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analysis of space frames 
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In the present paper the weighted integral method in conjunction with Monte 
Carlo simulation is used for the stochastic finite element-based reliability analysis 
of space frames. The limit state analysis required at each Monte Carlo simulation 
is performed using a non-holonomic step-by-step elasto-plastic analysis based on 
the plastic node method in conjunction with efficient solution techniques. This 
implementation results in cost effective solutions both in terms of computing time 
and storage requirements. The numerical results presented demonstrate that 
this approach provides a realistic treatment for the stochastic finite element- 
based reliability analysis of large scale three-dimensional building frames. © 1997 
Elsevier Science Ltd. 

1 INTRODUCTION 

The theory and methods of stochastic analysis have 
been developed significantly during the last ten years 
and have been documented in an increasing number of 
publications. Considerable progress in applying stochas- 
tic process theory to the area of structural engineering 
has made it possible to achieve higher levels of 
reliability. This leads to safety measures that design 
engineers have to take into account due to the inherent 
probabilistic nature of the design parameters, such as 
material properties, geometry and/or loading condi- 
tions. Stochastic analysis involves the estimation of the 
response variability and/or reliability of a stochastic 
system defined as a structural system that possesses 
uncertainties in its material and/or geometric properties. 
Although from a theoretical point of view the field has 
reached a stage where the developed methodologies 
are becoming widespread, from a computational point 
of view, serious obstacles have been encountered in 
practical implementations. 

Analytic solutions to the problem are restricted to 
simple linear elastic structures under static loads while 
most of the current research work is focused in 
obtaining numerical solutions that are more appro- 
priate for handling realistic problems.l Stochastic finite 
element methods (SFEM) belong to this category. 
SFEM approaches are based on the representation of 
stochastic fields as a series of random variables and 
various methodologies have been developed in order to 
achieve this objective. 2-8 The response statistics are 
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then obtained using one of the stochastic finite 
element methods: the perturbation or Taylor expan- 
sion based methods, 2-4 the weighted integral method, 7'8 
the Neumann expansion method 9:° and the polynomial 
chaos expansion method. 5'6 Perturbation methods have, 
however, a limited range of applicability since they can 
only be accurate for small values of variability of the 
stochastic properties, while it has been found that they 
are insufficient to deal with the variation of time history 
response due to an uncertain natural frequency. 11 In 
addition, these methods require, in order to be accurate, 
fine element meshes so that the element size is a 
fraction of the correlation distance of the stochastic field 
involved in the problem. The weighted integral method 
is based on a weighted integral representation of the 
stochastic field. The main advantage of this method is 
the calculation of the response variability of stochastic 
systems with great accuracy even when using relatively 
coarse finite element meshes. Furthermore, for beam 
elements, the accuracy of this method is independent of 
the chosen mesh. 8'12 The improved Neumann expansion 
method proposed in Ref. 10 is a robust and computa- 
tionally efficient procedure compared to the standard 
Neumann expansion method, 9 while the methods that 
rely on the Karhunen-Loeve decomposition of the 
stochastic field coupled with either a Neumann expan- 
sion scheme or a polynomial chaos expansion 5'6 also 
behave well for relatively coarse finite element sizes and 
a wide range of random fluctuations. 

First and second-order reliability methods that have 
been developed to estimate structural reliability 13-17 
lead to elegant formulations requiring the definition of a 
differentiable failure function. For small-scale problems 
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these type of methods prove to be very efficient, but 
for large-scale problems Monte Carlo simulation (MCS) 
methods under certain conditions may be more 
suitable. 18 The basic MCS is simple to use, but for 
typical structural reliability problems the computa- 
tional effort involved becomes excessive because of the 
enormous sample size and the CPU time required for 
each Monte Carlo run. The use of Monte Carlo 
simulation (MCS) based on SFEM approaches has the 
major advantage that accurate solutions can be obtained 
for any problem whose deterministic solution is known 
either numerically or analytically. In fact, it is the only 
method available to solve certain stochastic problems 
involving non-linearities, dynamic loading, stability 
effects, parametric excitations, etc. The disadvantage 
of the standard MCS is that it is usually extremely 
computationally demanding. This problem is even 
more pronounced in the case of stochastic finite 
element-based reliability analysis of complex struc- 
tures, where the limit state functions are not available 
in close forms, since each Monte Carlo simulation 
requires the performance of a full non-linear analysis. 

