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Abstract

The effect of material and thickness imperfections on the buckling load of isotropic shells is investigated in this

paper. For this purpose, the concept of an initial �imperfect� structure is introduced involving not only geometric devia-

tions of the shell structure from its perfect geometry but also a spatial variability of the modulus of elasticity as well as

the thickness of the shell. The initial geometric imperfections are described as a two-dimensional uni-variate (2D-1V)

stochastic field with statistical properties that are either based on an available data bank of measured initial imperfec-

tions or assumed, in cases where no experimental data is available. In order to describe the non-homogeneous charac-

teristics of the initial imperfections, the spectral representation method is used in conjunction with an autoregressive

moving average model with evolutionary power spectra based on a statistical analysis of the experimentally measured

imperfections. In cases where no experimental results is available, the initial imperfections are assumed to be homoge-

neous and their impact on the buckling load is investigated on the basis of �worst�-case scenarios with respect to the

correlation length parameters of the stochastic fields. The elastic modulus and the shell thickness are described as

2D-1V non-correlated homogeneous stochastic fields, while the stochastic stiffness matrix of the shell elements is for-

mulated using the local average method. The Monte Carlo Simulation method is used to calculate the variability of

the buckling load, while for the determination of the limit load of the shell, a stochastic formulation of the elastoplastic

and geometrically non-linear TRIC facet triangular shell element is implemented.
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1. Introduction

The buckling behaviour of shell structures is generally influenced by their initial imperfections, which

occur during the manufacturing and construction stages. Thus, the analysis of imperfection sensitive shells

has attracted the attention of many researchers in the past. Although these research efforts resulted in
achieving predictions close to the experimental results, it was soon realized that the wide scatter in meas-

ured buckling loads of shell structures could only be approximated through modeling taking into account

the randomness of the imperfect geometries. This variability of initial imperfections together with their pro-

nounced influence on the load carrying capacity of shells has been proved to be responsible for the large

scatter observed in the experimental results [1–4]. In addition to initial geometric imperfections, other

sources of imperfections such as the variability of thickness, material properties, boundary conditions

and misalignment of loading are also responsible for the reduction as well as the scatter of the buckling

load of shell structures [2,3,5]. In the majority of studies these influencing parameters have not been treated
as stochastic variables in a rational manner. An accurate prediction of the buckling behaviour of shells

would therefore require a realistic description of all uncertainties involved in conjunction with a robust fi-

nite element formulation that can efficiently and accurately handle the geometric as well as physical non-

linearities of shell type structures [6].

In the present paper the effect of material and thickness imperfections on the buckling load of isotropic

shells is investigated. For this purpose, the concept of an initial �imperfect� structure is introduced involving

not only geometric deviations of the shell structure from its perfect geometry but also a spatial variability of

the modulus of elasticity as well as of the thickness of the shell. These combined �imperfections� are incor-
porated in an efficient and cost effective non-linear stochastic finite element formulation of the TRIC shell

element [8,9] using the local average method for the derivation of the stochastic stiffness matrix, while the

variability of the limit loads is obtained by means of the Monte Carlo Simulation (MCS) procedure.

In order to investigate the influence of the material and thickness variability on the buckling load of

shells with random geometric imperfections, two types of shell structures are selected with criterion their

buckling behaviour up to the limit point. The first type is a shallow hinged isotropic cylindrical panel with

a point load at the mid of its top surface. This shell exhibits a limit point buckling with large pre-buckling

deformation response and considerable influence of the physical non-linearities on its buckling behaviour.
The second type is a thin-walled isotropic axially compressed cylinder, which exhibits a bifurcation buck-

ling that occurs while the structure remains elastic. Therefore, the second type is selected as an example of

an imperfection-sensitive structure in the sense that small deviations from its perfect geometry may result in

a dramatic reduction in its buckling strength [7], while the first type was selected in order to investigate the

effect of material and thickness variability on the buckling behaviour of a less sensitive to initial imperfec-

tions type of shell.

The analysis of shell structures exhibiting physical and geometric non-linearities has received consider-

able attention over the past years and it has been shown the importance of both types of non-linearities on
the carrying capacity of these structures. In this work a layered elastoplastic constitutive model based on

the von Mises yield criterion, the associated flow rule and isotropic hardening is adopted in conjunction

with the geometrically non-linear shell element TRIC [10]. The main advantage of this formulation is that

the elastoplastic stiffness matrix is formed on the natural coordinate system and can be expressed analy-

tically for each layer. Then, the total natural tangent stiffness matrix is computed by adding together the

tangent stiffness matrix of each layer. This formulation inherits a number of advantages associated with

the natural mode method. This elastic–plastic large displacement formulation is therefore considered a ro-

bust and cost-effective platform for the accurate prediction of the buckling and post buckling behaviour of
imperfect shells.

The initial geometric imperfections are described as a two-dimensional uni-variate (2D-1V) stochastic

field. In the case of the axially compressed cylinder, the statistical properties of the stochastic field are based
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on an available data bank of measured initial imperfections [11]. The resulting stochastic field is clearly a

non-homogeneous stochastic field with substantially varying first and second order properties. In the pre-

sent study, the spectral representation method together with an autoregressive moving average model with

evolutionary power spectra is used for the description of the non-homogeneous characteristics of the stoch-

astic field [12–14]. This approach is adopted because it can be easily implemented as a straightforward
extension of the well-established spectral representation method applied for the description of homogene-

ous fields. In the case of the hinged isotropic cylindrical panel, the initial imperfections are assumed to be

homogeneous and their impact on the buckling load is investigated on the basis of �worst�-case scenarios

with respect to the correlation length parameters of the stochastic fields. In all cases, the elastic modulus

and the shell thickness are described as two-dimensional uni-variate non-correlated homogeneous stochas-

tic fields with assumed statistical properties.

