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Finite-Element Analysis of Cylindrical Panels
with Random Initial Imperfections
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Abstract: Stochastic finite-element analysis of shells is performed using the spectral representation method for the descrip
random fields in conjunction with the local average method for the formulation of the stochastic stiffness matrix of the ele
stochastic formulation of the nonlinear triangular composites facet triangular shell element is implemented for the stability a
cylindrical panels with random initial imperfections. The imperfections are described as a two-dimensional univariate hom
stochastic field. The elastic modulus and the shell thickness are also described as two-dimensional uni-variate homogeneou
fields. The variability of the limit load of the cylindrical panel is then computed using the Monte Carlo simulation. Useful conclus
the buckling behavior of cylindrical panels with random initial imperfections are derived from the numerical tests presented in t
These tests also demonstrate the applicability of the proposed methodology in realistic problems.

DOI: 10.1061/~ASCE!0733-9399~2004!130:8~867!

CE Database subject headings: Finite elements; Imperfection; Stochastic processes; Panels.
e at-
rucia
be-
ts re-
lts, it
kling
ugh
om-
t de-
nlin-
, the
fect
-
rtin

and
e on

spon-
tests.
of

dary
ion as

er-

cing
n a ra-
con-
chas-
duli,
tions

sto-
ence
the

im-
omet-
s as
ribed
s

d
stic

on of

ion

sed
ode

tages
t ex-
atrice
om-
ifur-
ncy

iction
s.
te the
dol-

r the
the

ech-
r
ech-
.gr
until

ividual
t must
aper
002;

3-
Introduction

The analysis of imperfection sensitive shells has attracted th
tention of many researchers in the past decades due to the c
role that imperfections play in the buckling and postbuckling
havior of shell structures. Even though these research effor
sulted in achieving predictions close to the experimental resu
was soon realized that the wide scatter in measured buc
loads of shell structures could only be approximated thro
modeling with the introduction of randomness in imperfect ge
etries. This can only be achieved in conjunction with recen
velopments in stochastic analysis of structures and in the no
ear analysis of shells. Despite these new developments
accurate prediction of the load carrying capacity of imper
shells is still an open question in the related literature~Chryssan
thopoulos and Poggi 1995; Deml and Wunderlich 1997; Albe
and Wunderlich 2000; Schenk et al. 2000!. The variability of ini-
tial imperfections, which occur during the manufacturing
construction stages together with their pronounced influenc
the load carrying capacity of shells have been found to be re
sible for the large scatter of results observed in experimental
In addition to the initial geometric imperfections, the effect
thickness variation, the modulus of elasticity and the boun
conditions have also been proved responsible for the reduct
well as the scatter of the buckling load of structures~Koiter et al.
1994; Elishakoff et al. 1996; Li et al. 1997; Albertin and Wund
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lich 2000!. However, in a number of studies these influen
parameters have not been treated as stochastic variables i
tional manner and for this reason recent research activity is
centrated on the development of finite-element codes in a sto
tic setting, incorporating uncertain imperfections, elastic mo
boundary conditions, thickness variation, and loading condi
~Schenk et al. 2000!.

In the present paper a methodology is presented for the
chastic nonlinear finite-element analysis of shells in the pres
of random initial imperfections. The formulation is based on
stochastic description of the initial imperfections. The term ‘‘
perfections’’ is used in a general sense meaning not only ge
ric imperfections but also the variability of material propertie
well as thickness of the shell. These imperfections are desc
as two-dimensional univariate homogeneous stochastic field~2-
D-1V! using the spectral representation method~Shinozuka an
Deodatis 1996! and are incorporated in a nonlinear stocha
finite-element formulation of the triangular composites~TRIC!
shell element using the local average method for the derivati
the stochastic stiffness matrix~Argyris et al. 2002!. The variabil-
ity of the limit loads is obtained with the Monte Carlo simulat
technique~MCS!.