In the present paper, the weighted integral method in 
conjunction with Monte Carlo simulation is used for the 
stochastic finite element-based reliability analysis of 
space frames. The limit state analysis required at each 
Monte Carlo simulation is performed using a non- 
holonomic step-by-step elastoplastic analysis based on 
the plastic node method 19-21 for space frames in 
conjunction with efficient solution techniques devel- 
oped in Refs 22 and 23. The implementation of some 
recent developments in hybrid solution techniques, 
particularly suitable for three-dimensional applica- 
tions, results in cost effective solutions both in terms 
of computing time and storage requirements. The 
numerical results presented demonstrate that this 
approach provides a realistic treatment for the stochas- 
tic finite element-based reliability analysis of large-scale 
three-dimensional building frames. 

2 STOCHASTIC FINITE ELEMENT ANALYSIS OF 
SPACE FRAMES 

2.1 The weighted integral method 

The weighted integral method has been applied in Refs 7 
and 8 to formulate the stochastic element stiffness 
matrix for a 2-D beam element. In this section, the 
corresponding stochastic stiffness matrix of a 3-D beam 
element is derived. 1° 

For a 3-D beam element with 12 degrees of freedom 
per node the modulus of elasticity is assumed to vary 
randomly along the element length according to 

E(e)(x) = E0[1 +f(e)(x)] (1) 

where E 0 is the mean value of the modulus of elasticity 
and f(e)(x) is a one-dimensional univariate (1D-1V) 

zero mean homogeneous stochastic field independently 
assigned for each member of the structure. 

In order to avoid the possibility of obtaining non- 
positive values of the elastic modulus, f (e) (x) is assumed 
to be bounded according to 

-0.80 <f(e)(x) < 0"80 (2) 

These bounds are implemented as follows: any digitally 
generated sample function that has at least one of its 
values out of the bounds, is automatically discarded. 

The stochastic element stiffness matrix is given by 

-L (e) 
K(e) = Jo B(e)VD(e)B (e) dx (3) 

where 

A e) 0 0 ! ] 

0 I (e) 0 

o(e)  = E(e)(X) 0 0 I2 (e) 

j (e)  

0 0 0 2(i-7 u)_l 

(4) 

(e) B is the matrix containing the derivatives of the shape 
functions and A (e), I2 (e), 13 (eT, j(e) are the cross-sectional 
area the cross-sectional moments of inertia for weak and 
major axis and the torsional modulus, respectively. L (e) 
and v are the length of the element and the Poisson 
ratio, respectively. 

Performing integration with respect to x, the 
stochastic stiffness matrix K(e) may be expressed as 

g ( e ) =  K0 (e) + x(e)AK(oe) + x~e)AK~ e) + X'2(e)AK2 (e) 

(5) 
o r  

K (e)= K0 (e) + AK (e) (6) 

K0 e) and AK (e) denote the stationary and the fluctuating 
part of the stochastic element stiffness matrix, respec- 
tively. X0 (e), X(e) a n d  X2 (e) are the so-called weighted 
integrals which are random variables defined as 

.L(e) 
X(Oe) = ]0 f(e)(x)dx (7) 

x(e)= J~l')xf(e)(x)dx (8) 

l~ 
(e) 

x(2e) = x2f (e)(x) dx (9) 

K0 is the mean value of K (e) since the weighted integrals 
have zero mean and AK0, AK1, AK2 are deterministic 
matrices the definition of which can be found in 
Appendix A. 