In this work the efficiency of the proposed methodology is demonstrated in realistic problems, where the

influence of the material and thickness variability on the buckling load of shells with random geometric
imperfections is investigated in the presence of both geometric and physical non-linearities. The numerical

tests performed demonstrate the decisive role that the material and thickness variability play in the buckling

behaviour of both imperfection-sensitive and imperfection-insensitive shell structures. Furthermore, it is

found that predictions of the scatter of the buckling load reasonably close to the experimental results

can be obtained provided that the material and thickness imperfections are incorporated in a rational man-

ner to the model of initial geometric imperfections.
2. Finite element formulation

The finite element simulation is performed with the triangular element TRIC, which is based on the nat-

ural mode method. The TRIC shear-deformable facet shell element is a reliable and cost-effective element

suitable for linear and non-linear analysis of thin and moderately thick isotropic as well as composite plate

and shell structures. For the sake of completeness a brief description of the TRIC shell element is given in

this section. Extensive reports on the formulation of TRIC may be found in [8–10].
2.1. The TRIC shell element

The element has 18 degrees of freedom (6 per node) and hence 12 natural straining modes (Fig. 1). Three

natural axial strains and natural transverse shear strains are measured parallel to the edges of the triangle.

The stiffness is contributed by deformations only and not by the associated rigid body motions. The natural

stiffness matrix can be produced from the statement of variation of the strain energy with respect to the

natural coordinates.

The geometric stiffness is based on large deflections but small strains and consists of two parts: A sim-
plified geometric stiffness matrix generated by the rigid-body movements of the element and the natural

geometric stiffness matrix due to the coupling between the axial forces and the symmetric bending modes

(stiffening or softening effect). To construct the geometric stiffness we consider small rigid-body rotational

increments about the local Cartesian axes. These rigid-body rotational increments correspond to nodal

Cartesian moments along the same axes. Using the fact that the resultants of all forces produced by

rigid-body motion must vanish, we arrive at the expression for the local rigid-body rotational simplified

geometric stiffness. The term simplified refers to the fact that only the middle plane axial natural forces

are included in the stiffness matrix, which fully represent the pre-stress state within the material. Once
the simplified geometric stiffness is formed it may transformed to the global coordinate system. In addition

to the geometric stiffness corresponding to the rigid-body movements of the element, an approximate



Fig. 1. The multilayer triangular TRIC element; coordinate systems.
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natural geometric stiffness arising from the coupling between the axial forces and the symmetric bending

mode (stiffening or softening effect) is also considered.

The elastoplastic constitutive matrix is established by obtaining the relation between the natural strain

and stress increments for each layer r within a given load step:
drr
c ¼ jel

ct �
1

H þ stNjel
ctsN

ðjel
ctsNÞðjel

ctsNÞ
t

� �r
dcrt ; ð1Þ
where H is the hardening parameter and sN is obtained by the normality flow rule as
sN ¼ oF
orc

¼
oF
orca

oF
orcb

oF
orcc

� �t
ð2Þ
and the expression in brackets corresponds to the elastoplastic material stiffness matrix jel–pl
ct valid for every

layer r:
½jel–pl
ct �r ¼ jel

ct �
1

H þ stNjel
ctsN

ðjel
ctsNÞðjel

ctsNÞ
t

� �r
: ð3Þ
The natural elastoplastic stiffness of the element is obtained by summing up the natural elastoplastic layer

stiffnesses of the element. A full description of the linear elastic, geometric and elastoplastic stiffness matrix

of the TRIC shell element can be found in [8–10], respectively.
3. Description of initial imperfect geometry

The imperfect geometry of shell structures can in general be accurately represented as a 2D-1V stochastic

field. In the case of the axially compressed cylinder, the statistical properties of the stochastic field are based

on the data bank of measured initial imperfections by Arbocz and Abramovich [11]. The resulting stoch-

astic field is clearly a non-homogeneous stochastic field with substantially varying first and second order

properties.
Samples of the stochastic fields with statistical properties equivalent to the measured ones can generally

be obtained by using the spectral representation method, the Karhunen–Loéve expansion or some other

method. In the present study, the spectral representation method together with an autoregressive moving

average model with evolutionary power spectra is used for the description of the non-homogeneous char-
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acteristics of the stochastic field. The estimation of the evolutionary spectrum from the real data is accom-

plished using a standard moving window technique. The spectral representation with evolutionary power

approach was selected because it can be easily implemented as a straightforward extension of the well-

established spectral representation method used for modeling of homogeneous fields. The use of this ap-

proach to model and simulate non-stationary processes and non-homogeneous fields dates back to the
1970s and is very well established [12–14]. Using this approach, the decomposition of the covariance matrix

required by the Karhunen–Loéve decomposition is avoided, which is most beneficial in cases where a large

number of terms is required in the Karhunen–Loéve expansion for the accurate representation of the stoch-

astic field.

From the statistical analysis of the measured imperfections it occurs that the assumption of normality is

in accordance with the experimental data. Therefore, the imperfect geometry represented by the variation of

the radius of the structure can be represented as a 2D-1V non-homogeneous Gaussian stochastic field:
rðx; yÞ ¼ Rþ a0ðx; yÞ þ f1ðx; yÞ; ð4Þ

where r(x,y) is the varying initial radius at each point of the structure, R is the radius of the perfect cylinder,

a0(x,y) is the mean function of the imperfections with respect to the perfect geometry of the shell and

f1(x,y) is a zero mean non-homogeneous Gaussian stochastic field.

