variability of stochastic

systems. In order for such bounds to be useful for practical applications, they must be realizable, in the

sense that it should be possible to determine the specific probabilistic characteristics of the random system

properties that produce them.

The first attempt to establish spectral-distribution-free upper bounds on the response variability of
stochastic systems goes back to the 1980s. Shinozuka [9] introduced the concept of the Variability Response

Function, which makes possible the establishment of such bounds using only the coefficient of variation

(variance) of the stochastic field describing the material/geometric properties. As described in [9], the var-

iance of the response displacement u can be expressed in the following integral form:
Var½u� ¼
Z 1

�1
VRFðjÞSff ðjÞdj; ð0aÞ
where the variability response function (VRF) is a function depending only on deterministic parameters

related to the geometry, material properties and loading of the structure, Sff is the spectral density function

of the stochastic field modeling the material/geometric properties, and j is the wave number. An upper

bound for the variance of u can then be easily established as
Var½u� 6 VRFðjmaxÞr2
ff ð0bÞ
with jmax being the wave number where the VRF attains its maximum value and r2
ff being the variance of

the stochastic field modeling the material/geometric properties. Furthermore, Eq. (0a) indicates that the
VRF provides insight into the mechanisms controlling the response variability of stochastic systems.

It should be noted, however, that the derivation of the VRF in Eq. (0a) (refer to [9] for the detailed der-

ivation) was based on a first-order approximation of the inverse of the stochastic field modeling the spatial

variability of the elastic modulus. Such an approximation leads to spectral-distribution-free upper bounds
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estimated through Eq. (0b) that are reasonably accurate only for relatively small values of the coefficient of

variation of the elastic modulus (generally less than 20%). In [9], the VRF was determined analytically for

simple linear elastic and statically determinate beams under static loads. Later on, Deodatis and Shinozuka

extended the VRF concept into the framework of a finite element formulation for the case of statically

determinate and indeterminate frame structures [2,3]. In these two papers, the VRF was expressed in closed
form in terms of products of matrices and vectors. Eventually, expressions for the VRF were established for

plane stress/strain problems, plate bending problems, as well as for systems with multiple correlated ran-

dom properties [6,7,10].

A common drawback of all the aforementioned extensions of the VRF is that a first-order approxima-

tion of some kind (usually of the response displacement) is used for their derivation. An immediate conse-

quence is that even the existence of the integral form in Eq. (0a) depends on this approximation. As a fast

Monte Carlo technique is developed later to estimate numerically the VRF through Eq. (0a), the existence

of the integral form in Eq. (0a) has to be conjectured in the general case (when no first-order approximation
is considered). This was recognized in a series of two papers by Deodatis et al. [4,5], where it was shown that

the bounds obtained from Eq. (0b) can be exceeded when using certain stochastic fields with bimodal mar-

ginal pdf�s to model the material properties, even for relatively small coefficients of variation of these pro-

perties (less than 20%). In these two papers, new spectral- and probability-distribution-free upper bounds

on the response variability were proposed, based on the coefficient of variation (variance) and lower limit of

the elastic modulus. It was conjectured that these new upper bounds were produced by so-called ‘‘associ-

ated fields’’ obtained by mapping random sinusoids—having a symmetric U-shaped beta marginal pdf—to

fields with a generally non-symmetric U-shaped beta marginal pdf with lower limit equal to the lower limit
of the elastic modulus. It should be noted that the upper bounds established earlier in [9,2,3,6,7,10] are pro-

duced by random sinusoids reflecting only the coefficient of variation of the elastic modulus. Although the

conjecture made in [4,5] for the new upper bounds was supported by a semi-analytical demonstration, as

well as by extensive numerical evidence, further improvement is certainly possible in the estimation of

the bounds as the problem of the transition from the inverse of the elastic modulus to the elastic modulus

itself was not fully addressed in [4,5].

The present paper therefore attempts for the first time to deal with this transition problem in a direct way

by establishing exact expressions for the response variability based on the inverse of the elastic modulus.
These exact expressions lead to the evaluation of realizable upper bounds on the response variance of stat-

ically determinate and indeterminate beams using the variance of the inverse of their elastic modulus. A

conjecture has to be made in the case of statically indeterminate beams in order to establish the bounds.

Two important conclusions are eventually drawn: (i) the response variability is bounded under certain con-

ditions, with upper bounds that are realizable in the sense that they correspond to a stochastic field that can

be fully determined, and (ii) the upper bounds are indirectly related to the variability of the elastic modulus,

since by nature these bounds are directly related to the variability of the inverse of the elastic modulus. It is

this second feature of the response variability that is responsible for some of the limitations of previous
efforts, as they all tried to connect the response variability directly to the variability of the elastic modulus,

an approach that involves always some level of approximation. Consequently, it is believed that the upper

bounds proposed in this study constitute an improvement over the earlier ones. It should be mentioned at

this juncture that the approach of modeling the beam flexibility instead of its rigidity has already been fol-

lowed in a small number of earlier studies (e.g. [11]). In these studies, exact expressions for the response

variance were established for simple statically determinate beams under static loading (but not upper

bounds).

The upper bounds established in this study for the response variability are spectral- and probability-dis-
tribution-free requiring knowledge of only the variance of the inverse of the elastic modulus. It should be

mentioned that the variance of the inverse of the elastic modulus can be obtained as easily as the variance of

the elastic modulus using the same experimental data. The proposed bounds are realizable in the sense that
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it is possible to determine the probabilistic characteristics (spectral density function and marginal probabi-

lity distribution function) of the stochastic field (modeling the inverse of the elastic modulus) that produces

them. Furthermore, it is possible to fully determine also the corresponding stochastic field modeling the

elastic modulus that produces these bounds.
2. Statically determinate beam

Consider the statically determinate cantilever beam of length L shown in Fig. 1, with a uniformly dis-

tributed load Q0 and a concentrated momentM0 imposed at the free end. The loads are assumed to be static

and deterministic. The inverse of the elastic modulus of the beam is assumed to vary randomly along its

length according to the following expression:
1

EðxÞ ¼ F 0ð1þ f ðxÞÞ; ð1Þ
where E is the elastic modulus, F0 is the mean value of the inverse of E, and f(x) is a zero-mean homoge-

neous stochastic field modeling the variation of 1/E around its mean value F0.