2.2 Representation of stochastic field 

Since Monte Carlo simulation (MCS) techniques are 
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used to calculate the reliability of the stochastic 
structural system, it is necessary to digitally generate 
sample functions of the 1D-1V stationary Gaussian 
zero mean homogeneous stochastic field f (x) .  This is 
done using the spectral representation method 24 taking 
advantage of the fast fourier transform (FFT) technique 
in order to reduce the computational effort of the 
simulation. This is achieved using the formula 

f(J)(P/kx) = Re ( ~  BJ einp(2~r/M) } n=0 

(10) 
p = 0 , 1 , . . . , M -  1 

j = 1,2, . . . ,  NSIM 

where Re indicates the real part, M defines the number 
of points at which f ( x )  process is realized along the 
element length, NSIM is the number of samples to be 
generated. B j is given by 

m i~, j~ BJ=x/2Ane  , n = 0 , 1 , . . . , M -  1 (11) 

where q~(n j) represents thejth realization of the independ- 
ent random phase angles uniformly distributed in the 
range [0-27r], An is defined as 

A,, = (2Sff(nAk) Ak)l/2, n = 0 , 1 , . . . , M -  1 

(12) 

and 

Ak = --ku (13) 
N 

ku is the upper cut-off wave number and N is the 
number of intervals in the discretization of the spectrum. 
Sff is the two-sided power spectral density function 
defined as 

Sff l -2  t'3 t'2 e-bfk (14) = ~ t J f  u f  n. 

where af denotes the standard deviation of the stochastic 
field, bf denotes the parameter that influences the shape 
of the spectrum and hence the scale of the correlation 
and k = nAk. 

The weighted integrals are computed numerically 
using eqns (7)-(9), while the stochastic field f(e)(x) is 
simulated using eqn (10). It should be mentioned that 
the weighted integrals can be generated directly from 
their known covariance matrix rather than going 
through the stochastic field as proposed by Wall and 
Deodatis. ~2 The latter approach is more efficient 
compared to the adopted procedure. The comparison 
of the computational efficiency of the proposed 
methods, however, is not affected by this overhead in 
the computation of the weighted integrals, since this is 
identical for all methods used in this study. 

3 STOCHASTIC FINITE ELEMENT-BASED 
RELIABILITY ANALYSIS 

In reliability analysis, MCS is often employed when the 

analytical solution is not attainable and the failure 
domain cannot be expressed or approximated by an 
analytical form. This is mainly the case in problems of 
complex nature with a large number of basic variables 
where all the other methods are not applicable. 

Expressing the limit state function as G(X), where 
X = (X1,X2,... ,Xn) is the vector of the basic random 
variables and/or random fields, following the law of 
large numbers, an unbiased estimator of the probability 
of failure is given by 25 

1 NSIM 
P f -  N S ~  Z I(Xj) (15) 

j = l  

where I(Xj) is an indicator defined as 

1 if G(~)_<0  
I (Xj )=  0 if G(~.) > 0  (16) 

Subsequently, using eqn (10) a large number of 
sample functions (NSIM) may be produced for each 
element of the structure generating a set of stochastic 
stiffness matrices as well as NSIM independent random 
load variables of a specific probability density function. 
Then, the failure function is computed for each sample 
Xj. If G(Xj) _< 0 a successful simulation is counted. The 
Monte Carlo estimate of Pr can then be expressed in 
terms of sample mean as 

NH (17) 
Pf -- NSIM 

where NH is the number of successful simulations. 

4 LIMIT ELASTOPLASTIC ANALYSIS 

In this work the reliability analysis connected to a 
structural failure criterion of framed structures is 
examined. The failure criterion is considered to be the 
formation of a mechanism. The adopted incremental non- 
holonomic first-order step-by-step limit analysis is based 
on the generalized plastic node concept proposed in Ref. 
19. The non-linear yield surface is approximated by a 
multi-faceted surface as shown in Fig. l(a), while the 
linear equilibrium equations at each load step are solved 
using the preconditioned conjugate gradient method. 2°'2t 

Under the assumption of concentrated plasticity all 
plastic deformations are confined to zero length plastic 
zones at the two ends of the member, leaving elastic the 
part of the member between the two plastic nodes. The 
materials are assumed to be elastic-perfectly plastic 
and the structural response is in the range of small 
displacements. The tangent elasto-plastic stiffness matrix 
used for the limit state analysis may be expressed as 