The nonlinear formulation of the TRIC shell element is ba
on the natural mode method. The blending of the natural m
method with a path following strategy presents many advan
compared to classical formulations, i.e., analytic and elegan
pressions for all element matrices; a series of vector and m
multiplications that can be easily optimized for maximum c
putational speed; material generality; accurate location of b
cation limit and displacement points; computational efficie
and economy~Argyris et al. 1998, 2000!. This formulation is
therefore considered a robust platform for the accurate pred
of the buckling and postbuckling behavior of imperfect shell

The numerical results presented in this paper demonstra
applicability as well as the efficiency of the proposed metho
ogy in realistic problems. Useful conclusions are derived fo
buckling behavior of cylindrical panels. More specifically,

influence of the magnitude as well as the shape, controlled by the
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correlation length, of the initial geometric imperfections is inv
tigated independently and in conjunction with the variability
the elastic modulus as well as the thickness of the structure

Finite-Element Formulation

An attempt to devise an efficient and robust shell finite elem
led Argyris and co-workers to the derivation of the TRIC s
element. The formulation is based on the natural mode me
TRIC is a shear-deformable facet shell element suitable for l
and nonlinear analysis of thin and moderately thick isotropi
well as composite plate and shell structures, while due to its
ral formulation it does not suffer from the various locking p
nomena. In this work TRIC is used in the context of nonlin
static analysis of isotropic shells but laminate anisotropic s
can be analyzed in a similar fashion since the proposed me
ology doesn’t depend on the formulation of the finite-elem
problem. The TRIC shell element is considered as reliable, a
rate, and cost effective as has been shown in a number of s
published over the last five years. For the sake of completen
brief description of the TRIC shell element is given in this s
tion. Extensive reports on the formulation of TRIC may be fo
in Argyris et al.~1997, 1998, 2000!.

The TRIC shell element. The element has 18 degrees of fr
dom ~6 per node! and hence 12 natural straining modes~Figs. 1
and 2!. Three natural axial strainsg t and natural transverse sh
strainsgs are measured parallel to the edges of the triangle.
corresponding natural stressessc and the natural transverse sh
stressesss are obtained following a series of calculations for e
layer r:

Hsc

ss
J

r
5Fkct •

• xs
G

r

H g t

gs
J

r
(1a)

where the total strainsg t and the symmetric bending mod
shown in Fig. 2~a!, are connected via

g ta5g ta
0 1z8

cSa

l a

g tb5g tb
0 1z8

cSb

l
(1b)

Fig. 1. The multilayer triangular co
b
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g tg5g tg
0 1z8

cSg

l g

where l i ( i 5a,b,g)5length of sidei andz85distance from th
middle surface alongz8 axis of the element. The natural tra
verse strainsgs are shown in Fig. 2~b!.

Matriceskct andxs are constitutive matrices. The stiffness
contributed by deformations only and not by the associated
body motions. The natural stiffness matrix can be produced
the statement of variation of the strain energy with respect t
natural coordinates:

ites~TRIC! element; coordinate systems

Fig. 2. ~a! The 12 natural straining modes (g t
0: natural axial strain

in the middle surface,cS : symmetric bending modes,cA
b : antisym-

metric bending modes,cA
S antisymmetric shearing modes,c: drilling

degrees of freedom!. ~b! Total natural transverse shear for sidea.
mpos
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TkctaNdVGdrN (2)

whererN5vector of the 12 natural straining modes depicte
Fig. 2~a!. Transformations are subsequently initiated in orde
obtain the natural matrix first to the local and then to the gl
coordinate system:

(3)
the
-

dy
s

xes
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e the
the

As mentioned before, nearly all geometric stiffness arises from

JOUR
wherer5vector of Cartesian displacements in the global sys
while T06, āN , andaN are transformation matrices.

The geometric stiffness is based on large deflections but
strains and consists of two parts. A simplified geometric stiff
matrix that is generated by the rigid-body movements of the
ment and the natural geometric stiffness matrix due to the
pling between the axial forces and the symmetric bending m
~stiffening or softening effect!. To construct the geometric sti
ness we consider small rigid-body rotational increments abou
local Cartesian axesx8y8z8 combined in the vectordr0

2

5@dr04dr05dr6#T. These rigid-body rotational increments co
spond to nodal Cartesian momentsdM05@dM01dM02dM03#

T

alongx8y8z8. Using the fact that the resultants of all forces p
duced by rigid-body motion must vanish, we arrive at the exp
sion

dM0
~331!