The response displacement of the beam u(x) is given by
uðxÞ ¼ � F 0

I

Z x

0

ðx� nÞMðnÞð1þ f ðnÞÞdn ¼ � F 0

I

Z x

0

hðx; nÞMðnÞð1þ f ðnÞÞdn; ð2Þ
where h(x,n) is the Green function of the beam, I is the moment of inertia, and M(x) is the bending moment

function given by
MðxÞ ¼ �Q0

2
ðL� xÞ2 þM0: ð3Þ
Using Eq. (2), the mean of u(x) is expressed as
e½uðxÞ� ¼ � F 0

I

Z x

0

hðx; nÞMðnÞe½ð1þ f ðnÞÞ�dn ð4Þ
and the mean square as
e½u2ðxÞ� ¼ F 2
0

I2

Z x

0

Z x

0

hðx; n1Þhðx; n2ÞMðn1ÞMðn2Þe½ð1þ f ðn1ÞÞð1þ f ðn2ÞÞ�dn1 dn2: ð5Þ
The response variance is then determined from Eqs. (4) and (5) as follows:
Var½uðxÞ� ¼ e½u2ðxÞ� � e½uðxÞ�2 ¼ F 2
0

I2

Z x

0

Z x

0

hðx; n1Þhðx; n2ÞMðn1ÞMðn2ÞRff ðn1 � n2Þdn1 dn2; ð6Þ
where Rff(n1 � n2) denotes the autocorrelation function of stochastic field f(x).

Applying the Wiener–Khintchine transform to the autocorrelation function in Eq. (6), the variance of

the response displacement can be written as
Fig. 1. Configuration of statically determinate beam.
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Var½uðxÞ� ¼
Z 1

�1
VRFðx; jÞSff ðjÞdj; ð7Þ
where the variability response function (VRF) is given by
VRFðx; jÞ ¼ F 0

I

Z x

0

hðx; nÞMðnÞeijn dn
����

����
2

ð8Þ
and Sff(j) denotes the power spectral density function of stochastic field f(x). The above expressions for the

Var[u(x)] and the VRF (Eqs. (7) and (8) respectively) are exact analytic expressions, since no approxima-
tions were made for their derivation. In addition, the VRF expression in Eq. (8) is a general one that

can be applied to any statically determinate beam with any kind of boundary or loading conditions, using

the appropriate Green and bending moment functions.

Since both Sff(j) and VRF(x,j) are even functions of j, the variance of u(x) can also be written as
Var½uðxÞ� ¼ 2

Z 1

0

VRFðx; jÞSff ðjÞdj: ð9Þ
Taking advantage of the integral form of Eq. (9), upper bounds on the response displacement variance can

be established as follows:
Var½uðxÞ� ¼ 2

Z 1

0

VRFðx; jÞSff ðjÞdj 6 VRFðx; jmaxÞr2
ff ; ð10Þ
where jmax is the wave number at which the VRF takes its maximum value, and r2
ff is the variance of stoch-

astic field f(x).

The upper bound given in Eq. (10) is physically realizable since the form of stochastic field f(x) that pro-

duces it is known. Specifically, the variance of u(x) attains its upper bound value of VRFðx; jmaxÞr2
ff when

random field f(x) becomes a random sinusoid, i.e.
f ðxÞ ¼
ffiffiffi
2

p
rff cosðjmaxxþ uÞ: ð11Þ
In Eq. (11), u is a random phase angle uniformly distributed in the range [0,2p]. In this case, the corre-

sponding spectral density function of f(x) is a delta function at wave number jmax
Sff ðjÞ ¼ r2
ff dðj� jmaxÞ; ð12Þ
while its marginal pdf is a beta probability distribution function given by
pf ðsÞ ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

ff � s2
q with �

ffiffiffi
2

p
rff 6 s 6

ffiffiffi
2

p
rff : ð13Þ
The upper bound provided in Eq. (10) is spectral- and probability-distribution-free, since the only probabi-

listic parameter it depends on is the standard deviation of the inverse of the elastic modulus.

The exact expressions for the Var[u(x)] and the VRF in Eqs. (7) and (8) are identical to the correspond-

ing classic (but approximate) expressions established in [1] and [9], except of one notable difference in Eq.

(7). Specifically, in Eq. (7), Sff(j) is now the spectral density function of stochastic field f(x) modeling the

inverse of the elastic modulus, while in the classic approximate formulation ([1,9]), f(x) models the elastic
modulus. Consequently, the exact VRF in Eq. (8) preserves the basic characteristic of the classical one in

the sense that it depends only on deterministic parameters describing the geometry, material properties and

loading of the structure.
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3. Statically indeterminate beam

Consider now the statically indeterminate beam of length L shown in Fig. 2, with a deterministic uni-

formly distributed load Q0 The inverse of the elastic modulus is again assumed to vary randomly along

the length of the beam according to Eq. (1).
Using a force (flexibility) method formulation, the response displacement of this beam u(x) can be ex-

pressed as
uðxÞ ¼ u0ðxÞ � Ru1ðxÞ; ð14Þ

where u0(x) is the deflection of the associated statically determinate beam with uniform load Q0 obtained by

removing the simple support at the right end of the beam in Fig. 2, u1(x) is the deflection of the same asso-

ciated statically determinate beam due to a unit concentrated force acting at x = L, and R is the redundant
force (vertical reaction at the right end of the beam in Fig. 2).

