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Abstract: Stochastic finite-element analysis of shells is performed using the spectral representation method for the description of the
random fields in conjunction with the local average method for the formulation of the stochastic stiffness matrix of the elements. A
stochastic formulation of the nonlinear triangular composites facet triangular shell element is implemented for the stability analysis of
cylindrical panels with random initial imperfections. The imperfections are described as a two-dimensional univariate homogeneous
stochastic field. The elastic modulus and the shell thickness are also described as two-dimensional uni-variate homogeneous stochas
fields. The variability of the limit load of the cylindrical panel is then computed using the Monte Carlo simulation. Useful conclusions for
the buckling behavior of cylindrical panels with random initial imperfections are derived from the numerical tests presented in this paper.
These tests also demonstrate the applicability of the proposed methodology in realistic problems.
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Introduction lich 2000. However, in a number of studies these influencing
parameters have not been treated as stochastic variables in a ra-
The analysis of imperfection sensitive shells has attracted the at-tional manner and for this reason recent research activity is con-
tention of many researchers in the past decades due to the cruciatentrated on the development of finite-element codes in a stochas-
role that imperfections play in the buckling and postbuckling be- tic setting, incorporating uncertain imperfections, elastic moduli,
havior of shell structures. Even though these research efforts re-boundary conditions, thickness variation, and loading conditions
sulted in achieving predictions close to the experimental results, it (Schenk et al. 2000
was soon realized that the wide scatter in measured buckling In the present paper a methodology is presented for the sto-
loads of shell structures could only be approximated through chastic nonlinear finite-element analysis of shells in the presence
modeling with the introduction of randomness in imperfect geom- of random initial imperfections. The formulation is based on the
etries. This can only be achieved in conjunction with recent de- stochastic description of the initial imperfections. The term “im-
velopments in stochastic analysis of structures and in the nonlin-perfections” is used in a general sense meaning not only geomet-
ear analysis of shells. Despite these new developments, theric imperfections but also the variability of material properties as
accurate prediction of the load carrying capacity of imperfect well as thickness of the shell. These imperfections are described

shells is still an open question in the related literati@aryssan- as two-dimensional univariate homogeneous stochastic figlds
thopoulos and Poggi 1995; Deml and Wunderlich 1997; Albertin D-1V) using the spectral representation mettigtiinozuka and
and Wunderlich 2000; Schenk et al. 200The variability of ini- Deodatis 1996 and are incorporated in a nonlinear stochastic

tial imperfections, which occur during the manufacturing and finite-element formulation of the triangular composit@RIC)
construction stages together with their pronounced influence onshell element using the local average method for the derivation of
the load carrying capacity of shells have been found to be respon-the stochastic stiffness matrpargyris et al. 2002 The variabil-
sible for the large scatter of results observed in experimental testsity of the limit loads is obtained with the Monte Carlo simulation
In addition to the initial geometric imperfections, the effect of technique(MCS).
thickness variation, the modulus of elasticity and the boundary  The nonlinear formulation of the TRIC shell element is based
conditions have also been proved responsible for the reduction asn the natural mode method. The blending of the natural mode
well as the scatter of the buckling load of structufiésiter et al. method with a path following strategy presents many advantages
1994; Elishakoff et al. 1996; Li et al. 1997; Albertin and Wunder- compared to classical formulations, i.e., analytic and elegant ex-
pressions for all element matrices; a series of vector and matrice
Linstitute of Structural Analysis and Seismic Research, National Tech- multiplications that can be easily optimized for maximum com-
nical Univ., Athens 15780, Greece. E-mail: vpapado@central.ntua.gr ~ putational speed; material generality; accurate location of bifur-
2Institute of Structural Analysis and Seismic Research, National Tech- cation limit and displacement points; computational efficiency
nical Univ., Athqns 15750, Greece. E-mail: mpapad_ra@cgntral.ntua.gr_ and economy(Argyris et al. 1998, 2000 This formulation is
Note. Associate Editor: Gerhart I. Schueller. Discussion open until y,erefore considered a robust platform for the accurate prediction
January 1, 2005. Separate discussions must be submitted for |nd|V|dua|Of the buckling and postbuckling behavior of imperfect shells.