5 k̄GR
~333!

dr2
0

~331!

where k̄GR5local rigid-body rotational geometric stiffness.
can be seen in Argyris et al.~1998!, k̄GR has the simple analytic
form
k̄GR
~333!

5F Paya
2

l a
2

1
Pbyb

2

l b
2

1
Pgyg

2

l g
2

2S Paxaya

l a
2

1
Pbxbyb

2

l b
2

1
Pgxgyg

2

l g
2 D 0

2S Paxaya

l a
2

1
Pbxbyb

2

l b
2

1
Pgxgyg

2

l g
2 D Paxa

2

l a
2

1
Pbxb

2

l b
2

1
Pgxg

2

l g
2

0

0 0 Pa1Pb1Pg

G (4)
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pe of
wherePa , Pb , Pg5middle plane axial natural forces and

xa5 l acax5x382x28 , xb5 l bcbx5x182x38

xg5 l gcgx5x282x18

ya5 l acax5y382y28 , yb5 l bcbx5y182y38

yg5 l gcgx5y282y18

are geometric expressions withx18 , y18 , x28 , y28 , x38 , y38 being the
x8, y8 coordinates of the three vertices of the facet triangle in
local Cartesian system. A transformation ofk̄GR to the local co
ordinate system follows from

k̄G
~18318!

5 ā0R
t

~1833!

k̄GR
~333!

ā0R
~3318!

(5a)

whereā0R5transformation matrix relating the natural rigid-bo
rotationsr0

2 to the Cartesian nodal displacements and rotationr̄,

r0
25ā0Rr̄ (5b)

kG5so-called simplified geometric stiffness with respect to a
x8y8z8. The term simplified refers to the fact that only the mid
plane axial natural forcesPa , Pb , Pg are included ink̄G which
fully represent the prestress state within the material. Onc
simplified geometric stiffness is formed it may transformed to
global coordinate system.
the rigid-body movements of the element. However, in buck
phenomena quite often the membrane forces are relatively
and in this case it may be worth considering an additiona
proximate natural geometric stiffness arising from the coup
between the axial forces and the symmetric bending mode~stiff-
ening or softening effect!. This natural geometric stiffness co
prises the following diagonal matrix:

kNG5F0 0 0
Pal a

12

Pal a

20

Pbl b

12

Pbl b

20

Pgl g

12

Pgl g

20
0 0 0G

(6)

A derivation of this expression can be found in Argyris e
~1998!. The natural geometric stiffness is then transformed fir
local and ultimately to the global coordinates.

Description of Initial Imperfect Geometry

The imperfect geometry of shell structures can be accurately
resented as a two-dimensional uni-variate homogeneous Ga
stochastic field. The assumption of homogeneity, although in
eral violated in the case of initial geometric imperfections
adopted in this study and elsewhere~Schenk et al. 2000! in the
case of cylindrical panels, for reasons of simplicity and due to
fact that there are no experimental data available for this ty

cylindrical panels. However, this method can be easily extended
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to cover non-Gaussian and nonhomogeneous stochastic
~Popescu et al. 1998; Schenk et al. 2000!.

The radius of the structure is assumed to be a 2-D-1V ho
geneous stochastic field with respect to the perfect geometr

r ~x,y!5r 01 f 1~x,y!h (7)

where r 05radius of the perfect geometry;f 1(x,y)5zero mean
Gaussian homogeneous stochastic field; andh5height at the ape
of the cylindrical panel. In the present paper the amplitude o
imperfections, which is controlled by the standard deviatio
the stochastic field, is correlated to the height at the apex o
cylindrical panel since this parameter is related to the sensi
of the buckling behavior of the cylindrical panel to initial ge
metric imperfections. The coordinatesx, y are the global Carte
sian coordinates of the unfolded panel.