Eq. (14) is then written as follows:
uðxÞ ¼ F 0Q0

2I

Z x

0

ðx� nÞðL� nÞ2ð1þ f ðnÞÞdn� F 0R
I

Z x

0

ðx� nÞðL� nÞð1þ f ðnÞÞdn

¼
Z x

0

g1ðx; nÞð1þ f ðnÞÞdnþ
Z x

0

g2ðx; nÞRð1þ f ðnÞÞdn ð15aÞ
where
g1ðx; nÞ ¼
F 0Q0

2I
ðx� nÞðL� nÞ2 and g2ðx; nÞ ¼ � F 0

I
ðx� nÞðL� nÞ: ð15bÞ
The redundant force R is a random variable that can be computed from the boundary condition at x = L as
uðx ¼ LÞ ¼ 0 ) u0ðx ¼ LÞ ¼ Ru1ðx ¼ LÞ ) R ¼

Q0

2

Z L

0

ðL� nÞ3ð1þ f ðnÞÞdn
Z L

0

ðL� nÞ2ð1þ f ðnÞÞdn
ð16Þ
For the trivial case where stochastic field f(x) degenerates into a random variable, Eq. (16) indicates that the

redundant force R reduces to a deterministic variable. Consequently, the VRF of the statically indetermi-

nate beam reduces to the expression given in Eq. (8) for the statically determinate beam. The statically
determinate beam for this case is the associated statically determinate beam loaded with the uniform load

Q0 and an additional deterministic concentrated force at the right end equal to R.

For the general case where f(x) is a stochastic field, taking the expectation on both sides of Eq. (15a), the

mean value of u(x) is computed as follows:
e½uðxÞ� ¼
Z x

0

g1ðx; nÞdnþ
Z x

0

g2ðx; nÞe½Rð1þ f ðnÞÞ�dn; ð17Þ
Fig. 2. Configuration of statically indeterminate beam.
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Combining now Eqs. (15a) and (17), the following expression is written for u(x) � e[u(x)]
uðxÞ � e½uðxÞ� ¼
Z x

0

fg1ðx; nÞð1þ f ðnÞÞ þ g2ðx; nÞRð1þ f ðnÞÞ � g1ðx; nÞ � g2ðx; nÞe½Rð1þ f ðnÞÞ�gdn

¼
Z x

0

fg1ðx; nÞf ðnÞ þ g2ðx; nÞpðnÞgdn; ð18Þ
where
pðxÞ ¼ Rð1þ f ðxÞÞ � e½Rð1þ f ðxÞÞ� ð19Þ

can be easily shown to be a zero-mean, non-homogeneous stochastic field. The variance of the response
displacement u(x) is then computed as
Var½uðxÞ� ¼ efðuðxÞ � e½uðxÞ�Þ2g

¼
Z x

0

Z x

0

fg1ðx; n1Þg1ðx; n2ÞRff ðn1 � n2Þ þ g2ðx; n1Þg2ðx; n2ÞRppðn1; n2Þ

þ g1ðx; n1Þg2ðx; n2Þe½f ðn1Þpðn2Þ� þ g1ðx; n2Þg2ðx; n1Þe½pðn1Þf ðn2Þ�gdn1 dn2; ð20Þ

where Rpp(n1,n2) denotes the autocorrelation function of stochastic field p(x). The quantities e [f(n1)p(n2)]
and e[p(n1)f(n2)] in Eq. (20) are the cross-correlation functions Rfp(n1,n2) and Rpf(n1,n2) of stochastic fields
f(x) and p(x). Since by definition Rpf(n1,n2) = Rfp(n2,n1), Eq. (20) can be rewritten as follows:
Var½uðxÞ� ¼
Z x

0

Z x

0

fg1ðx; n1Þg1ðx; n2ÞRff ðn1 � n2Þ þ g2ðx; n1Þg2ðx; n2ÞRppðn1; n2Þ

þ 2g1ðx; n1Þg2ðx; n2ÞRfpðn1; n2Þgdn1 dn2: ð21Þ
The expression in Eq. (21) is an exact expression for the variance of the displacement u(x) of the statically

indeterminate beam in Fig. 2. In addition, it is a general expression that can be applied to any statically

indeterminate beam with the same boundary conditions, using the appropriate Green and bending moment

functions depending on the loading conditions of the beam, while similar expressions can be derived in a

straightforward manner for different boundary conditions, including more than one redundant reactions.
The response variance can therefore be calculated directly using Eq. (21) without the need of resorting

to a brute-force Monte Carlo simulation or to a SFEM approach. It should be mentioned here that a

brute-force Monte Carlo simulation approach involves the generation of a large number of sample func-

tions of stochastic field f(x), subsequent (deterministic) numerical solution of the resulting beams with

the generated fluctuations of the inverse of the elastic modulus, and eventual estimation of Var[u(x)] from

the resulting beam responses. Going back to Eq. (21), in order to determine Var[u(x)], it is necessary to

know the autocorrelation function Rpp(n1,n2) and the cross-correlation function Rfp(n1,n2). It appears to
be quite difficult to establish analytic expressions for these two functions. However, numerical estimations
of these two functions are straightforward through the following simulation approach: generate a sample

function of stochastic field f(x), calculate R using Eq. (16), determine p(x) through Eq. (19), and estimate

Rpp(n1,n2) and Rfp(n1,n2) using a large number of such sample realizations.