Kep = Ke - Ke~{~TKe~}-I~TKe (18) 

in which Kep is the elasto-plastic element stiffness matrix, 
Ke = K0 + AK is the elastic stochastic element stiffness 
matrix, and • is the gradient vector of the multi-faceted 
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Fig. 1. (a) Yield surface and multi-faceted approximation. (b) 
The trace of the plastic zone on the My - Mz plane and the 

activation of new yield modes. 

surface at the force point where a member-end initiates 
the plastic behaviour. In this study, the yield surface 
proposed in Ref. 26 is approximated by a piece-wise 
linear multi-faceted surface. For an efficient computer 
implementation a second internal yield surface of  similar 
orientation (homothet ic)  and close to the first one (see 
Fig. l(b)) is introduced in order to avoid unnecessary 
analysis steps. 21 The original yield surface together with 
its homothetic create a zone with well-defined dimen- 
sions where the activation of a yield mode starts as soon 
as the force point of an element-end crosses the internal 
surface (path CC'  in Fig. l(b)). This implementation 
allows the activation of more than one yield mode 
within the same load step (path DD'  in Fig. l(b)). In 
our application, the distance between the two yield 
surfaces is defined by a tolerance criterion es which 
controls the activation of a yield mode. Thus, instead of 
a force point oscillating around a sharp corner of the 
multi-faceted yield surface for a number of steps without 
any advancement on the loading path, simultaneous 

formation of more than one plastic nodes will change 
significantly the global stiffness characteristics forcing 
the oscillating point to move towards a new direction 
away from the corner of  oscillation. 

5 SOLUTION PROCEDURES 

5.1 The preconditioned conjugate gradient method 

The incremental limit analysis of space frames, 
described in the previous section, requires a number of 
subsequent linear solutions in which the overall stiffness 
matrix is slightly modified from one solution to the 
other. The total number of solutions corresponds to 
the total number of load increments required for the 
structure to become a mechanism. The change of 
stiffness from one step to the other is only due to the 
contribution of the elasto-plastic stiffness matrices of the 
elements with the newly formed plastic nodes. These 
special features of the problem make the preconditioned 
conjugate gradient method (PCG) very attractive for the 
solution of the linear problem at each load increment. 
The PCG is established as the more attractive iterative 
procedure for solving linear problems resulting from the 
finite element discretization. An important factor in the 
success of  this method in solving large-scale finite 
element equations is the preconditioned technique used 
to improve the ellipticity of the coefficient matrix. This 
typically consists of replacing the original system Ku = f 
by the equivalent system 

R - 1 K u  =- R - I f  (19) 

where R is the transformation or preconditioning 
matrix which is an approximation to K and it is non- 
singular. The PCG algorithm, based on the most 
efficient conjugate gradient version with respect to 
computational labour, storage requirements and accu- 
racy is defined as follows for the untransformed 
variables: 

(r(m), z (m)) 

a,, - (d(m), Kd(m)) 

u (re+l) ___ u (m) + am d(m) 

r (re+l) = r (m) + amKd (m) 

if IIr(m+l)ll/llfll < e then stop 

z (re+l) = R - l r  ("+1) 

(r(m+l),z(m+l)) 

am = (r(m), z(m) ) 

d("+l)  _= _z(m+ l) + amd (") 

with r (°} = Ku (°) - f  , z (°) = R -I  r (°) , d (°) = z (°) 

(20) 
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At the heart of the PCG iterative procedure for 
solving Ku = f  is the determination of the residual 
vector and the selection of the preconditioning matrix. 
The accuracy achieved and the computational labour of 
the method is largely determined by how these two 
parameters are selected. A study performed in Ref. 23 
revealed that the computation of the residual vector 
from its defining formula r(m)= Ku (m) - f  with an 
explicit or a first-order differences matrix-vector multi- 
plication Ku (m) offers no improvement in the accuracy of 
the computed results. In fact, it was found that, contrary 
to previous recommendations, the calculation of the 
residuals by the recursive expression of algorithm (20) 
produces a more stable and well-behaved iterative 
procedure. Based on this observation, a mixed precision 
PCG implementation is proposed in which all compu- 
tations are performed in single precision, except for 
double precision computation of the matrix vector 
multiplication occurring during the recursive evalua- 
tion of the residual vector. This implementation is a 
robust and reliable solution procedure even for handling 
large and ill-conditioned problems, while it is also 
computer storage-effective. It was also proved to be 
more cost-effective, for the same storage demands, than 
double precision calculations. 22'23 