Moreover, the shape of the imperfections is controlled by
correlation lengths of the stochastic fieldf 1(x,y) in directionsx
andy, respectively. These correlation lengths are usually de
from experimental data and play a significant role on the buc
behavior of shells. Since no experimental data are availabl
this type of problem, a parametric study is performed in
present study, with respect to the correlation lengths of the
chastic field in bothx, y directions. The outcome of this param
ric study is the evaluation of the ‘‘worst’’ imperfection mode
the shell which leads to the estimation of the lower bound o
buckling load of the shell. This information is most valuable
the safe design of shells against buckling@Deml and Wunderlic
1997#.

Stochastic Stiffness Matrix

The modulus of elasticity as well as the thickness of the stru
are also considered in the present study as ‘‘imperfections,’
to their spatial variability. Therefore, these parameters are
described by two independent 2-D-1V homogeneous stoch
fields

E~x,y!5E0@11 f 2~x,y!# (8)

t~x,y!5t0@11 f 3~x,y!# (9)

whereE05mean value of the elastic modulus;t05mean thicknes
of the structure; andf 2(x,y), f 3(x,y)5two zero mean Gaussi
homogeneous stochastic fields corresponding to the variabil
the modulus of elasticity and the thickness of the shell, res
tively.

The stochastic stiffness matrix of the shell element is der
using the local average method. This method was suggest
Vanmarcke~1983! and has been used extensively by many
searchers in conjunction with the stochastic finite-elem
method. In a recent study by Argyris et al.~2002! it was shown
that for the cylindrical panel used in our example with a ver
load on top, the local average method is superior to the weig
integral method in terms of simplicity and computational e
ciency, while in terms of accuracy the results obtained are
close to those of the weighted integral method.

Given a stochastic fieldf (x,y,z), the local average metho
provides discretized values of the field as follows:

f i5
1

Vi
E

Vi

f ~x,y,z!dVi (10)

where Vi5domain over which the integration has to be p

formed. In the case of stochastic finite elements, the domain rep-

870 / JOURNAL OF ENGINEERING MECHANICS © ASCE / AUGUST 2004
resents the length~truss and beam elements!, the area~plain
stress/strain, plate, shell elements! or the volume ~three-
dimensional solid elements! of the ith element.

It is obvious that, according to this method, a single ran
variable per finite element is used to delineate the stochastic
since its random characteristics are represented by the loca
tial average over each element. In this context the stochasti
ment stiffness matrix is expressed as

k~e!5~11a~e!!k0
~e! (11)

where

a~e!5
1

V~e! EV~e!
f ~e!~x,y,z!dV~e! (12)

In the case where both the modulus of elasticity and the t
ness are assumed to be simultaneously stochastic, the ra
variablea (e) is given by

a~e!5a1
~e!a2

~e! (13)

wherea1
(e) anda2

(e)5local averages corresponding to the stoc
tic fields of the modulus of elasticity and thickness, respecti

The Spectral Representation Method

Since MCS technique is used to calculate the response varia
of the stochastic structural system, it is necessary to digitally
erate sample functions of the Gaussian zero-mean homoge
stochastic fields, which describe the random parameters o
structure. In the present paper, this is done using the sp
representation method. In most cases, the spectral represe
method takes advantage of the fast Fourier transform~FFT! tech-
nique in order to reduce the computational effort of the sim
tion. However, in cases that we need to simulate the stoch
field at nonuniformly spaced points, as in this work, the use o
series of cosines formula is necessary since the FFT techni
not applicable. For a 2-D-1V stochastic field and for a spe
simulation~i!, we have

f ~ i !~x1 ,x2!5A2 (
n150

N121

(
n250

N221

@An1n2

~1! cos~k1n1
x11k2n2

x21fn1n2

~1!~ i !!

1An1n2

~2! cos~k1n1
x12k2n2

x21fn1n2

~2!~ i !!# (14)

wherefn1n2

( j )( i ) , j 51, 2 represent the realization for the~i! simula-

tion of the independent random phase angles uniformly dis
uted in the range@0,2p#. An1n2

(1) , An1n2

(2) are defined as

An1n2

~1! 5A2Sf 0f 0
~k1n1

,k2n2
!Dk1Dk2 (15a)

An1n2

~2! 5A2Sf 0f 0
~k1n1

,2k2n2
!Dk1Dk2 (15b)

where

k1n1
5n1Dk1 , k2n2

5n2Dk2 (16)