Fig. 3 displays results from the calculation of Var[u(x)] using brute-force Monte Carlo simulation versus

application of Eq. (21) as described in the previous paragraph. The structure considered is the statically

indeterminate beam of Fig. 2 and the stochastic field f(x) is assumed to have the power spectrum Sff(j) de-
fined in Eq. (12). The following values are used for the mean value of the inverse of the elastic modulus, the

uniform load, the length of the beam, its moment of inertia, and the standard deviation of the inverse of
the elastic modulus: F0 = 8 · 10�9 m2/N, Q0 = 1,000N/m, L = 10 m, I = 0.1 m4 and rff = 0.40. In Fig. 3,

Var[u(x = L/2)]j is plotted as a function of the wave number j indicating the location where all the power

of f(x) is located (refer to jmax in Eq. (12)). In other words, each value of j used for the evaluation of

Var[u(x = L/2)]j in Fig. 3 corresponds to a different power spectrum Sff(j) as defined in Eq. (12). From
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Fig. 3, it can be easily observed that the results obtained using Eq. (21) practically coincide with those ob-
tained from the brute-force Monte Carlo simulation approach.

In order to be able to establish upper bounds on the response variability of statically indeterminate

beams, an integral expression for the response variance similar to that in Eqs. (7) and (9) has to be estab-

lished from Eq. (21). This appears to be a particularly challenging task because of the presence of Rpp(n1,n2)
and Rfp(n1,n2) in Eq. (21) involving the non-homogeneous field p(x) that is obtained from stochastic field

f(x) through the nonlinear transformation shown in Eq. (19).

For the purposes of this study, therefore, the existence of an integral expression of the following form:
Var½uðxÞ� ¼ 2

Z 1

0

VRFðx; jÞSff ðjÞdj ð22Þ
is conjectured for the response displacement variance of the statically indeterminate structure, although a

closed-form analytic expression for the variability response function VRF(x,j) is not available.
The main argument in support of the aforementioned conjecture is described in the following. From the

definition of stochastic field p(x) in Eq. (19), it appears that its correlation structure has a lot of similarities

with that of f(x) (consider for this purpose a sample function of f(x) and the corresponding sample function
of p(x) obtained through Eqs. (16) and (19)). It should be therefore possible to express the non-homogene-

ous auto- and cross-correlation functions Rpp(n1,n2) and Rfp(n1,n2) as a function (admittedly unknown) of

the homogeneous auto-correlation function Rff(n1 � n2). Then Rff(n1 � n2) becomes a common factor of all

three terms in the integrand in Eq. (21), and the integral expression of Eq. (22) follows in a straightforward

way. Additional evidence about the validity of this conjecture will be provided later in this study through

numerical experimentation involving a Monte Carlo simulation based approach to numerically estimate

VRF(x,j) and an optimization algorithm.

3.1. Numerical evaluation of VRF(x,j) and establishment of upper bounds for the response displacement

variance of the statically indeterminate beam

After making the conjecture postulating the existence of the integral form for Var[u(x)] shown in Eq.

(23), it is necessary to find a methodology to numerically evaluate the functional form of VRF(x,j). For
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this purpose, the computationally efficient fast Monte Carlo simulation (FMCS) approach (e.g. [5]) will be

used. The basic steps of this approach are described in the following.

1. Generate N sample functions of a random sinusoid with standard deviation rff and wave number j
modeling the inverse of the elastic modulus
fjðxÞ ¼
ffiffiffi
2

p
rff cosðjxþ /jÞ; j ¼ 1; 2; . . . ;N ; ð23Þ
where /j are random phase angles uniformly distributed in the range [0,2p].
2. Using these N generated sample functions of fj(x) for a specific value of j and the exact analytic deter-

ministic expression for the response displacement of the statically indeterminate beam (Eq. (15)), it is

straightforward to compute the corresponding N displacement responses. Then, the variance of the

response Var½uðxÞ�j can be easily estimated numerically for a specific value of j by ensemble averaging

the N computed responses.

3. The value of the VRF of the statically indeterminate beam at wave number j is then computed from:
VRFðx; jÞ ¼ Var½uðxÞ�j
r2
ff

ð24Þ
4. Steps 1–3 are repeated for different values of the wave number j of the random sinusoid and the

VRF(x,j) is computed over a wide range of wave numbers, wave number by wave number.

Eq. (24) is a direct consequence of Eq. (22), when the stochastic field f(x) modeling the inverse of the elastic

modulus becomes a random sinusoid.

Finally, the maximum value of VRF(x,j) multiplied by r2
ff determines the upper bound on the variance

of the response displacement, exactly in the same way as for the statically determinate beam (Eq. (10)). The

specific value of the wave number where this maximum value occurs (denoted by jmax) completely deter-

mines the stochastic field (a random sinusoid in this case) that produces the upper bound (realizable upper

bounds).
A note is in order at this point regarding the generation of random phase angles in Eq. (23). It has been

suggested [5] that in order to reduce the computational effort, the N random phase angles /j should be se-

lected to be equally spaced in the range [0,2p]. Although in general the value of N required for convergence

varies depending on both the problem under consideration and the specific value of the wave number j,
convergence is usually observed for values of N as low as 10, making this Monte Carlo simulation proce-

dure very efficient computationally. The reader is referred to [5] for more details. This is the reason the

methodology is called ‘‘Fast Monte Carlo Simulation’’.

Although for the case of statically determinate beams the variability response function can be computed
from the closed-form analytic expression shown in Eq. (8), it should be mentioned that, alternatively, the

VRF(x,j) can also be estimated using the fast Monte Carlo simulation approach described above. This

could prove to be helpful in cases where Green�s function of the statically determinate problem becomes

too cumbersome. The only difference from the statically indeterminate case in such a computation is that

no conjecture is now needed for establishing the integral form in Eq. (9).