The preconditioned matrix R has to be selected 
appropriately so that the eigenvalues R-1K are spread 
over a much narrower range than those of K. For the 
type of problems considered in this study the elastic 
stochastic part of the stiffness matrix is taken as the 
initial preconditioning matrix. The diagonal and 
triangular factor of the LDL x factorization of 
Ke = K 0 + A K  are stored in double or in single 
precision arithmetic, while the frequency of updating 
the preconditioning matrix due to the elasto-plastic 
contributions of the newly formed plastic nodes is 
controlled by the ratio of the time required for one full 
factorization to the time required for one PCG iteration. 
If the number of iterations at one step of the limit 
analysis becomes larger than this ratio, then the 
preconditioner is updated by refactorizing the current 
elasto-plastic matrix Kep. 

5.2 The Neumann-CG Method (NCG) 

In order to improve the quality of the preconditioning 
matrix used in the PCG method, a Neumann series 
expansion is implemented for the calculation of the 
preconditioned vector z of algorithm (20). t° The 
preconditioning matrix is now defined as the complete 
stochastic elastoplastic stiffness matrix Kep = Ke + AK, p, 
where AKep is the matrix containing the changes of 
the elastic matrix due to the successive formation of 
plastic nodes, but the solution for z is now performed 
approximately using a truncated Neumann series 
expansion. Thus, the preconditioned vector z of the 

PCG algorithm is obtained at each iteration by 

Z = Z o - Z l  + z 2 -  z3 + . . -  (21) 

where z0 is given by 

z o =K~-lr i =  1,2,. . .  (22) 

and zi is obtained by 

K e z  i = A K e p z i _  1 i = 1,2,. . .  (23) 

In the above expressions the superscript (m + 1) has 
been dropped for clarity. The solution of eqn (23) is 
performed in double or single precision arithmetic. 

The incorporation of the Neumann series expan- 
sion in the preconditioned step of the PCG method 
can be seen from the PCG point of view as an 
improvement on the quality of the preconditioning 
matrix by computing a better approximation to the 
solution of u = (K0 + A K ) - l f  than the one provided by 
the preconditioning matrix Ke. 

5.3 The complete Cholesky L D L  x factorization 

In this study, the proposed solution technique is 
compared to a conventional direct method for the 
solution of the linear equations at each load step. One of 
the most efficient direct solutions is considered to be the 
LDL T Cholesky factorization of the stiffness matrix 
stored in skyline form. Since for large-scale 3-D frames 
the solution phase at each load step represents a 
significant investment in computing effort, a simple 
modification in the factorized process is implemented in 
our case resulting in significant savings in computing 
time. During the factorization phase, the alterations to 
the factorized stiffness matrix are confined to the bottom 
right-hand corner starting from the first node with a 
change in the stiffness matrix due to the plastic node 
formation at the end of one or more elements connected 
to that node. Consequently, the time-consuming factori- 
zation part need not be repeated from the beginning but 
only the steps after the smallest degree of freedom which 
is affected by the changes in the stiffness matrix and 
downwards. Thus, the elasto-plastic stiffness matrix is 
not refactorized at each load step but is partially 
refactorized starting with the least degree of freedom 
affected by plastic node formations. This technique is 
referred to as a modified complete factorization. 

6 NUMERICAL TESTS 

Two test examples have been carried out in order to test 
the performance of the methods previously described. A 
compact storage scheme is used for PCG and NCG 
methods to store the stiffness matrix. Non-zero terms 
are stored in a real vector, while the corresponding 



Example 1 column numbers are stored in an integer vector of equal 
length. An additional integer vector with length equal to 
the number of equations is used to record the start of 
each row inside the compact scheme. The extra storage 
for the conjugate gradient method is 5n real positions, 
where n corresponds to the number of degrees of 
freedom. The direct MCS procedure with the complete 
Cholesky LDL x factorization is handled either with two 
skyline storage routines for K and L (version a) or with 
a compact storage for K and a skyline storage for L 
(version b) in double precision arithmetic. In estimating 
the computer storage it is assumed that integers are 
stored as INTEGER x 2 or INTEGER x 4 according 
to their maximum possible values, and the floating point 
variables as REAL × 4 or REAL x 8 according to the 
accuracy of computation, single or double precision, 
respectively. 