Dk15
k1u

N1
, Dk25

k2u

N2
(17)

n150,1,...,N121, n250,1,...,N221 (18)

Nj , j 51, 2, are the numbers of intervals in the discretizatio

the spectrum andk ju , j 51, 2, are the upper cut-off wave num-
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the stochastic field. The last implies that the power spectral
sity function Sf 0f 0

(k1 ,k2), for either mathematical or physic
reasons, is assumed to be zero outside the region defined b

2k1u<k1<k1u , 2k2u<k2<k2u (19)

The two-sided power spectral density functionSf 0f 0
is as-

sumed to correspond to an autocorrelation function of expone
type and is given by

Fig. 3. Geometry, and material data of the cylindrical panel

Fig. 5. One sample function of 1-D initial imperfection shape
parameters:~a! b1525 mm, ~b! b1550 mm, ~c! b15100 mm, and~d
JOUR
Sf 0f 0
~k1 ,k2!5

s f
2

4p
b1b2 expF2

1

4
~b1

2k1
21b2

2k2
2!G (20)

where s f denotes the standard deviation of the stochastic
andb1 , b2 denote the parameters that influence the shape o
spectrum which are proportional to the correlation distance
the stochastic field along thex1 , x2 axes, respectively~Shinozuka
and Deodatis 1996!.

Using Eq.~8!, a large numberNSAMP of sample functions a
produced, leading to the generation of a set of stochastic sti
matrices. The associated structural problem is solvedNSAMP

Fig. 4. Central load—displacement curve of the perfect cylind
panel (t512.7 mm)

the cylindrical panel fors f50.10 and for different correlation leng
200 mm
s of
! b15
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times, while the response variability can finally be calculate
taking the response statistics of theNSAMP simulations.

Numerical Examples

The hinged isotropic shallow cylindrical panel of Fig. 3 is
lected as a testbed for the proposed methodology. This exa
although not imperfection sensitive in the sense that it exh
limit point instead of bifurcation buckling, is chosen because
considered appropriate for the investigation of the sensitivit
the buckling load to initial imperfections in problems with
strongly nonlinear behavior. Loading as well as the geometric
material properties of the perfect shell are also shown in Fi
The curve edge nodes of the panel are assumed to be free
directions while the nodes along the sides are hinged~fixed
against translation!. The nonlinear displacement response of p
A of the perfect cylinder with respect to the applied vertical l
P, is shown in Fig. 4, where the cylindrical panel is discreti
with a 16316 mesh of TRIC shell elements. A mesh converge
study for this particular example is presented in a previous in
tigation ~Argyris et al. 1988!. In that investigation, it was als
shown that a reduction of computing time by an order of ma
tude was achieved for this particular example using the T
shell element compared to the computing time required by a
cal 8-node serendipity shell element~Hinton and Owen 1984!.
This gives an indication of the computational efficiency of
TRIC element in nonlinear shell analysis. The same mesh s
used for the discretization of the stochastic fields since it

Fig. 6. Mean value and coefficient of variation~Cov%! of the ulti-
mate loadPu as a function of the correlation length parameterb1 for
1-D stochastic imperfections (s f510%)

Fig. 7. Histogram of the critical load factorPu for 1-D stochasti
imperfections,s f510% andb1550 mm
872 / JOURNAL OF ENGINEERING MECHANICS © ASCE / AUGUST 2004
l

fraction of the correlation length parameters used in the exa
and therefore, it is considered dense enough for the accurat
resentation of the fluctuations of the stochastic fields~Li and Der
Kiureghian 1992!. The ultimate load of the perfect configurat
is found to bePu52,205 N.