3.2. Brute-force optimization procedure in support of the conjecture made for Eq. (22)

As mentioned previously, the establishment of upper bounds for the case of statically indeterminate

beams is based on the conjecture of existence of an integral expression for Var[u(x)] of the form shown

in Eq. (22). Following this conjecture, the bounds can be computed using Eq. (10), after the VRF(x,j)
is estimated using the fast Monte Carlo simulation approach described in the previous section.
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In this section, a brute-force optimization procedure will be followed to numerically validate this con-

jecture. Specifically, the upper bound for Var[u(x)] estimated using Eq. (10), in conjunction with fast Monte

Carlo simulation to compute the VRF(x,j), will be compared to the corresponding upper bound obtained

through a brute-force optimization procedure. This optimization scheme starts with the computation of

Var[u(x)] using a stochastic field f(x) with arbitrarily defined power spectrum and marginal pdf (the com-
putation of Var[u(x)] involves the generation of a large number of sample functions of stochastic field f(x),

subsequent (deterministic) numerical solution of the resulting beams with the generated fluctuations of the

inverse of the elastic modulus, and eventual estimation of Var[u(x)] from the resulting beam responses).

Proceeding from this initial stochastic field f(x), the optimization scheme estimates through an iterative

algorithm the form of stochastic field f(x) that maximizes Var[u(x)]. It is obvious that such a brute-force

optimization procedure is totally independent of the conjecture of existence of an integral expression for

Var[u(x)] of the form shown in Eq. (22). It is shown that the two upper bounds obtained from the two dif-

ferent approaches coincide, and that the stochastic fields that produce this common upper bound are iden-
tical random sinusoids.

The brute-force iterative optimization procedure is described in the following in relation to the statically

indeterminate beam shown in Fig. 2. The inverse of the elastic modulus is considered to vary randomly

along the length of the beam according to Eq. (1). The initial assumption for stochastic field f(x) involves

a power spectrum that decreases linearly from Sð0Þ
ff ðj ¼ 0Þ ¼ 0:0457 to Sð0Þ

ff ðj ¼ 3:5Þ ¼ 0:0, and a marginal

pdf initially assumed to be a truncated Gaussian within the following limits: �0.9 6 f(x) 6 0.9 (to avoid

non-positive values of the inverse of the elastic modulus). The standard deviation of f(x) is rff = 0.4. The

spectral representation method is used to simulate the zero-mean, homogeneous, truncated-Gaussian,
stochastic field f(x). The optimization procedure followed has many similarities to the one used in [8].

Its various steps are described below.

(1) Iteration 0. Using the initial assumption for the power spectrum Sð0Þ
ff ðjÞ of stochastic field f(x) modeling

the inverse of the elastic modulus, NSIM Gaussian sample functions of f(x) are generated using the

spectral representation method. If any of these generated sample functions have values outside the

range �0.9 6 f(x) 6 0.9, then these values are set equal to the corresponding limit they exceed (either

�0.9 or 0.9). It should be mentioned here that the aforementioned truncation will modify the power
spectrum of the generated sample functions. However, this is not creating any problem, as the ultimate

objective here is to determine where is the iterative algorithm converging to and not to accurately

reflect the initial power spectrum. Using these NSIM generated sample functions of stochastic field

f(x), the corresponding NSIM displacement responses of the statically indeterminate beam in Fig. 2

are computed using the exact expression in Eq. (15). The following values are used for the various

parameters describing the problem: F0 = 8 · 10�9m2/N, L = 10m, and I = 0.1m4. Then, the variance

of the response displacement at the 0th iteration (denoted by Var(0)) is computed through ensemble

averaging of the NSIM computed displacement responses.
(2) Iteration m. Select randomly two entries of the power spectrum at iteration ðm� 1ÞSðm�1Þ

ff ðjjÞ; j ¼ 1; 2,
and modify their values by DSff(jj) so that a new power spectrum is created for iteration

ðmÞ : SðmÞ
ff ðjjÞ ¼ Sðm�1Þ

ff ðjjÞ þ DSff ðjjÞ; j ¼ 1; 2. The rest of the entries of the power spectrum at itera-

tion (m � 1) remain unchanged. The selection of these two entries is done with equal probability for

all entries. In order for the new spectrum at iteration (m) to have the same variance with the spectrum

at iteration (m � 1), the two modification values DSff(jj); j = 1,2 must satisfy the following condition:
DSff ðj1Þ ¼ �DSff ðj2Þ: ð25Þ

The selected values of DSff(jj); j = 1,2 have to be such that the values of the new spectrum at iteration
(m) at wave numbers j1 and j2 remain non-negative. Using the new spectrum at iteration (m), NSIM

sample functions of the truncated stochastic field f(x) are then generated via the spectral representation
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method. The corresponding NSIM displacement responses are computed using the exact expression in

Eq. (15), and eventually used to estimate the variance of the response displacement at the mth iteration

(denoted by Var(m)).

(3) If Var(m � 1) < Var(m) the modifications to the power spectrum are accepted. Otherwise, they are

rejected.
(4) Set m = m + 1 and go back to step 3.

The iterations are stopped when a significant number of iterations go without producing a further in-

crease in the variance of the response displacement. It is pointed out again that the maximum value for

the variance of the response displacement obtained through this optimization procedure is not making

use of the conjecture of existence of an integral expression for Var[u(x)] of the form shown in Eq. (22).

Two load cases are considered in relation to the statically indeterminate beam in Fig. 2. The first load

case (LC1) is the one presented in Fig. 2 with a uniformly distributed load Q0 = 1000N/m, while the second
load case (LC2) adds a concentrated moment M0 = �10,000Nm at its right end (please note that this con-

centrated moment is not indicated in Fig. 2).