/ 
/ 
/ 
/ 
/ 

The first test example is the six storey space frame shown 
in Fig. 2. The yield strength of all elements is taken as 
250MPa. The lengths of beams and columns are 7.32 
and 3.66m, respectively. The loads consist of a 
19 K N m  -2 mean gravity load on all floor levels and a 
mean lateral load of 109 KN applied to each node in the 
front elevation in the negative z direction. The number 
of equations is 180 and the half bandwidth of the 
stiffness matrix is 41. The modulus of elasticity is 
considered to be a 1D-1V zero mean homogeneous 
stochastic field. Two sets of sample functions were 
prepared: the first with a standard deviation of 0" 10 and 
the second with 0-20, while for both sets the value of 
the parameter bf was assumed to be 1. The load-  
displacement curve is also shown in Fig. 2 for the mean 
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Fig. 2, Example 1. Six-storey space frame and the load-displacement curve. 
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Table 1. Example 1. Characteristics of random variables 

Random variable P D F  /z a 

Loads Log-N 6.35 0-2 

Table 2. Example 1. Critical load factors for various plastic zone 
widths 

es = 0"005 es = 0.01 es = 0-02 es = 0"04 

A~ 0'642 0'640 0'620 0"600 

Table 3. Example 1. Probability of failure for various plastic 
zone widths (tr t = 0"10) 

Number  of  20 50 100 200 400 
simulations 

es -- 0-005 0.10 0.079 0-07 0.076 0.075 
es = 0.010 0.10 0.079 0-07 0.075 0.075 
es = 0-020 0.20 0.160 0.15 0.140 0.130 

Table 4. Example 1. Probability of failure for various plastic 
zone widths (~rf = 0-20) 

Number  of  20 50 100 200 400 
simulations 

¢s = 0.005 0' 12 0"09 0.087 0.08 0-079 
Ss = 0.010 0.12 0'09 0"085 0.08 0.080 
es = 0"020 0'20 0-16 0"160 0'16 0'150 

values of the loads and the modulus of elasticity. The 
type of probability density function (PDF), mean value 
and standard deviation used for the loads are shown in 
Table I. Table 2 depicts the influence of the width 
between the two yield surfaces, used to define the yield 
zone, on the accuracy of the computed critical load 
factor. The tolerance criterion es controls the activa- 
tion of a yield mode and may be considered as being 
proportional to the bandwidth of the yield zone. Tables 
3 and 4 present the calculated probability of failure for 
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Fig. 3. Example 2. Twenty-storey space frame and the load-displacement  curve. 
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Table 5. Example 2. Characteristics of random variables 

Random variables PDF # 

Loads Log-N 5.2 0.2 

Table 6. Example 2. Critical load factors for various plastic zone 
widths (*Not converged due to spurious oscillations) 

es = 0.005 es = 0.01 es = 0.02 es = 0.04 

Ac * 2"25 2"15 0"190 

Table 7. Example 2. Critical load factors for different solution 
schemes 

DIR PCG (e --- 10 -1) PCG (~ --- 10 -4) 

A¢ 2"25 2"26 2"25 

Table 8. Example 2. Probability of failure for different solution 
schemes (o- r = 0.10, es = 0.10) 

Number of 20 50 100 200 400 
simulations 

DIR 0"07 0"10 0"09 0 " 0 7 5  0.074 
PCG (e = 10 -Z) 0-06 0"10 0"08 0 " 0 7 0  0"071 
PCG (e = 10 -4) 0"07 0"10 0"09 0 " 0 7 7  0'076 

Table 9. Example 2. Probability of failure for different solution 
schemes (~f = 0"10, es = 0"20) 

Number of 20 50 100 200 400 
simulations 

DIR 0"10 0.14 0.12 0.088 0.089 
PCG (e = 10 -I) 0"10 0"14 0-11 0 " 0 9 0  0"090 
PCG (e 10 - 4 )  0"10 0.14 0.12 0.088 0.089 

elasticity has marginal influence on the bearing capacity 
of  the structures considered in this study. The complete 
Cholesky L D L  r factorization is used to solve the 
equations at each step, since this example is very 
small, to assess the efficiency of  the solution schemes 
described in the previous section. 