In the case of the hinged isotropic cylindrical panel considered in this study, the initial imperfections are

assumed to be zero-mean and homogeneous and their impact on the buckling load was investigated in the

basis of �worst�-case scenarios with respect to the correlation length parameters of the stochastic fields,
which control the shape of the imperfections.
4. Stochastic stiffness matrix

The modulus of elasticity as well as the thickness of the structure are also considered in the present study

as �imperfections�, due to their spatial variability. Therefore, these parameters are also described by two

independent 2D-1V homogeneous stochastic fields:
Eðx; yÞ ¼ E0½1þ f2ðx; yÞ�; ð5Þ

tðx; yÞ ¼ t0½1þ f3ðx; yÞ�; ð6Þ

where E0 is the mean value of the elastic modulus, t0 is the mean thickness of the structure and f2(x,y),

f3(x,y) are two zero mean Gaussian homogeneous stochastic fields corresponding to the variability of
the modulus of elasticity and the thickness of the shell, respectively.

The stochastic stiffness matrix of the shell element is derived using the local average method. In a recent

study by Argyris et al. [15] it was shown that for the shell type structures examined in this work, the local

average method is not only superior to the weighted integral method in terms of simplicity and computa-

tional efficiency, but it was found to be equally effective in terms of accuracy of the computed results.
5. Spectral representation

In the present paper the generation of sample functions is performed using the spectral representation

method [16]. The simulation points of the stochastic fields are located at the center of gravity of the TRIC

shell elements. Therefore, the stochastic fields are simulated in non-uniformly spaced points of the struc-

ture. For this reason, the series of cosines formula is chosen for the simulation of the stochastic fields in-

stead of the Fast Fourier Transform (FFT) which requires that the stochastic field is simulated at uniformly
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spaced points. In addition, the FFT is not applicable in case that autoregressive models with evolutionary

power spectra are incorporated into the simulation algorithm of the spectral representation method.
5.1. 2D-1V homogeneous stochastic fields

The series of cosines formula for the simulation of a 2D-1V homogeneous stochastic field is as follows:
f ðiÞðx1; x2Þ ¼
ffiffiffi
2

p XN1�1

n1¼0

XN2�1

n2¼0

½Að1Þ
n1n2

cosðj1n1x1 þ j2n2x2 þ /ð1ÞðiÞ
n1n2

Þ þ Að2Þ
n1n2

cosðj1n1x1 � j2n2x2 þ /ð2ÞðiÞ
n1n2

Þ�; ð7Þ
where /ðjÞðiÞ
n1n2

, j = 1,2 represent the realization for the (i) simulation of the independent random phase angles

uniformly distributed in the range [0,2p]. Að1Þ
n1n2

, Að2Þ
n1n2

are defined as
Að1Þ
n1n2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sf0f0ðj1n1 ; j2n2ÞDj1Dj2

q
; ð8aÞ

Að2Þ
n1n2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sf0f0ðj1n1 ;�j2n2ÞDj1Dj2

q
; ð8bÞ
where
j1n1 ¼ n1Dj1; j2n2 ¼ n2Dj2; ð9Þ

Dj1 ¼
j1u

N 1

; Dj2 ¼
j2u

N 2

; ð10Þ

n1 ¼ 0; 1; . . . ; N 1 � 1; n2 ¼ 0; 1; . . . ; N 2 � 1; ð11Þ

Nj, j = 1,2, are the numbers of intervals in the discretization of the spectrum and jju, j = 1,2, are the upper

cut-off wave numbers which define the active region of the power spectrum Sf0f0 of the stochastic field. The

last implies that the power spectral density function Sf0f0 (j1,j2), for either mathematical or physical rea-
sons, is assumed to be zero outside the region defined by
�j1u 6 j1 6 j1u and � j2u 6 j2 6 j2u: ð12Þ

The two-sided power spectral density function Sf0f0 is assumed to correspond to an autocorrelation function

of exponential type and is given by
Sf0f0ðj1; j2Þ ¼
r2
f

4p
b1b2 exp � 1

4
ðb21j2

1 þ b22j
2
2Þ

� �
; ð13Þ
where rf denotes the standard deviation of the stochastic field and b1, b2 denote the parameters that influ-

ence the shape of the spectrum which are proportional to the correlation distances of the stochastic field

along the x1, x2 axes, respectively.

Using Eq. (7), a large number Nsamp of sample functions are produced, leading to the generation of a set

of stochastic stiffness matrices. The associated structural problem is solved Nsamp times, while the response
variability can finally be calculated by taking the response statistics of the Nsamp simulations.
5.2. 2D-1V non-homogeneous stochastic fields

For the simulation of a 2D-1V non-homogeneous stochastic field, the series of cosines formula given in