Fig. 4 presents results of the aforementioned optimization procedure for the displacement at the mid-

point (x = L/2) of the beam in Fig. 2 and LC1. The evolution of the power spectrum SðmÞ
ff ðjÞ is presented
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at six different iteration steps in this figure (specifically: 0, 25, 50, 100, 500, and 1500). It can be observed

that the optimization procedure converges after approximately 1500 iterations, while for the next 1000 iter-

ations (up to 2500) the spectrum shown in Fig. 4(f) remains unchanged having all its power concentrated at

the first band of the discretized wave number domain. This is the power spectrum of a random sinusoid

with j = 0. The corresponding maximum variance of the response displacement at x = L/2 is computed

as: max{Var[u(x = L/2)]} = 2.8 · 10�6m2. The corresponding upper bound for Var[u(x)] obtained using fast
Monte Carlo simulation (FMCS) to compute VRF(x,j) and subsequent application of Eq. (10) can be

established from Fig. 3 (it is straightforward to show that the ‘‘brute-force MCS’’ curve in Fig. 3 is equi-

valent to using FMCS to compute VRF(x,j) and then multiplying by r2
ff ). Fig. 3 indicates an identical

upper bound equal to 2.8 · 10�6 m2, occurring also for a random sinusoid at j = 0.

Fig. 5 shows results for the case of the beam in Fig. 2 with LC2. The response displacement is considered

now at x = 0.75L. As for the previous case (Fig. 4), the brute-force optimization procedure converges again

after approximately 1,500 iterations, while for the next 1000 iterations (up to 2500) the spectrum remains

unchanged having all its power concentrated at a single band of the discretized wave number domain. This
is the power spectrum of a random sinusoid with j = 1.1. Note that Fig. 5 displays only Sð1500Þ

ff ðjÞ which is

indicated as a single bar at j = 1.1. The corresponding maximum variance of the response displacement at

x = 0.75L is computed as: max{Var[u(x = 0.75L)]} = 2.2 · 10�7m2. Fig. 5 displays also a curve denoted

‘‘FMCS’’ which is the variance of the response displacement at x = 0.75L when stochastic field f(x) is a ran-

dom sinusoid with all its power concentrated at wave number j. This curve is computed by determining

VRF(x,j) through FMCS and then multiplying by r2
ff . The values of this curve as a function of the wave

number j of each random sinusoid are denoted by Var[u(x = 0.75L)]j. The maximum value of this curve

indicates an identical upper bound as with the brute-force optimization approach (equal to 2.2 · 10�7

m2), occurring also for a random sinusoid at the same wave number j = 1.1.

The above two examples provide some numerical validation of the conjecture postulating the existence

of the integral form for Var[u(x)] shown in Eq. (22) for statically indeterminate beams. An immediate con-

sequence of this conjecture is that realizable upper bounds of the response displacement variance can be

computed using Eq. (10), after the VRF(x,j) is estimated using the fast Monte Carlo simulation (FMCS)

approach described earlier. In the remaining part of this paper, this will be the approach followed to estab-
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lish Var[u(x)]j as a function of the wave number j of the random sinusoid, and to eventually determine

a realizable upper bound of the response displacement variance as the maximum among the values of

Var[u(x)]j computed over a wide range of wave numbers. It is pointed out that such FMCS-based compu-

tations are computationally very efficient as mentioned earlier.

3.3. Important note regarding the conjectured integral form for Var[u(x)] in Eq. (22)

The conjectured integral form in Eq. (22) for the response displacement variance of the statically inde-

terminate beam is the same as that suggested in previous studies (e.g. [5–7]) with one notable exception. In

the past, Sff(j) represented the power spectrum of a stochastic field f(x) modeling the variation of the elastic

modulus around its mean value, while in the current study f(x) models the variation of the inverse of the

elastic modulus. We believe that although both interpretations of f(x) are essentially based on conjectures,

the current one based on the inverse of the elastic modulus is a more meaningful one from the physical
point of view.
4. Bound generating fields

As mentioned earlier, the upper bounds of the response displacement variance for both statically deter-

minate and indeterminate beams are obtained when the stochastic field f(x) modeling the inverse of the elas-

tic modulus becomes a random sinusoid with power concentrated at wave number jmax where the
variability response function takes its maximum value (refer to Eq. (10) that is exact for statically determi-

nate beams and conjectured for statically indeterminate beams). Consequently, the following expression

can be written for the inverse of the elastic modulus that produces the upper bounds:
1

EðxÞ ¼ F 0½1þ f ðxÞ� ¼ F 0½1þ
ffiffiffi
2

p
rff cosðjmaxxþ /Þ�; ð26Þ
where / is a random phase angle uniformly distributed in the range [0,2p]. A new stochastic field f*(x)
modeling the elastic modulus (rather than its inverse) can now be defined for this case that produces the

upper bounds
EðxÞ ¼ 1

F 0

1

½1þ f ðxÞ� ¼ E0½1þ f �ðxÞ�; ð27Þ
where E0 is the mean value of the elastic modulus which is related to F0 via
E0 ¼
1

F 0

e
1

ð1þ f ðxÞÞ

� �
; ð28Þ
f*(x) is a zero-mean, homogeneous stochastic field related to f(x) through the following relationship:
f �ðxÞ ¼
1� e

1

ð1þ f ðxÞÞ

� �
ð1þ f ðxÞÞ

e
1

ð1þ f ðxÞÞ

� �
ð1þ f ðxÞÞ

ð29Þ
Eq. (29) indicates that stochastic field f*(x) producing the upper bound of the response displacement var-
iance is an associated field according to the definition given in [4] and [5]. According to this definition, an

associated field is a non-Gaussian stochastic field obtained by a nonlinear transformation of an underlying
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random sinusoid (in this case f(x)). Since stochastic field f*(x) produces realizable upper bounds, it will be

called a Bound Generating Field (BGF).