Initial Geometric Imperfections

Both one-dimensional~1-D! and 2-D stochastic imperfections
introduced to the model in order to investigate their effect on
buckling load of the panel. The thickness of the shell is con
ered to be equal to the heighth at the apex, i.e.,t512.7 mm. The
1-D stochastic imperfections are introduced in the free edg
rection. The standard deviations f of the stochastic field of th
imperfections is assumed to be 10%. Four different values o
correlation length parameterb1 , which influences the shape
the power spectrum, are used. For each corresponding
spectrum, one full Monte Carlo simulation procedure is
formed to obtain the variability of the critical load factor of
panel using a sample sizeNsamp5100 which is considered suf
cient for an accurate estimation of the mean value and the
dard deviation of the buckling loads. In Fig. 5 one sample f
tion for each correlation parameterb1 is presented. In Fig. 6, th
mean value and the coefficient of variation@Cov~%!# are plotted
against the correlation length of the stochastic field. From
figure it can be seen that the ‘‘worst’’ imperfection mode rela
to the lowest mean value of buckling loads corresponds to a
relation length ofb1550 mm, while the response variability

Fig. 8. Histogram of the critical load factorPu for 1-D stochasti
imperfections,s f520% andb1550 mm

Fig. 9. Mean value and coefficient of variation~Cov%! of the ulti-
mate loadPu as a function of the correlation length parameterb1 for
2-D stochastic imperfections (s f520%)
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almost invariant for the examined correlation lengths and rem
in the range of the corresponding input variability~10%!. An
additional MCS procedure with the same sample size is
formed fors f520% and for the ‘‘worst’’ imperfection mode co
responding tob1550 mm. Figs. 7 and 8 present the histogram
the buckling loads for this value of the parameterb1 for s f

510% ands f520%, respectively. The mean value of the bu
ling load is found to be 2,050 N for both cases, while a
estimate of the lowest buckling load is computed at 1,520
1,060 N for the two coefficients of variation, respectively.

The same steps are followed for the case of the 2-D stoch
imperfections. For this case, the value of the standard deviat
assumed to bes f520%. In Fig. 9, the mean value and the co
ficient of variation are plotted against the correlation length o
stochastic field. It is assumed that the correlation lengths in bx
and y directions are equal,b15b2 , since there are no speci
manufacturing procedures or boundary conditions that woul
dicate a different assumption. From Fig. 9, a stiffening beha
of the panel for small values of the correlation length parameb
is observed. It is worth mentioning that this stiffening beha
was also observed by Deml and Wunderlich~1997! in shells with
small slenderness and large imperfection amplitudes. It can
be seen that the ‘‘worst’’ imperfection mode corresponds
correlation length ofb15b25250 mm as opposed to the corre
tion length ofb15b2550 mm for the 1-D case. Fig. 9 also
veals that the response variability is much more sensitive
regard to the correlation length parameters than the correspo

Fig. 10. 2-D initial imperfection shape fors f50.20 and correlatio
length parameterb15b25250 mm

Fig. 11. Histogram of the critical load factorPu for 2-D stochasti
imperfections,s f520% andb15b25250 mm
JOUR
variability of the 1-D stochastic imperfections. Fig. 10 pres
the shape of the ‘‘worst’’ imperfection mode obtained atb15b2

5250 mm, while Fig. 11 depicts the histogram of the buck
loads for this mode of imperfections. The mean value of the b
ling load is found to be 2170 N, while a first estimate of
lowest buckling load is found to be 1,250 N, which correspo
to a reduction of about 60% with respect to the buckling loa
the perfect panel.

Material and Thickness Imperfections

Similar tests are performed for the investigation of the influe
of material and thickness spatial variability on the buckling
havior of the panel. In Fig. 12, the mean value and the coeffi
of variation are plotted against the correlation parameterb1 , for a
1-D stochastic variation of the Young modulus of the structu
the direction of the free edges, withs f510%. The first estima
of the ‘‘worst’’ imperfection mode corresponds, as in the prev
test case, to the correlation length parameterb1550 mm, while it
can be seen that the coefficient of variation of the buckling
remains much smaller than the input coefficient of variation o
modulus of elasticity. The coefficient of variation tends to rea
plateau nears f for large correlation length parameters for wh
the modulus of elasticity becomes a single random variable.
lar results are obtained, as can be seen in Fig. 13, when
variation of the thickness is considered. The 2-D variation o
Young modulus and thickness is examined in Figs. 14 and 1

Fig. 12. Mean value and coefficient of variation~Cov%! of the
ultimate loadPu as a function of the correlation length parameteb1

for 1-D variation of the modulus of elasticity (s f510%)