Eq. (7) becomes as follows:
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f ðiÞðx1; x2Þ ¼
ffiffiffi
2

p XN1�1

n1¼0

XN2�1

n2¼0

½Að1Þ
n1n2

cosðj1n1x1 þ j2n2x2 þ /ð1ÞðiÞ
n1n2

Þ þ Að2Þ
n1n2

cosðj1n1x1 � j2n2x2 þ /ð2ÞðiÞ
n1n2

Þ�; ð14Þ
where, Að1Þ
n1n2

, Að2Þ
n1n2

are now functions of not only the wave numbers but also of the positions x1, x2:
Að1Þ
n1n2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SEðj1n1 ; j2n2 ; x1; x2ÞDj1Dj2

q
; ð15aÞ

Að2Þ
n1n2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SEðj1n1 ;�j2n2 ; x1; x2ÞDj1Dj2

q
; ð15bÞ
where SE(j1n1, j2n2, x1, x2) is the auto evolutionary power spectrum given by
SEðj1; j2; x1; x2Þ ¼
R x2þb
x2�b

R x1þa
x1�a f ðx1; x2Þ exp½�2piðj1x1 þ j2x2Þ�dx1 dx2

8pab
: ð16Þ
The intervals 2a and 2b define the dimensions of the moving window of the sample from which the evolu-

tionary spectrum is estimated at each point of the discretized structure.
6. Numerical examples

Two test examples are presented to demonstrate the efficiency as well as the applicability of the proposed

methodology. The first example is the shallow hinged isotropic cylindrical panel shown in Fig. 2. This

example is chosen because it exhibits a highly non-linear behaviour with considerable influence of the phys-

ical non-linearities on the overall structural response. In a previous work by Papadopoulos and Papadraka-

kis [17] the same example was investigated considering only geometric non-linearities. In the present study
this investigation is extended to incorporate the elastoplastic behaviour of this structure where the domi-

nant role of the elastoplastic behaviour in the buckling analysis of the imperfect cylindrical panel is

demonstrated.

The second example is the axially compressed cylinder of Fig. 13. For this example, an extensive inves-

tigation was performed by Schenk and Schueller [3], which was also based on the data bank of Arbocz and

Abramovich [11]. An extension to this investigation that includes, not only the initial imperfect geometry
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Fig. 2. Geometry, and material data of the cylindrical panel.
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but also the variability of the modulus of elasticity as well as the thickness of the cylinder, is presented in

this paper. The important role that these additional imperfection parameters play in the buckling behaviour

of the cylinder is demonstrated.

6.1. The hinged isotropic cylindrical panel

The loading as well as the geometric and material properties of the perfect shell is also shown in Fig. 2.

The curve edge nodes of the panel are assumed to be free in all directions while the nodes along the sides are

hinged (fixed against translation). The material is considered to be elastic-perfectly plastic. The geometri-

cally non-linear elastic as well as elastoplastic response of point A of the perfect cylinder with respect to the

applied vertical load P, is shown in Fig. 3, where the cylindrical panel is discretized with a 21 · 21 mesh of

400 TRIC shell elements. A mesh convergence study for this particular example is presented in a previous

investigation [9] where the computational efficiency of the TRIC element in non-linear shell analysis
was demonstrated. For the discretization of the stochastic fields, the same mesh used for the finite element

analysis is implemented since it is a fraction of the correlation length parameters adopted in this example.

Thus, it is considered dense enough for the accurate representation of the fluctuations of the stochastic

fields [18]. The ultimate load of the perfect configuration is found to be Pu = 2205N for the elastic shell

and Pu = 1.240N for the elastoplastic.

6.1.1. Initial geometric imperfections

Both 1D and 2D stochastic imperfections are introduced to the model in order to investigate their effect
on the buckling load of the panel. The thickness of the shell is considered to be equal to the height h at the

apex, i.e. t = 12.7mm. For all cases, the standard deviation rf of the stochastic field of the imperfections is

assumed to be rf = 0.02h, where h is the height at the apex of the cylindrical panel. Since no experimental

data of initial imperfections is available for this specific type of structure, a parametric study was performed

in a previous investigation by Papadopoulos and Papadrakakis [17], with respect to the correlation lengths

of the stochastic fields in both x, y directions. The outcome of the parametric study was the evaluation of

the �worst� imperfection mode of the shell, which led to the estimation of the lower bound of the buckling

load of the shell. This information is most valuable for the safe design of shells against buckling.
The 1D stochastic imperfections are introduced in the free edge direction. The �worst� imperfection mode

for this case corresponds to a correlation length parameter b1 = 50mm [17]. For this correlation length

parameter, a Monte Carlo Simulation procedure is performed to obtain the variability of the critical load

factor of the panel. The Monte Carlo Simulation is performed using a sample size Nsamp = 100, which is

considered sufficient for an accurate estimation of the mean value and the standard deviation of the buck-
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Fig. 3. Central load–displacement curve of the perfect cylindrical panel for t = 12.7mm.
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ling loads. In Fig. 4 one sample function generated for this correlation parameter b1 is presented, while Fig.

5 presents the histograms of the buckling loads for the same value of the parameter b1, with and without

physical non-linearities. In the case where both geometric and physical non-linearities are included, the

mean value of the buckling load is found to be 1206N, while the coefficient of variation (Cov) is found

to be 12%. The lowest buckling load for this case is estimated at 930N. In the case in which only geometric
non-linearities are included, the mean value of the buckling load was found in [17] to be 2050N and Cov

24%. In this case the lowest buckling load was estimated at 1060N.

The same steps are followed for the case of the 2D stochastic imperfections. It is assumed that the cor-

relation lengths in both x and y directions are equal, b1 = b2, since there are no specific manufacturing pro-

cedures or boundary conditions that would indicate a different assumption. The �worst� imperfection mode

for this case corresponds to a correlation length parameter b1 = b2 = 250mm [17]. In Fig. 6 one sample

function generated for this correlation parameter is presented, while Fig. 7 presents the histograms of
Fig. 4. One sample function of 1D initial imperfection shapes of the cylindrical panel for rf = 0.10 and b1 = 50mm.