As the relationship f* = G(f) is a decreasing one, the probability density function of f*(x) (denoted by

pf � ðs�Þ) can be computed from that of the random sinusoid f(x) (denoted by pf(s) and shown in Eq.

(13)) as follows:
pf � ðs�Þ ¼
df
df �

����
����pf ðsÞ ¼ 1

e
1

1þ f ðxÞ

� �
ð1þ s�Þ2

� � 1

p
2r2

ff �
1� e

1

1þ f ðxÞ

� �
ð1þ s�Þ

e
1

1þ f ðxÞ

� �
ð1þ s�Þ

8>><
>>:

9>>=
>>;

2
2
6664

3
7775

�1=2

: ð30Þ
The probability density function of stochastic field f*(x) in Eq. (30) is plotted schematically in Fig. 6. From

this figure, it can be observed that the zero-mean pf � ðs�Þ is a U-shaped distribution with a lower limit f0
having infinite probability mass and an upper limit f1 having significant (but finite) probability mass.
The shape of this distribution is similar, but not identical, to that of a random sinusoid that has a symmetric

U-shaped beta distribution (Eq. (13)). As can be readily observed in Eq. (30), pf � ðs�Þ is fully defined from

the standard deviation rff of the underlying random sinusoid f(x). Table 1 presents the values of the lower

and upper limits of f*(x) (f �
0 and f �

1 respectively) as a function of rff, while Fig. 7 plots rf �f � as a function of

rff. Table 1 and Fig. 7 indicate that as rff approaches the value of 1=
ffiffiffi
2

p
, the lower limit f �

0 approaches the

value of �1, the upper limit f �
1 approaches infinity, the standard deviation rf �f � tends to infinity, and pf � ðs�Þ

becomes asymptotically an L-shaped distribution. In the following, pf � ðs�Þ will be called bound probability

distribution (BPD), as it is the pdf associated with the bound generating field (BGF) f*(x).
Sample functions of stochastic field f*(x) can be easily obtained from generated realizations of the ran-

dom sinusoid f(x) using Eq. (29). Fig. 8 displays such sample functions of f*(x) for four different values of

the standard deviation rff and a representative value of the wave number where all the power of the random

sinusoid f(x) is concentrated (in this case j ¼ 0:5). From this figure, it can be observed that the distribution

of the values of the modulus of elasticity along the length of the beam consists of zones of weak material

that can be interpreted as areas that approach the behavior of a hinge, followed by zones of strong material
Fig. 6. Schematic plot of bound probability density function of bound generating field f*(x).
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Table 1

Lower and upper limits of stochastic field f*(x) for various values of the standard deviation rff of stochastic field f(x) (which is a

random sinusoid)

rff 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.7071

Lower limit f �
0 �0.1327 �0.2522 �0.3645 �0.4734 �0.5859 �0.714 �0.929 �0.998

Upper limit f �
1 0.1529 0.3377 0.5722 0.8985 1.4138 2.492 13.072 !1

Fig. 8. Sample realizations of the bound generating field f*(x) for j ¼ 0:5 and (a) rff = 0.2, (b) rff = 0.4, (c) rff = 0.6 and (d) rff = 0.7.
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that approach the behavior of a rigid body. Consequently, the following simple interpretation of the under-
lying physical mechanism that is responsible for creating the upper bound for the system�s response vari-

ability can be established: the sequence of alternating ‘‘hinge-type zones‘‘ (responsible for the largest

displacement responses) and ’’rigid zones’’ (responsible for the smallest displacement responses), leads to

the maximum variability on the response displacement.

The spectral density function of the generated sample functions of stochastic field f*(x) can then be esti-

mated numerically using the following expression:
Sf �f � ðjÞ ¼
1

2pLx

Z Lx

0

f �ðxÞe�ijx dx

����
����
2

; ð31Þ
where Lx is the length of the sample function. Using Eq. (31), the spectral density functions of f*(x) are

computed and displayed in Fig. 9 for the same four values of rff and a new representative value of the wave

number where all the power of the random sinusoid f(x) is concentrated (in this case j ¼ 0:2). As can be

seen in this figure, Sf �f � ðjÞ has its power concentrated at a series of discrete wave numbers that are integer

multiples of the basic wave number where all the power of the random sinusoid f(x) is concentrated (in this

case j ¼ 0:2). The dominant peak of Sf �f � ðjÞ occurs at this basic wave number j ¼ 0:2.

4.1. Three alternative ways to perform fast Monte Carlo simulation

Eq. (29) indicates that when random field f(x) modeling the inverse of the elastic modulus is a random

sinusoid, random field f*(x) modeling the elastic modulus can be fully determined, i.e. a sample function of
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f*(x) can be computed from a given sample function of f(x). Consequently, there are essentially three alter-

native ways to perform the fast Monte Carlo simulation to estimate Var½uðxÞ�j:

(1) By generating sample functions of f(x) (in this case a random sinusoid) and then using a closed-form

analytic expression for the response displacement (e.g. Eq. (2) or (15)). This approach will be called
ANA �f(x).

(2) By generating sample functions of f(x) (in this case a random sinusoid), computing the corresponding

sample functions of f*(x) using Eq. (29), and then using a closed-form analytic expression for the

response displacement. This approach will be called ANA—f*(x).

(3) By generating sample functions of f(x) (in this case a random sinusoid), computing the corresponding

sample functions of f*(x) using Eq. (29), and then using a deterministic finite element code to estimate

the response displacement. This approach will be called FEM—f*(x).