papers. To extend the closing date by one month, a written request must Th ical It ted in thi d trate th
be filed with the ASCE Managing Editor. The manuscript for this paper € numerical results presented in this paper demonstrate the

was submitted for review and possible publication on February 20, 2002; aPplicability as well as the efficiency of the proposed methodol-

approved on June 2, 2003. This paper is part oflternal of Engineer- ogy in realistic problems. Useful conclusions are derived for the
ing Mechanics Vol. 130, No. 8, August 1, 2004. ©ASCE, ISSN 0733- buckling behavior of cylindrical panels. More specifically, the
9399/2004/8-867—876/$18.00. influence of the magnitude as well as the shape, controlled by the
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Fig. 1. The multilayer triangular composit¢¥RIC) element; coordinate systems

correlation length, of the initial geometric imperfections is inves- Ug

. . . . . . . - _ .0 ’ Y

tigated independently and in conjunction with the variability of Yiy=Yiy T2 T
Y

the elastic modulus as well as the thickness of the structure. _ o )
wherel; (i=«,B,v)=length of sidei andz’ =distance from the

middle surface along’ axis of the element. The natural trans-
Finite-Element Formulation verse straing/g are shown in Fig. @).
Matricesk.; and s are constitutive matrices. The stiffness is
An attempt to devise an efficient and robust shell finite element contributed by deformations only and not by the associated rigid
led Argyris and co-workers to the derivation of the TRIC shell Pody motions. The natural stiffness matrix can be produced from
element. The formulation is based on the natural mode method.the statement of variation of the strain energy with respect to the
TRIC is a shear-deformable facet shell element suitable for linear Natural coordinates:
and nonlinear analysis of thin and moderately thick isotropic as
well as composite plate and shell structures, while due to its natu-
ral formulation it does not suffer from the various locking phe-
nomena. In this work TRIC is used in the context of nonlinear <
static analysis of isotropic shells but laminate anisotropic shells /5y
can be analyzed in a similar fashion since the proposed method- )
ology doesn’'t depend on the formulation of the finite-element .
problem. The TRIC shell element is considered as reliable, accu- &
rate, and cost effective as has been shown in a number of studies
published over the last five years. For the sake of completeness a
brief description of the TRIC shell element is given in this sec-
tion. Extensive reports on the formulation of TRIC may be found
in Argyris et al.(1997, 1998, 2000
The TRIC shell elemenThe element has 18 degrees of free-
dom (6 per nodg¢ and hence 12 natural straining modé&sgs. 1
and 2. Three natural axial straing, and natural transverse shear
strainsy are measured parallel to the edges of the triangle. The
corresponding natural stressesand the natural transverse shear

stresseg ¢ are obtained following a series of calculations for each @ v v
layerr: .
o Ket -
ool o a
Os), Xs) Ys)y

where the total straing; and the symmetric bending modes,
shown in Fig. Za), are connected via

(b)

Yta 7?a+2’ lllf&x Fig. 2. (a) The 12 natural straining modes{: natural axial strains
« in the middle surfacelss: symmetric bending mode&,ﬁ: antisym-
0 , Psp metric bending modesuf{ antisymmetric shearing modas, drilling
Yig="Yig+2 K (1b) degrees of freedom(b) Total natural transverse shear for sile
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where py=vector of the 12 natural straining modes depicted in
Fig. 2(@). Transformations are subsequently initiated in order to
obtain the natural matrix first to the local and then to the global
coordinate system:

=3

SU=p"| Tx| Gy 'faI,Kc,aNdV @y [Ty |, Where p=&,py
v

—_———
stiffness natural coord. (12x12)

stiffness local coord. (18x18)

stiffness globalvcoord. (18x18)
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whereP,, Py, P,=middle plane axial natural forces and
Xo=loCax=X3—X5, Xg=lgCpx=X;—X3
— v !
Xy =l4Cyx=X3—Xg

Yo=laCax=Y5~ Y5, Yp=lpCax=Y1— V3

— J— ! i
Yy= lvcvx_yz_yl

are geometric expressions with, y;, X3, Y5, X3, Y3 being the

x', y’ coordinates of the three vertices of the facet triangle in the
local Cartesian system. A transformationlgfg to the local co-
ordinate system follows from

- =
ke = agr Ker @or (53)
(18x18) (18x3)(3x3)(3x18)

wherea gz =transformation matrix relating the natural rigid-body
rotationSpS to the Cartesian nodal displacements and rotations

pi=corp (5b)

FG:so-caIIed simplified geometric stiffness with respect to axes
x'y'z". The term simplified refers to the fact that only the middle
plane axial natural forceB,, Pg, P, are included irkg which

wherep=vector of Cartesian displacements in the global system,
while Tos, ay, anday are transformation matrices.