Fig. 13. Mean value and coefficient of variation~Cov%! of the
ultimate loadPu as a function of the correlation length parameteb1

for 1-D variation of the thickness (s f510%)
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s f510%, respectively. From these figures it can be seen th
‘‘worst’’ imperfection mode corresponds to a correlation par
eterb15b252,000 mm which is markedly different thanb15b2

5250 mm which corresponds to the ‘‘worst’’ imperfection mo
for initial geometric imperfections. Furthermore, the coefficien
variation of the buckling loads reaches a maximum valu
around s f for the material imperfections, while the maximu
covariance of the buckling loads reaches 17% for the 2-D v
tion of thickness. The mean value of the buckling load for b
material and thickness variation is found to be almost the s
with the buckling load of the perfect shell.

Combined Geometrical, Material, and Thickness
Imperfections

All the above imperfections are now combined and introdu
simultaneously to the model. For this purpose the ‘‘worst’’ imp
fection modes and the corresponding correlation length pa
eters are depicted from the previously studied cases. For a
combined variation of stochastic imperfections the value ob1

550 mm is considered for all parameters with a standard d
tion of s f520%. For the combined imperfections all Mo
Carlo simulations are performed using a sample sizeNsamp

51,000, as opposed toNsamp5100 used in the previous cas
since a larger sample size is required for the accurate pred
of the ‘‘exact’’ lowest buckling load of the panel. Fig. 16 prese
the histogram of the buckling loads for this case. From a c
parison of this figure and Fig. 8, the quantitative as well as

Fig. 14. Mean value and coefficient of variation~Cov%! of the
ultimate loadPu as a function of the correlation length parameteb1

for 2-D variation of the modulus of elasticity (s f510%)

Fig. 15. Mean value and coefficient of variation~Cov%! of the
ultimate loadPu as a function of the correlation length parameteb1

for 2-D variation of the thickness (s f510%)
874 / JOURNAL OF ENGINEERING MECHANICS © ASCE / AUGUST 2004
qualitative difference of the buckling loads distribution can
observed with respect to the stand alone imperfection case
drastic reduction in the buckling load values as well as the la
scatter of the results for the combined imperfection cases c
observed. The mean value of the buckling loads for this sim
tion is found to beP̄u51,228 N which amounts to about half
the buckling load of the perfect structure. The coefficient of va
tion of Pu is found to be 45%, which is more than double
coefficient of variation of the uncertain parameters, while
lowest buckling load in this simulation is found to bePu

5525 N corresponding to the 25% of the buckling load of
perfect structure.

For the 2-D variation of combined imperfections, the va
b15b25300 mm are considered for the stochastic field des
ing the initial geometric imperfections andb15b252,000 mm fo
the modulus of elasticity and the thickness of the shell. All
rameters are assumed to have a standard deviation ofs f520%.
Fig. 17 presents the histogram of the buckling loads for this
study. From this figure it can be seen that the scatter of the
ling loads is more pronounced than the 1-D variation depicte
Fig. 16. The mean value of the buckling loads for this cas
found to beP̄u52,250 N, which is almost the same as the bu
ling load of the perfect structure. The coefficient of variation
Pu , on the other hand, is found to be 50%, which correspon
more than twice the value of coefficient of variation of the un
tain parameters. Furthermore, the lowest buckling load in
simulation is found to bePu5300 N, which reaches the 15%
the buckling load of the perfect structure.

Fig. 16. Histogram of the critical load factorPu for 1-D variation o
combined geometrical, material and thickness imperfectionss f

520%)

Fig. 17. Histogram of the critical load factorPu for 2-D variation o
combined geometrical, material and thickness imperfectionss f

520%)
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The previous investigation for the combined imperfections
repeated for the same cylindrical panel of Fig. 3 but with ha
thickness, i.e.,t56.35 mm. The nonlinear response of pointA of
the perfect cylinder with respect to the applied vertical loadP, is
shown in Fig. 18. From the load-displacement curve it ca
seen that this shell structure exhibits a higher degree of sens
to the deformed geometry than the previous thicker shell s
ture. The ultimate load of the perfect configuration is found t
Pu5580 N. Fig. 19 presents the histogram of the buckling lo
for the case of 1-D variation of the combined imperfection
can be seen that the significant reduction observed for the
value of the buckling loads, with respect to the buckling loa
the perfect shell, as well as the scatter of the buckling loads
more or less similar to the reduction and scatter observed fo
thicker shell. More specifically, the mean value of the buck
loads for this case is found to beP̄u5360 N and the coefficient o
variation of Pu is 45%. The lowest buckling load in this case
found to bePu5120 N, which is 20% of the buckling load of t
perfect structure.