0

5

10

15

20

25

30

80
0
90
0
10
00
11
00
12
00
13
00
14
00
15
00
16
00
17
00
18
00
19
00
20
00
21
00
22
00
23
00
24
00
25
00
26
00
27
00
28
00

Buckling load P u

F
re

q
u

en
cy

Pu
(mean) =2050 N

 

Cov=24% 

uP (mean) =1206 N 
Cov=12% 

elastoplastic

elastic

Fig. 5. Histograms of the critical load factor Pu for 1D stochastic imperfections (rf = 20% and b1 = 50mm).



Fig. 6. 2D initial imperfection shape for rf = 0.20 and correlation length b2 = 250mm.
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the buckling loads for the �worst� value of the correlation length parameter, with and without physical non-

linearities. In the case where both geometric and physical non-linearities are included, the mean value of the

buckling load is found to be 1.220N with a Cov 11%. The lowest buckling load is estimated at 900N for this

case. In the case in which only geometric non-linearities are included, the mean value of the buckling load

was found to be 2170N and the Cov 24% [17]. In this case the lowest buckling load was estimated at

1200N.

From the comparison of Figs. 5 and 7 it can be seen that the behaviour of the panel for 1D and 2D

stochastic geometric imperfections is very similar. For both cases, a reduction of about 45% of the mean
value of the buckling loads can be observed in the elastoplastic model with respect to the elastic one. This

reduction of the buckling loads is of the same magnitude with the reduction observed in Fig. 3 for the per-

fect configuration. It can also be observed that the scatter of the buckling loads for the elastoplastic model

is smaller than the scatter observed for the elastic one. The coefficient of variation is found to be 12% for the

elastoplastic model, which amounts only 50% of the coefficient of variation of the elastic model. Conse-
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quently, the lowest buckling load of the elastoplastic model is only 10% lower compared to the lowest buck-

ling load of the corresponding elastic model. This reduction of the variability of the buckling loads for the

elastoplastic model with respect to the elastic one can be explained by the fact that the elastoplastic non-

linear behaviour of the panel is smoother compared to the elastic one, as can be seen in Fig. 3, due to the

progressive spread of plasticity throughout the volume of the panel which makes the panel less sensitive to
initial perturbations.

6.1.2. Combined geometric, material and thickness imperfections

The initial geometric imperfections are now introduced simultaneously to the model with material and

thickness imperfections. For this purpose, the �worst� imperfection modes and the corresponding correla-

tion length parameters are depicted from [17]. For the combined imperfections all Monte Carlo simulations

are performed using a sample size Nsamp = 1000, as opposed to Nsamp = 100 used in the previous cases, since

a larger sample size is required for the accurate prediction of the �exact� lowest buckling load of the panel.
For the combined 1D variation of stochastic imperfections the value of b1 = 50mm is introduced for all

imperfection parameters. Fig. 8 presents the histograms of the buckling loads with and without physical

non-linearities, for this value of the parameter b1. In the case where both geometric and physical non-line-

arities are included, the mean value of the buckling load and the coefficient of variation are found to be

1168N and 16%, respectively, while the lowest buckling load is computed at 700N. In the case in which

only geometric non-linearities are included, the mean value of the buckling load and the coefficient of var-

iation were found to be 1.230N and 45%, respectively [17]. The lowest buckling load for this case was com-

puted at 500N.
From the comparison of Figs. 5 and 8, it can be observed that the buckling behaviour of the elastoplastic

shell for the 1D combined imperfections remains more or less the same with respect to the stand-alone case

(initial geometric imperfections only). From Fig. 8, it can be seen that a reduction of less than half of the

coefficient of variation is computed in the elastoplastic model compared to the elastic one for the combined

imperfections case, while the mean value of the buckling loads remains almost the same. In the stand-alone

case (initial geometric imperfections only), as shown in Fig. 5, the elastoplastic behaviour resulted in a

simultaneous reduction of both the coefficient of variation and the mean value of the predicted buckling

loads by about 50%, compared to the elastic behaviour of the panel.
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For the 2D combined variation of stochastic imperfections the value of b1 = b2 = 250mm is introduced

to the initial geometric imperfections, while the value of b1 = b2 = 2000mm is introduced to the variation of

the modulus of elasticity and the thickness of the shell. Fig. 9 presents the histograms of the buckling loads

for these values of the correlation length parameters, with and without physical non-linearities. In the case

where both geometric and physical non-linearities are included, the mean value of the buckling load and the

coefficient of variation are found to be 1218N and 40%, respectively, while the lowest buckling load is com-

puted at 500N. In the case in which only geometric non-linearities are included, the mean value of the buck-
ling load and the coefficient of variation were found to be 2210N and 45%, respectively. In this case the

lowest buckling load was computed at 500N.

From Fig. 9 it can be observed that a reduction of about 50% of the mean value of the buckling loads is

computed in the elastoplastic panel with respect to the elastic one for the combined imperfections case,

while the coefficient of variation remains the almost the same (45%). From the comparison of Figs. 7

and 9 it can be seen that the introduction of 2D combined imperfections to the elastoplastic model increases

four times the coefficient of variation of the buckling loads with respect to the stand-alone case. Therefore,

the decrease of the variability of the buckling load of the elastoplastic panel with respect to the elastic one,
which was exhibited in all 1D initial imperfection cases, is no longer observed in the case of the most real-

istic 2D combined stochastic initial imperfections.