The geometric stiffness is based on large deflections but small
strains and consists of two parts. A simplified geometric stiffness
matrix that is generated by the rigid-body movements of the ele-
ment and the natural geometric stiffness matrix due to the cou-
pling between the axial forces and the symmetric bending modes
(stiffening or softening effe¢t To construct the geometric stiff-
ness we consider small rigid-body rotational increments about the
local Cartesian axes<'y’z’ combined in the vectordpS
=[dposdposdps]’. These rigid-body rotational increments corre-
spond to nodal Cartesian momendsdviy=[dMq,d Mg,dMgz]"
alongx’y’z’. Using the fact that the resultants of all forces pro-
duced by rigid-body motion must vanish, we arrive at the expres-
sion

dMo = kgr dp3
(3X1) (3%X3)(3x1)
where kgr=local rigid-body rotational geometric stiffness. As

can be seen in Argyris et dl1998, kg has the simple analytical
form

2 2 -
PoXoYa N PBXBVB PyxﬂyyV 0
12 12 12
a B Y
2 2 2
PG Pexg  PXE 0 4
12 12 12
a B Y
0 P+ Pg+P, ]

the rigid-body movements of the element. However, in buckling
phenomena quite often the membrane forces are relatively large
and in this case it may be worth considering an additional ap-
proximate natural geometric stiffness arising from the coupling
between the axial forces and the symmetric bending nisti-
ening or softening effegt This natural geometric stiffness com-
prises the following diagonal matrix:

Pule Pala Pgls Palg Py,
12 20 12 20 12

P.I
Y900

kng=/0 0 0

A derivation of this expression can be found in Argyris et al.
(1998. The natural geometric stiffness is then transformed first to
local and ultimately to the global coordinates.

Description of Initial Imperfect Geometry

The imperfect geometry of shell structures can be accurately rep-
resented as a two-dimensional uni-variate homogeneous Gaussian
stochastic field. The assumption of homogeneity, although in gen-
eral violated in the case of initial geometric imperfections, is

fully represent the prestress state within the material. Once theadopted in this study and elsewhdf&chenk et al. 2000in the

simplified geometric stiffness is formed it may transformed to the
global coordinate system.
As mentioned before, nearly all geometric stiffness arises from

case of cylindrical panels, for reasons of simplicity and due to the

fact that there are no experimental data available for this type of

cylindrical panels. However, this method can be easily extended

JOURNAL OF ENGINEERING MECHANICS © ASCE / AUGUST 2004 / 869



to cover non-Gaussian and nonhomogeneous stochastic fieldsesents the lengtlitruss and beam elemeptghe area(plain

(Popescu et al. 1998; Schenk et al. 2000

The radius of the structure is assumed to be a 2-D-1V homo-

geneous stochastic field with respect to the perfect geometry

r(x,y)=rotfi(x,y)h (7

where ry=radius of the perfect geometry;(x,y) =zero mean
Gaussian homogeneous stochastic field; lzateight at the apex

stress/strain, plate, shell elementsr the volume (three-
dimensional solid elementsf theith element.

It is obvious that, according to this method, a single random
variable per finite element is used to delineate the stochastic field
since its random characteristics are represented by the local spa-
tial average over each element. In this context the stochastic ele-
ment stiffness matrix is expressed as

of the cylindrical panel. In the present paper the amplitude of the

imperfections, which is controlled by the standard deviation of K(®=(1+a®)k (1)
the stochastic field, is correlated to the height at the apex of the\yhere

cylindrical panel since this parameter is related to the sensitivity

of the buckling behavior of the cylindrical panel to initial geo- ©— © ©

metric imperfections. The coordinat&sy are the global Carte- RS V(e)f (xy,2)dV (12)

sian coordinates of the unfolded panel.