Fig. 20 presents the histogram of the buckling loads for
case of 2-D variation of the combined imperfections for the t
ner cylinder. This histogram gives a distribution of the buck
loads somewhat different than the corresponding distributio
the thicker shell as can be seen in Fig. 17. A small reductio
observed in the mean value of the buckling loads with respe
the buckling load of the perfect shell (P̄u5480 N compared t
Pu5580 N), while the scatter of the buckling loads is not as w
as the scatter observed in the thicker shell~coefficient of variation

Fig. 18. Central load—displacement curve of the perfect cylindr
panel (t56.35 mm)

Fig. 19. Histogram of the critical load factorPu for 1-D variation of
combined geometrical, material and thickness imperfectionss f

520%)
JOUR
30% of P̄u). The lowest buckling load in this case is found to
Pu5120 N, which is 20% of the buckling load of the perf
structure.

Conclusions

In this paper, a methodology is presented for the stochastic fi
element analysis of shells which takes into consideration sta
aspects of shells with combined random initial geometric im
fections, material properties, as well as shell thickness. The
rate representation of these imperfections using the stoc
field theory in the context of a Monte Carlo simulation proced
in conjunction with a robust and computationally efficient non
ear finite-element formulation with the TRIC shell element,
lows for an accurate and cost effective prediction of the l
scatter of the buckling load of any type of shell structure.
scatter has repetitively been observed in relative experimen

Using the proposed methodology, a parametric study is
formed for the evaluation of the sensitivity of the buckling loa
a cylindrical panel to the amplitude and shape of the impe
tions. In particular, both 1-D and 2-D stochastic imperfections
introduced for all stochastic parameters~i.e., shape imperfection
modulus of elasticity, and shell thickness! as stand alone or com
bined cases. For all cases the influence of the shape and m
tude of the imperfections to the shape and magnitude of the
tribution of the buckling loads of the panel is investigated.

This investigation revealed some very interesting aspec
the buckling behavior of cylindrical panels in the presenc
combined random initial imperfections. More specifically, for
case of 1-D combined imperfections a drastic reduction of a
50% in the mean value of the buckling load is observed ac
panied by a twofold increase of the coefficient of variation, c
pared to a marginal reduction for the stand-alone case of
initial geometric imperfections. For 2-D combined imperfectio
however, the observed twofold increase of the coefficien
variation of the buckling loads was not followed by a sim
decrease of the mean value which remained the same and
equal to the buckling load of the perfect shell. In addition
computed response of the thinner shell revealed that for 1-D
bined imperfections, the distribution of the buckling loads
serves its characteristics compared to the thicker shell. Fu
more, for 2-D combined imperfections, the increase of sensi
of the thinner shell to the deformed geometry resulted in a
stantial decrease of the sensitivity of the shell to the variabili

Fig. 20. Histogram of the critical load factorPu for 2-D variation o
combined geometrical, material, and thickness imperfectionss f

520%)
initial imperfecions.
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Using this procedure it can be made possible not only to
ciently and accurately predict the large scatter of the buc
loads of any type of real world shell structure but also to estim
the ‘‘worst’’ imperfection shape and the corresponding ‘‘exa
lower bound of the buckling load. The latest information is m
valuable for the safe design of shells against buckling. How
general conclusions about the buckling behavior of shells in
presence of initial imperfections cannot be deduced from the
sented numerical results since any generalization would req
variety of examples to be tested. The application of the pres
methodology in a variety of test examples including real
structures with many degrees of freedom as well as realisti
sumptions concerning the nonhomogeneity of the random
will be the subject of future research.
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