It is obvious that the third approach is not requiring the existence of a closed-form analytic expression for

the response displacement. All three approaches provide identical estimates of Var½uðxÞ�j (and consequently

of VRFðx; jÞ too).
5. Numerical results

5.1. Statically determinate beam

Consider the statically determinate beam of length L = 10m shown in Fig. 1, carrying a uniformly dis-

tributed load Q0 = 1000N/m and a concentrated moment M0 = 10,000N Æ m at its free end. The loads are

assumed to be static and deterministic. The inverse of the elastic modulus of the beam is assumed to vary

randomly along its length according to Eq. (1) with F0 = 8 · 10�9 2/N and I = 0.1 m4.

Spectral- and probability-distribution-free upper bounds on the response variability of this beam can be

established using only the value of the standard deviation rff of stochastic field f(x) modeling the inverse of

the elastic modulus. These bounds are computed using Eq. (10), following the evaluation of the maximum
value of VRF(x,j) from the closed-form expression in Eq. (8). This approach of determining the upper

bounds using the analytic expression of the variability response function in Eq. (8) will be denoted by

VRF in the following. There are also three alternative ways of determining the maximum value of

VRF(x,j) by estimating the variability response function numerically. This is accomplished through Eq.

(24) and computing Var[u(x)]j using the three different ways described earlier in section ‘‘Three alternative
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ways to perform fast Monte Carlo simulation’’ (denoted by ANA—f(x), ANA—f*(x) and FEM—f*(x)).

Fig. 10 displays the computed values of VRF(x = L,j) obtained using the four aforementioned approaches.

The four curves are practically identical with only negligible differences due to numerical approximations.

The three fast Monte Carlo simulation curves (ANA—f(x), ANA—f*(x) and FEM—f*(x)) are computed

using a standard deviation of rff = 0.2. It should be mentioned that identical results should be obtained
for VRF(x = L,j) for any other value of rff < 1=

ffiffiffi
2

p
. Fig. 11 presents plots for Var[u(x = L)]j that are ob-

tained as the product of VRF(x = L,j) (curve in Fig. 10) times r2
ff . Four curves are provided corresponding

to four different values of r2
ff . The upper bound for the variance of u(x = L) is then simply established as the

maximum value of each of the Var[u(x = L)]j curves in Fig. 11. From the way the Var[u(x = L)]j curves are

determined, all their maximum values occur at the same wave number (jmax = 0.3 in this case). It is worth-

while noting that in this case jmax is different from zero.

5.2. Statically indeterminate beam

Consider now the statically indeterminate beam of length L = 10 m shown in Fig. 2, carrying a uniformly

distributed load Q0 = 1000N/m and a concentrated moment M0 = 10,000Nm at its right end (please note

that this concentrated moment is not indicated in Fig. 2). The loads are assumed again to be static and

deterministic. The inverse of the elastic modulus of the beam is assumed to vary randomly along its length

according to Eq. (1) with F0 = 8 · 10�9m2/N and I = 0.1 m4.

Spectral- and probability-distribution-free upper bounds on the response variability of this beam can be

established using only the value of rff. These bounds are computed again using Eq. (10), but now VRF(x,j)
can only be estimated numerically using the three alternative approaches: ANA—f(x), ANA—f*(x) and

FEM—f*(x). Fig. 12 displays the computed values of VRF(x = L/2,j) obtained using these three ap-

proaches. The three curves are practically identical with only negligible differences due to numerical

approximations. All three curves are computed using rff = 0.2 (identical results should be obtained for

any other value of rff < 1=
ffiffiffi
2

p
). Fig. 13 presents plots for VRF(x = L/2,j) that are obtained as the product

of VRF(x = L/2,j) (curve in Fig. 12) times r2
ff . Four curves are provided again corresponding to four dif-

ferent values of r2
ff .

The upper bound for the variance of u(x = L/2) is then simply established as the maximum value of each
of the Var[u(x = L/2)]j curves in Fig. 12. From the way the Var[u(x = L/2)]j curves are determined, all their
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maximum values occur at the same wave number (jmax = 0 in this case). It is worthwhile noting that

although in this case jmax is equal to zero, there are numerous other cases of statically indeterminate beam
configurations where the maximum values occur at jmax 5 0.
6. Conclusions

Spectral- and probability-distribution-free upper bounds on the response variability of both statically

determinate and indeterminate beams were established in the present paper based on exact closed-form ana-

lytic expressions derived for the variance of the response displacement. A conjecture had to be made in the
case of statically indeterminate beams in order to establish these bounds.
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The upper bounds proposed in this study are called spectral- and probability-distribution-free because

they require knowledge of only the variance of the stochastic field modeling the inverse of the elastic mod-

ulus. Such bounds are realizable in the sense that it is possible to fully determine the probabilistic charac-

teristics (spectral density function and marginal probability distribution function) of the stochastic field

(modeling the inverse of the elastic modulus) that produces them. Furthermore, it is possible to fully deter-
mine also the corresponding stochastic field modeling the elastic modulus that produces these bounds.

It was shown that the upper bounds can also be computed numerically using a so-called fast Monte

Carlo simulation (FMCS) procedure, taking advantage of the fact that the bounds are obtained when

the stochastic field modeling the inverse of the elastic modulus becomes a random sinusoid. The FMCS

procedure is not requiring a closed-form analytic expression for the response displacement, making this

approach much more general.

Finally, it is recognized that the existence of such bounds in the statically indeterminate case is based on

a conjecture and remains to be shown in a rigorous mathematical way. It is reminded that the conjecture
was supported through an argument postulating the existence of the integral form in Eq. (23) and through a

brute-force optimization procedure providing numerical validation. In addition, the quality of the upper

bounds established in this study in terms of their usefulness and admissibility in real life applications should

be tested in the future in the context of their impact on the design of real structures. The extension of the

proposed methodology to more complex real world structures is a subject of future research.
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