Moreover, the shape of the imperfections is controlled by the  In the case where both the modulus of elasticity and the thick-
correlation lengths of the stochastic fieflg(x,y) in directionsx ness are assumed to be simultaneously stochastic, the random
andy, respectively. These correlation lengths are usually derived variablea'® is given by
from experimental data and play a significant role on the buckling (&) — (&), (e
behavior of shells. Since no experimental data are available for RS B (13)

this type of problem, a parametric study is performed in the wherea(® anda{® =local averages corresponding to the stochas-

present study, with respect to the correlation lengths of the sto-i¢ fields of the modulus of elasticity and thickness, respectively.
chastic field in bottx, y directions. The outcome of this paramet-

ric study is the evaluation of the “worst” imperfection mode of
the shell which leads to the estimation of the lower bound of the
buckling load of the shell. This information is most valuable for
the safe design of shells against buckl[ieml and Wunderlich
1997).

The Spectral Representation Method

Since MCS technique is used to calculate the response variability
of the stochastic structural system, it is necessary to digitally gen-
erate sample functions of the Gaussian zero-mean homogeneous
stochastic fields, which describe the random parameters of the
structure. In the present paper, this is done using the spectral
representation method. In most cases, the spectral representation
The modulus of e|aStICIty as well as the thickness of the structure method takes advantage of the fast Fourier trans((ﬁ'ﬁi’) tech-

are also considered in the present study as “imperfections,” due nique in order to reduce the computational effort of the simula-
to their spatial variability. Therefore, these parameters are alsotjon. However, in cases that we need to simulate the stochastic
described by two independent 2-D-1V homogeneous stochasticfie|d at nonuniformly spaced points, as in this work, the use of the
fields series of cosines formula is necessary since the FFT technique is
not applicable. For a 2-D-1V stochastic field and for a specific

Stochastic Stiffness Matrix

E(x,y)=Eq[ 1+ f,(X, 8 . e
O6Y) =Bl 1+ T2(xy)] ®) simulation(i), we have
t(X,y)=to[ 1+ f3(x,y)] 9) Ny—1 Np—1
whereE,=mean value of the elastic modulug=mean thickness  fi)(x;,x,)=+2 >, > [Afh, COS( K10 Xg +Kon Xo+ din)
of the structure; and,(x,y), f3(X,y)=two zero mean Gaussian n1=0 np=0

homogeneous stochastic fields corresponding to the variability of
the modulus of elasticity and the thickness of the shell, respec-
tively.

The stochastic stiffness matrix of the shell element is derived .
using the local average method. This method was suggested b)}' . 1)
Vanmarcke(1983 and has been used extensively by many re- uted in the rang¢0,2m]. Anyn,
searchers in conjunction with the stochastic finite-element

2 2)(i
+ AR}, €O K1n X1~ Kon Xot IEN)] (14)

whered (), j=1, 2 represent the realization for tti¢ simula-
on of the independent random phase angles uniformly distrib-

, A are defined as
12

(1) —
method. In a recent study by Argyris et &002 it was shown An, = V2S1,f,(K1ny Kan,)AK1A K, (159)
that for the cylindrical panel used in our example with a vertical 2 _
load on top, the local average method is superior to the weighted Ann, = VSt K1, ~ Ko, ) A1 Ak, (150)
integral method in terms of simplicity and computational effi- where
ciency, while in terms of accuracy the results obtained are very
close to those of the weighted integral method. Kin,= niAxq, K2n2:n2AK2 (16)
Given a stochastic field(x,y,z), the local average method
i i i i : K K
provides discretized values of the field as follows: AK1=3, AK2=ﬂ a7
1 N, N,
fi= | f dv; 10
Y fv, (xy.z)dV; (10) n;=0,1,.N;—1, ny=0,1,..Np—1 (18)

where V;=domain over which the integration has to be per- N;, j=1, 2, are the numbers of intervals in the discretization of
formed. In the case of stochastic finite elements, the domain rep-the spectrum and;,, j=1, 2, are the upper cut-off wave num-
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Fig. 4. Central load—displacement curve of the perfect cylindrical
panel ¢=12.7 mm)

Fig. 3. Geometry, and material data of the cylindrical panel

2

of 1
: _ _ : S k)= —bib, exg — 7 (biki+bik3 20
bers which define the active region of the power spectByry of fofo(K1:K2) 4o 172 XF{ 4( 1K1 DK3) (20)
the stochastic field. The last implies that the power spectral den-yhere ¢, denotes the standard deviation of the stochastic field
sity functl.on St (K1.K7), for either _mathemanc_al or physmal andb,, b, denote the parameters that influence the shape of the
reasons, is assumed to be zero outside the region defined by  spectrum which are proportional to the correlation distances of
the stochastic field along the, x, axes, respectivelgShinozuka