6.1.3. Thin cylindrical panel

The previous investigations for the combined imperfections are repeated for the same cylindrical panel of

Fig. 4 but with half its thickness (t = 6.35mm). The non-linear response of point A of the perfect panel with

respect to the applied vertical load P, is shown in Fig. 10. The ultimate loads of the perfect configuration

with and without physical non-linearities are found to be Pu = 390 and 580N, respectively. From this figure
it can be observed that the elastoplastic behaviour of the thinner panel is smoother compared to the cor-

responding behaviour of the thick panel. For the 1D combined variation of stochastic imperfections the

value of b1 = 50mm is introduced for all imperfection parameters. Fig. 11 presents the histograms of the

buckling loads for this value of the parameter b1 with and without physical non-linearities. In the case

where both geometric and physical non-linearities are included the mean value of the buckling loads was

computed at 330N with Cov = 20%. The lowest buckling load for this case is computed at 210N. In the

case in which only geometric non-linearities are included, Pu = 365N and Cov = 45%, while the lowest

buckling load was computed at 120N [15].
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For the 2D combined variation of stochastic imperfections the values of b1 = b2 = 250mm are introduced

to the initial geometric imperfections, while the values of b1 = b2 = 2000mm are introduced to the modulus

of elasticity and the thickness of the shell. Fig. 12 presents the histograms of the buckling loads for these

values of the correlation length parameters, with and without physical non-linearities. In the case where

both geometric and physical non-linearities are included the mean value of the buckling loads was com-

puted at 375N with Cov = 45%. The lowest buckling load for this case is computed at 120N. In the case

in which only geometric non-linearities are included, Pu = 480N and Cov = 50%, while the lowest buckling

load was computed at 120N.
From Fig. 11, it can be observed that a reduction of more than 50% in the coefficient of variation of the

buckling loads is computed in the elastoplastic panel with 1D combined imperfections with respect to the

elastic one, while the mean value of the buckling loads remains almost the same. From of Fig. 12, a reduc-

tion of about 20% in the mean value of the buckling loads of the elastoplastic panel with 2D combined

imperfections can be observed, with respect to the elastic one, while the coefficient of variation remains

almost the same (45%). In general, it can be deduced that the buckling behaviour of the thin cylindrical

panel is qualitatively more or less the same to that of the behaviour of the thicker panel.
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6.2. The axially compressed cylinder

The second selected example is the axially compressed cylinder of Fig. 13. The boundary conditions of

the cylinder are specified according to [3]. The base edge nodes of the cylinder are fixed against all trans-

lations, fixed against rotations around the Y axis and free against rotations around the X and Z axis. The

top edge nodes of the cylinder are fixed against X and Z translations, fixed against rotations around the Y

axis, free against translations in the Y axis and free against rotations around axis X and Z.

For the simulation of the stochastic field that describes the geometric imperfections, first and second
order statistical information is required. This information is obtained from statistical analysis of experimen-

tally measured imperfections on seven copper electroplated cylindrical shells depicted from the data bank

on initial imperfections of Arbocz and Abramovich [11]. The geometric and material properties of the cor-
X

Z

Y

R

L

Loading P

E=104410N/mm2

θ

ν=0.3
L=202.3mm
R=101.,6mm
t=0.11597mm

Fig. 13. Geometry and material data of the axially compressed cylinder.
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responding perfect configurations of the shells as well as the experimental buckling loads are presented in

Table 1. The average material and geometric properties used for the finite element model of the perfect cyl-

inder are also shown in Fig. 13. A typical pattern of measured imperfections for shell A-7 is plotted in Fig.

14. From this figure it can be observed that the imperfections appear to be completely separate in the axial

and the circumferential directions while the imperfections in the circumferential direction are one order of
magnitude larger than those of the axial direction.

In order to obtain the first and second order properties of the imperfections, an origin for the coordinate

system has to be defined. The value of the absolute maximum imperfection is selected as origin in both the

axial and the circumferential direction, since in all specimens the absolutely maximum imperfection is

located at one of the cylinder edges. Due to the assumed symmetry of the boundary conditions as well

as of the loading, this origin is kept constant for all Monte Carlo simulations. The mean function

a0(x,y) of the imperfections was calculated over the ensemble and plotted in Fig. 15. From this figure it

can be observed that the mean value varies substantially along the two directions of the cylinder while, from
the comparison of this figure with Fig. 14, it can be observed that first order properties of the imperfections

are mainly responsible for the amplitudes as well as for the basic pattern of the imperfections.

As mentioned above, the patterns of the measured imperfections imply that a completely separate cor-

relation structure exists in the axial and circumferential direction. This was also observed in [3] where a

completely independent correlation structure was implemented. The evolutionary power spectrum adopted

in the present study is also separate with respect to the two directions of the cylinder
Table

Geome

Shell

A-7

A-8

A-9

A-10

A-12

A-13

A-14
SEðj1; j2; x1; x2Þ ¼ SE
1 ðj1; x1ÞSE

2 ðj2; x2Þ; ð17Þ
1

try, material properties and experimental buckling loads of A-shells

R (mm) t (mm) L (mm) E (N/mm2) P(N)

101.6 0.1140 203.20 10,4110 3036.4

101.6 0.1179 203.20 10,4800 3673.8

101.6 0.1153 203.20 10,1350 3724.8

101.6 0.1204 203.20 10,2730 3196.9

101.6 0.1204 209.55 10,4800 3853.0

101.6 0.1128 196.85 10,4110 3108.8

101.6 0.1110 196.85 10,8940 3442.9

Fig. 14. Measured initial unfolded shape of shell A-7.