TKwSKaSK, T RS KaS Ky (19) and Deodatis 1996
The two-sided power spectral density functi®n is as- Using Eq.(8), a large numbeNgayp of sample functions are
sumed to correspond to an autocorrelation function of exponential produced, leading to the generation of a set of stochastic stiffness
type and is given by matrices. The associated structural problem is soliXegype

Imperfections

Imperfections

y- axis 00

Imperfections
Imperfections

© @)

Fig. 5. One sample function of 1-D initial imperfection shapes of the cylindrical panelosfer0.10 and for different correlation length
parameters(a) b; =25 mm, (b) b;=50 mm, (c) b;=100 mm, andd) b; =200 mm
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Fig. 6. Mean value and coefficient of variatiq@€ov%) of the ulti- ) ) . .
mate loadP,, as a function of the correlation length paramétefor Flg. 8. H_|stogram of the critical load factoP, for 1-D stochastic
1-D stochastic imperfectionsr¢=10%) imperfections,o 1= 20% andb, =50 mm

times, while the response variability can finally be calculated by fraction of the correlation length parameters used in the example
taking the response statistics of tNexyp simulations. and therefore, it is considered dense enough for the accurate rep-

resentation of the fluctuations of the stochastic fiéldsand Der
Kiureghian 1992 The ultimate load of the perfect configuration
Numerical Examples is found to beP,= 2,205 N.

The hinged isotropic shallow cylindrical panel of Fig. 3 is se- njtial Geometric Imperfections

lected as a testbed for the proposed methodology. This example ) ) o )

although not imperfection sensitive in the sense that it exhibits BOth one-dimensiongll-D) and 2-D stochastic imperfections are
limit point instead of bifurcation buckling, is chosen because it is Introduced to the model in order to investigate their effect on the
considered appropriate for the investigation of the sensitivity of PUCKling load of the panel. The thickness of the shell is consid-
the buckling load to initial imperfections in problems with a ©€red to be equal to the heighiat the apex, i.et=12.7mm. The
strongly nonlinear behavior. Loading as well as the geometric and 1-D_Stochastic imperfections are introduced in the free edge di-
material properties of the perfect shell are also shown in Fig. 3. "éction. The standard deviatiary of the stochastic field of the
The curve edge nodes of the panel are assumed to be free in anmperfephons is assumed to be 10.%. Four different values of the
directions while the nodes along the sides are hin¢fecd correlation length parametdr;, which influences the sh_ape of
against translation The nonlinear displacement response of point the power spectrum, are used. For each corresponding power
A of the perfect cylinder with respect to the applied vertical load SPectrum, one full Monte Carlo simulation procedure is per-
P, is shown in Fig. 4, where the cylindrical panel is discretized formed tQ obtain the va_rlablhty of the c_r|t|c_al Ioad_factor of the
with a 16<16 mesh of TRIC shell elements. A mesh convergence Panel using a sample si2é;,,g=100 which is considered suffi-
study for this particular example is presented in a previous inves- €Nt for an accurate estimation of the mean value and the stan-
tigation (Argyris et al. 1988. In that investigation, it was also o]ard deviation of the. buckling Ioadg. In Fig. 5 one sqmple func-
shown that a reduction of computing time by an order of magni- tion for each correlation parametey is presented. In Fig. 6, the
tude was achieved for this particular example using the TRIC Mean value and the coefficient of variatigbov(%)] are plotted
shell element compared to the computing time required by a typi- against the correlation length of the _stochastlp field. From this
cal 8-node serendipity shell elemefinton and Owen 1984 figure it can be seen that the “wo_rst" imperfection mode related
This gives an indication of the computational efficiency of the t© the lowest mean value of buckling loads corresponds to a cor-
TRIC element in nonlinear shell analysis. The same mesh size is'élation length ofb; =50 mm, while the response variability is
used for the discretization of the stochastic fields since it is a

2900 25
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45 1P, P70= 205N _ 2700 | 1 20
40 | ' S 2600 | |
35 - 5 2500 1 Q
g 30| S 2400 | Loz
g 251 § 2300 1 o
& 204 = 2200 | is
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Buckling load P,
Fig. 9. Mean value and coefficient of variatiqg€ov%) of the ulti-