Fig. 15. Ensemble average of initial imperfections.
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where SE
1 ðj1; x1Þ and SE

2 ðj2; x2Þ are two independent 1D spectra for the axial and circumferential direction,

respectively.

Using Eq. (16), the separate evolutionary 1D spectra are evaluated over the sample and averaged over
the ensemble. The length of the sample used for the calculation of the spectrum at each grid point of the

structure is selected to be a = 0.01L and b = 0.01pR for the axial and the circumferential direction, respec-

tively. The evolutionary power spectra along the directions of the cylinder are plotted in Fig. 16. From this

figure it can be observed that the standard deviation varies substantially along the two directions of the

cylinder, while the correlation length remains almost constant and equal to b1 � 0.6L for the axial and

b2 � 0.06(2pR) for the circumferential direction. The same values for the correlation lengths were computed

in [3] where homogeneity was temporarily assumed for this calculation.

In order to carry out accurately and efficiently the non-linear analyses of the imperfect cylinder required
for the Monte Carlo simulation procedure, an optimum FE mesh size must be found that satisfies the fol-

lowing requirements: (i) accurate prediction of the buckling load(s) of the cylinder and (ii) accurate repre-

sentation of the gradients of the stochastic initial imperfection field. For this purpose, a mesh convergence

study of a quarter of the perfect cylinder is performed. Fig. 17 presents the predicted buckling loads for

various mesh sizes. The predicted buckling load levels are normalized by the theoretical buckling load of

the perfect cylinder
P ðperfectÞ
u ¼ Et2

R
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which is found to be P ðperfectÞ
u = 5350N. The predicted critical buckling load is assumed to correspond to the

load level at which the first negative eigenvalue of the tangent stiffness matrix of the structure appears.
From Fig. 17, it can be observed that 51 grid points are sufficient for the discretization of the axial direc-

tion, while 401 points are required in the circumferential direction for the accurate representation of the

pre-buckling state of deformation, caused by the end boundary conditions of the cylinder as well as of

the lowest buckling mode. The accurate representation of the pre-buckling state of deformation is of major

importance, since it strongly affects the shapes of the buckling modes of the structure and hence, the level of

the critical buckling load [3,19]. For this mesh size (51 · 401), the resulting finite element model has 120.000

degrees of freedom. It is obvious that the use of such a model in the context of a non-linear MCS procedure

is an extremely computationally intensive task for the scope of the present paper. This is because the effect
of material and thickness variability on the buckling load of the imperfect cylinder is investigated on the

basis of a parametric study in which a number of Monte Carlo simulations has to be performed. Figs.

18 and 19 present the traces of the pre-buckling deformation predicted by the mesh of 51 · 101 and the

mesh of 51 · 401 for the axial and circumferential direction, respectively. From these figures it can be seen

that the deformed shapes predicted by the coarser mesh of the 51 · 101 nodal points are sufficiently close to

the shapes predicted by the refined mesh of 51 · 401. For this reason, it is believed that the error in the pre-

diction of the buckling load level (�15%) using the coarser mesh is a systematic discretization error, which

will not affect the reliability of comparative studies for the buckling behaviour of the imperfect cylinder.
Fig. 20 shows a sample realization of the initial geometric imperfections generated by Eq. (14) for the FE

mesh of 51 · 101. From this figure it can be seen that this FE mesh can sufficiently represent the gradients of

the imperfect shape of the cylinder, since the mesh size used is a fraction of the correlation length of the
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stochastic field. Therefore, the mesh of 51 · 101 is considered adequate for providing sufficiently accurate

predictions of the buckling load levels suitable for the comparative studies with respect to the buckling

behaviour of the imperfect cylinder in the presence of additional sources of imperfections. For this example,
the sample size used for the Monte Carlo simulation is taken Nsamp = 200 which is considered sufficient for

an accurate estimation of the mean value and standard deviation of the buckling loads.
6.2.1. Initial geometric imperfections

Fig. 21(a) presents the histogram of the buckling loads for the stochastic initial geometric imperfections

generated using Eq. (14). For reasons of comparison, the loads are normalized by the predicted buckling

load of the perfect cylinder using the mesh of 51 · 101, which is found to be P ðperfectÞ
u = 5650N. The mean

value and the coefficient of variation of the predicted buckling loads are found to be P u ¼ 4800N and
0.07548, respectively. This histogram is almost identical in shape with the results reported in [3]. However,

a difference of about 15% in the calculated mean value is observed, which is roughly the same with the dis-

cretization error introduced by the the coarser mesh. This is a strong indication that the introduced error in

the prediction of the buckling loads is a systematic discretization error, and the comparative studies using a

coarser mesh, are reliable for this particular example. However, the validity of this assumption needs to be

verified with a more systematic approach and will be the subject of a future research.
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Fig. 21(b) presents the experimental results reported in [11]. The mean value of the measured experimen-

tal buckling loads is P u ¼ 3440N and the coefficient of variation is 0.0867. From the comparison of Fig.

17(a) and (b) it can be observed that the shape of the predicted scatter of the buckling loads resembles
the unimodal shape of the experimental results. In addition the predicted coefficient of variation is almost

equal to the measured one. However, a difference is observed in the mean value of the predicted buckling

loads, which is significantly larger than the measured one. This difference can be explained partially by the

use of the coarser mesh, which systematically predicts higher levels of buckling loads and partially by the

existence of other sources of imperfections such as material and thickness imperfections as well as uncertain

boundary conditions and misalignment of vertical loads.

6.2.2. Material and thickness imperfections

In order to investigate the influence of material and thickness spatial variability on the buckling behav-

iour of the axially compressed cylinder, a preliminary parametric study of the buckling behaviour of the

perfect cylinder is performed with respect to the correlation length parameters of the stochastic fields that

describe the material and thickness variability, since no experimental data is available for the variability of

these additional imperfection parameters. For this parametric study, the standard deviation is assumed to
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length parameters b1 = b2, for (a) 2D variation of the modulus of elasticity and (b) 2D variation of the thickness (rf = 10%).
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be 10% for both stochastic fields of modulus of elasticity and thickness, while it is assumed that the corre-

lation length parameters are equal in both directions.

Fig. 22(a) and (b) presents the mean value and coefficient of variation of the ultimate load Pu of the per-

fect cylinder as a function of the correlation length parameters b1 = b2 of the modulus of elasticity and the

thickness, respectively. From this figure it can be observed that the mean value of the predicted buckling
loads remains constant and equal to P u ¼ 5085N, while the coefficient of variation reaches the values of

10% and 20% for a 2D variation of modulus of elasticity and thickness, respectively and for correlation

lengths b1 = b2 = 500mm. From this figure it can be seen that these additional sources of imperfections play

an important role on the buckling behaviour of the cylinder even if they are considered as stand alone cases.

6.2.3. Combined geometric, material and thickness imperfections

Material and thickness imperfections are now combined and introduced simultaneously to the model of

the imperfect cylinder. The standard deviation of the modulus of elasticity and the thickness are assumed to
be 10% and 1%, respectively. These values for the standard deviation are in accordance with the corre-

sponding measured values presented in Table 1. Fig. 23(a) and (b) present the histograms of the buckling

loads of the cylinder for correlation lengths of modulus of elasticity and thickness b1 = b2 = 50mm and

b1 = b2 = 500mm, respectively. These correlation lengths were selected because, as shown in Fig. 22, they

are responsible for the minimum and the maximum variance of the buckling loads of the perfect cylinder

when material and thickness imperfections are considered as stand alone cases. The mean value of the pre-

dicted buckling loads is found to be P u ¼ 4250 and 4550N, while the coefficient of variation is found to be

0.0945 and 0.1267 for b1 = b2 = 50mm and b1 = b2 = 500mm, respectively. From this figure it can be seen
that the basic unimodal shape of the predicted buckling loads observed in the stand alone case of initial

geometric imperfections is preserved in the case of combined imperfections, while in the case of combined

imperfections the prediction of the mean value is closer to the experimental results compared to the same

prediction when only geometric imperfections are considered. In addition, larger correlation lengths of the

material and thickness imperfections result in larger scatters of the predicted buckling loads.
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7. Conclusions

In the present paper the effect of material and thickness imperfections on the buckling load of isotropic

shells is investigated. For this purpose, the concept of an initial �imperfect� structure is introduced involving

not only geometric deviations of the shell structure from its perfect geometry but also a spatial variability of
the modulus of elasticity as well as the thickness of the shell. These combined �imperfections� are incorpo-
rated in an efficient and cost effective non-linear stochastic finite element formulation of the TRIC shell ele-

ment using the local average method for the derivation of the stochastic stiffness matrix, while the

variability of the limit loads is obtained by means of Monte Carlo Simulation procedure (MCS).

Using the proposed approach, the buckling behaviour of a cylindrical panel is investigated and com-

pared to the results of a previous work by Papadopoulos and Papadrakakis [17] in which only geometric

non-linearities were considered. The incorporation of the physical non-linearities to the non-linear analysis

of this type of structures revealed the dominant role of the elastoplastic behaviour on the buckling analysis
of imperfect cylindrical panels. A reduction of about 50% of the mean value of the buckling loads is com-

puted in the elastoplastic panel with respect to the elastic one for the combined imperfections case, while the

coefficient of variation remains almost the same. The introduction of 2D combined imperfections to the

elastoplastic model increases four times the coefficient of variation of the buckling loads with respect to

the stand-alone case. In this respect, the advantage of the decrease of the sensitivity of the elastoplastic

panel to initial imperfections, which was exhibited in the stand-alone case (initial geometric imperfections

only) as well as in the case of 1D combined imperfections, vanishes in the case of the most realistic 2D com-

bined stochastic initial imperfections.
Furthermore, the investigation of the buckling behaviour of the axially compressed cylinder showed that

the incorporation of material and thickness imperfections to the model of the non-homogeneous initial geo-

metric imperfections resulted in close predictions of the distribution of the buckling loads of the cylinder

with respect to the experimental results. More specifically, it is found that the basic unimodal shape of

the predicted buckling loads observed in the stand alone case of initial geometric imperfections is preserved

in the case of combined imperfections, while in the case of combined imperfections the prediction of the

mean value is closer to the experimental results compared to the same prediction when only geometric

imperfections are considered. In addition, larger correlation lengths of the material and thickness imperfec-
tions result in larger scatters of the predicted buckling loads. A further improvement of the prediction of the

distribution of the buckling loads with respect to the shape of the scatter as well as to the mean value of the

predicted buckling loads requires the incorporation of additional uncertain parameters such as boundary

conditions and misalignment of the loading to the model of the initial �imperfect� structure. The importance

of these parameters should be the subject of a further study.
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