Fig. 7. Histogram of the critical load factdP, for 1-D stochastic mate loadP,, as a function of the correlation length paramédterfor
imperfectionso;=10% andb,;=50 mm 2-D stochastic imperfectionsr¢=20%)
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Fig. 12. Mean value and coefficient of variatiofCov%) of the
ultimate loadP,, as a function of the correlation length paramdier
for 1-D variation of the modulus of elasticity¢=10%)

Fig. 10. 2-D initial imperfection shape fos;=0.20 and correlation

length paramete; = b, — 250 mm variability of the 1-D stochastic imperfections. Fig. 10 presents

the shape of the “worst” imperfection mode obtainedbat= b,
=250 mm, while Fig. 11 depicts the histogram of the buckling
almost invariant for the examined correlation lengths and remains!oads for this mode of imperfections. The mean value of the buck-
in the range of the corresponding input variabilit40%). An ling load is found to_be 2170 N, while a first gstlmate of the
additional MCS procedure with the same sample size is per- lowest buckling load is found to be 1,250 N, which corresponds
formed fora;=20% and for the “worst” imperfection mode cor- o a reduction of about 60% with respect to the buckling load of
responding td; =50 mm. Figs. 7 and 8 present the histograms of the perfect panel.
the buckling loads for this value of the parameter for o
= 10% an_dcrf=20%, respectively. The mean value of t_he bupk- Material and Thickness Imperfections
ling load is found to be 2,050 N for both cases, while a first ) o )
estimate of the lowest buckling load is computed at 1,520 and Similar tests are performed for the investigation of the influence
1,060 N for the two coefficients of variation, respectively. of material and thickness spatial variability on the buckling be-
The same steps are followed for the case of the 2-D stochastichavior of the panel. In Fig. 12, the mean value and the coefficient
imperfections. For this case, the value of the standard deviation isOf variation are plotted against the correlation paramigterfor a
assumed to be;=20%. In Fig. 9, the mean value and the coef- 1-D stochastic variation of the Young modulus of the structure in
ficient of variation are plotted against the correlation length of the the direction of the free edges, withy=10%. The first estimate
stochastic field. It is assumed that the correlation lengths insooth Of the “worst” imperfection mode corresponds, as in the previous
andy directions are equab,=b,, since there are no specific test case, to the correlation length parambter 50 mm, while it
manufacturing procedures or boundary conditions that would in- can be seen that the coefficient of variation of the buckling load
dicate a different assumption. From Fig. 9, a stiffening behavior remains much smaller than the input coefficient of variation of the
of the pane] for small values of the correlation |ength paran{gter modulus of E|astiCity. The coefficient of variation tends to reach a
is observed. It is worth mentioning that this stiffening behavior Plateau neaw for large correlation length parameters for which
was also observed by Deml and Wunderl{@897 in shells with the modulus of elasticity becomes a single random variable. Simi-
small slenderness and large imperfection amplitudes. It can alsolar results are obtained, as can be seen in Fig. 13, when a 1-D
be seen that the “worst” imperfection mode Corresponds to a variation of the thickness is considered. The 2-D variation of the
correlation |ength o'bl: b2: 250 mm as opposed to the correla- Young modulus and thickness is examined in FIgS 14 and 15 for
tion length ofb;=b,=50 mm for the 1-D case. Fig. 9 also re-
veals that the response variability is much more sensitive with

; . 20
regard to the correlation length parameters than the corresponding 2400
2350 1
116
. 2300 +
30 " o a
- | PO0=) 205N S 2250 1 T12%
] : g 2
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Buckling load P,
Fig. 13. Mean value and coefficient of variatiofCov%) of the
Fig. 11. Histogram of the critical load factd?, for 2-D stochastic ultimate loadP,, as a function of the correlation length paramédter
imperfectionsg=20% andb,=b,=250 mm for 1-D variation of the thicknesso{;=10%)
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for 2-D variation of the modulus of elasticityr¢=10%) =20%)

os=10%, respectively. From these figures it can be seen that thequalitative difference of the buckling loads distribution can be
“worst” imperfection mode corresponds to a correlation param- observed with respect to the stand alone imperfection cases. The
eterb,; =b,= 2,000 mm which is markedly different than="b, drastic reduction in the buckling load values as well as the larger
=250 mm which corresponds to the “worst” imperfection mode scatter of the results for the combined imperfection cases can be
for initial geometric imperfections. Furthermore, the coefficient of observed. The mean value of the buckling loads for this simula-
variation of the buckling loads reaches a maximum value of tion is found to beP,=1,228 N which amounts to about half of
aroundo; for the material imperfections, while the maximum the buckling load of the perfect structure. The coefficient of varia-
covariance of the buckling loads reaches 17% for the 2-D varia- tion of P, is found to be 45%, which is more than double the
tion of thickness. The mean value of the buckling load for both coefficient of variation of the uncertain parameters, while the
material and thickness variation is found to be almost the samelowest buckling load in this simulation is found to be,

with the buckling load of the perfect shell. =525N corresponding to the 25% of the buckling load of the
perfect structure.

For the 2-D variation of combined imperfections, the values
b;=b,=300mm are considered for the stochastic field describ-
ing the initial geometric imperfections agd=b,=2,000 mm for
All the above imperfections are now combined and introduced the modulus of elasticity and the thickness of the shell. All pa-
simultaneously to the model. For this purpose the “worst” imper- rameters are assumed to have a standard deviation=020%.
fection modes and the corresponding correlation length param-Fig. 17 presents the histogram of the buckling loads for this case
eters are depicted from the previously studied cases. For a 1-Dstudy. From this figure it can be seen that the scatter of the buck-
combined variation of stochastic imperfections the valuebpf ling loads is more pronounced than the 1-D variation depicted in
=50mm is considered for all parameters with a standard devia- Fig. 16. The mean value of the buckling loads for this case is
tion of oy=20%. For the combined imperfections all Monte found to beP,= 2,250 N, which is almost the same as the buck-
Carlo simulations are performed using a sample dig, ling load of the perfect structure. The coefficient of variation of
=1,000, as opposed tNg,y,;=100 used in the previous cases, P, on the other hand, is found to be 50%, which corresponds to
since a larger sample size is required for the accurate predictionmore than twice the value of coefficient of variation of the uncer-
of the “exact” lowest buckling load of the panel. Fig. 16 presents tain parameters. Furthermore, the lowest buckling load in this

the histogram of the buckling loads for this case. From a com- simulation is found to bé>,=300 N, which reaches the 15% of
parison of this figure and Fig. 8, the quantitative as well as the the buckling load of the perfect structure.

Combined Geometrical, Material, and Thickness
Imperfections
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Fig. 15. Mean value and coefficient of variatiofCov%) of the Fig. 17. Histogram of the critical load factd?, for 2-D variation of
ultimate loadP, as a function of the correlation length paraméter combined geometrical, material and thickness imperfectians (
for 2-D variation of the thicknesso(;=10%) =20%)
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Fig. 18. Central load—displacement curve of the perfect cylindrical .Jhined geometrical, material, and thickness imperfectians (
panel ¢=6.35mm) =20%)

The previous investigation for the combined imperfections are 30% OfEu)' The lowest buckling load in this case is found to be

repeated for the same cylindrical panel of Fig. 3 but with half its P —120N. which is 20% of the buckling load of th fect
thickness, i.e.t=6.35mm. The nonlinear response of poof stl;ucture. » Whieh 1S o of the buickiing foad ot the periec

the perfect cylinder with respect to the applied vertical |®ads

shown in Fig. 18. From the load-displacement curve it can be
seen that this shell structure exhibits a higher degree of sensitivityConclusions
to the deformed geometry than the previous thicker shell struc-
ture. The ultimate load of the perfect configuration is found to be
P,=580N. Fig. 19 presents the histogram of the buckling loads
for the case of 1-D variation of the combined imperfections. It

In this paper, a methodology is presented for the stochastic finite-
element analysis of shells which takes into consideration stability
aspects of shells with combined random initial geometric imper-
Tfections, material properties, as well as shell thickness. The accu-
rate representation of these imperfections using the stochastic
field theory in the context of a Monte Carlo simulation procedure,

value of the buckling loads, with respect to the buckling load of
the perfect shell, as well as the scatter of the buckling loads, are
more or less similar to thg reduction and scatter observed fof thein conjunction with a robust and computationally efficient nonlin-
thicker shell. More specifically, the mean value of the buckling ear finite-element formulation with the TRIC shell element, al-
loads for this case is found to 1% =360 N and the coefficient of o5 for an accurate and cost effective prediction of the large
variation of P, is 45%. The lowest buckling load in this case is gcatter of the buckling load of any type of shell structure. This
found to beP,=120 N, which is 20% of the buckling load of the  gcatter has repetitively been observed in relative experiments.
perfect structure. _ _ Using the proposed methodology, a parametric study is per-
Fig. 20 presents the histogram of the buckling loads for the formed for the evaluation of the sensitivity of the buckling load of
case of 2-D variation of the combined imperfections for the thin- 5 cylindrical panel to the amplitude and shape of the imperfec-
ner cylinder. This histogram gives a distribution of the buckling tions, In particular, both 1-D and 2-D stochastic imperfections are
loads somewhat different than the corresponding distribution of ;troduced for all stochastic parametéis., shape imperfections,
the thicker shell as can be seen in Fig. 17. A small reduction is jodulus of elasticity, and shell thicknesss stand alone or com-
observed in the mean value of the buckling loads with respect t0 hined cases. For all cases the influence of the shape and magni-
the buckling load of the perfect shelP(=480N compared to  tude of the imperfections to the shape and magnitude of the dis-
P,=580N), while the scatter of the buckling loads is not as wide tribution of the buckling loads of the panel is investigated.
as the scatter observed in the thicker shedefficient of variation This investigation revealed some very interesting aspects for
the buckling behavior of cylindrical panels in the presence of
combined random initial imperfections. More specifically, for the
case of 1-D combined imperfections a drastic reduction of about
50% in the mean value of the buckling load is observed accom-
: . : panied by a twofold increase of the coefficient of variation, com-
.. 200 + A | i G i b pared to a marginal reduction for the stand-alone case of 1-D
; : < initial geometric imperfections. For 2-D combined imperfections,
however, the observed twofold increase of the coefficient of
variation of the buckling loads was not followed by a similar
decrease of the mean value which remained the same and almost
equal to the buckling load of the perfect shell. In addition the
computed response of the thinner shell revealed that for 1-D com-
0 100 200 300 400 500 600 700 800 900 bined imperfections, the distribution of the buckling loads pre-
Buckling load P, serves its characteristics compared to the thicker shell. Further-
more, for 2-D combined imperfections, the increase of sensitivity
of the thinner shell to the deformed geometry resulted in a sub-
stantial decrease of the sensitivity of the shell to the variability of
initial imperfecions.

300

Frequenc

Fig. 19. Histogram of the critical load factd?, for 1-D variation of
combined geometrical, material and thickness imperfectiang (
=20%)
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Using this procedure it can be made possible not only to effi-  gular element for isotropic and laminated composite she@@tput.
ciently and accurately predict the large scatter of the buckling  Methods Appl. Mech. Engl66, 211-231.
loads of any type of real world shell structure but also to estimate Chryssanthopoulos, M. K., and Poggi, @.995. “Probabilistic imper-
the “worst” imperfection shape and the corresponding “exact” fection sensitivity analysis of axially compressed composite cylin-
lower bound of the buckling load. The latest information is most  ders.” Eng. Struct..17, 398—406.
valuable for the safe design of shells against buckling. However, Deml, M., and Wunderlich, W.1997. “Direct evaluation of the ‘worst
general conclusions about the buckling behavior of shells in the ~ imperfection shape in shell bucklingComput. Methods Appl. Mech.
presence of initial imperfections cannot be deduced from the pre- Eng., 149, 201-222. . )
sented numerical results since any generalization would require a=shakoff, 1., Li, Y. W., and Starnes, J. H., J1996. *Imperfection
variety of examples to be tested. The application of the presented a’:o'ts'v'tsyoli‘;ﬁ;%g;;g“ﬂ% gmlil;:g in the Rooda-Koiter frame.
methodology in a variety of test examples including realistic . ’ " o

f - Hinton, E., and Owen, D. R. J1984). Finite element software for plates
structures with many degrees of freedom as well as realistic as- S
. . . . and shells Pineridge, Swansea, U.K., 1984.

sumptions concerning the nonhomogeneity of the random f'eIdSKoiter, W. T., Elishakoff, I, Li, Y. W., and Stames, J. H., J1994).

will be the subject of future research. “Buckling analysis of an axially compressed cylindrical shell under
axial compression.nt. J. Solids Struct.31, 795—-805.
Li, C.-C., and Der Kiureghian, A(1992. “An optimal discretization of
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