Example 2 

various widths of  the plastic zone and two different 
standard deviations of  the stochastic field. From Tables 
2 -4  it can be observed that although the critical load 
factor appears to be less sensitive to the width of  the 
plastic zone, this is not the case for the computed 
probability of  failure. The latter, however, appears to be 
independent on the variability of  the stochastic param- 
eter of  the modulus of  elasticity. This can be explained 
by the fact that the variability of the modulus of  
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Fig. 4. Example 2. Storage requirements of the solution 
methods. 

The second test example is the 20 storey space frame 
shown in Fig. 3. The mean loads considered here are 
uniform vertical forces applied at the joints and are 
equivalent to a uniform load of  4 " 8 K N m  -2 and 
horizontal forces which are equivalent to a uniform 
pressure of  0 .956KNm -2 on the larger surface. The 
load-displacement curve for the mean values of  the 
modulus of  elasticity and the loads is also shown in Fig. 
3. The number of  equations is 1200 and the half 
bandwidth of  the stiffness matrix is 65. The type of  
probability density function (PDF), mean value and 
standard deviation used for the loads are shown in Table 
5. Tables 6 and 7 depict the influence of  the width of  the 
two yield surfaces, used to define the yield zone and that 
of  the solution scheme used, on the accuracy of the 
computed critical load factor, respectively. The values of  
e correspond to the termination criterion of  algorithm 
(20). Tables 8 and 9 present the computed probability of 
failure by different solution schemes for a variability of  
the modulus of  elasticity 0.10, and widths of  plastic 
zone es = 0.10 and 0-20, respectively. The value of  the 
parameter bf was assumed to be 1. It can be observed 
that the accuracy of  the solution is not influenced by the 
amount  of  the variability of  the stochastic parameter or 
the solution scheme used but is only affected by the 
width of  the plastic zone. Two PCG and one N C G  
versions are used in this example. PCGI  incorporates a 
tolerance criterion e = 0" 1, PCG2 terminates when the 
normalized residual force vector becomes less than 
e = 0.01, while the N C G  method is carried out with 
e = 0" 1. The hybrid solution methods are implemented 
with mixed precision arithmetic in which all computa- 
tions are performed in single precision, except for the 
double precision computation of  the matr ix-vector  
multiplication for the calculation of  the residual 
vector. The updating of  the preconditioning matrix is 
performed when the number of  iterations exceeds 10 
inside a load increment. This number is prescribed by 
the ratio of  the computing time required for the 
factorization of  the stiffness matrix over the time 
needed to perform one PCG iteration. Finally, the 
letter M after the abbreviated name of  the direct method 
(DIR-M) stands for the modified factorization of  the 
current elasto-plastic matrix. All PCG and N C G  
versions are implemented with the modified factoriza- 
tion. Figure 4 depicts the storage requirements for each 
of  the above methods where the abbreviation DP 
denotes that all computations are performed in double 
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Fig. 5. Example 2. Average CPU time for three randomly selected simulations (af = 0.10). 

ions 

precision arithmetic. Figure 5 shows the average 
performance of the methods for three randomly 
selected simulations when the standard deviation of 
the modulus of elasticity is taken as 0.10. The time 
entries are in seconds as obtained by the Silicon 
Graphics Indigo R4000 workstation. Figure 6 shows 
the number of conjugate gradient iterations required for 
PCG and NCG versions in one typical Monte Carlo 
simulation. Finally, Table 10 depicts the average critical 
load factors computed and the corresponding number of 
load steps of different solution schemes for three 
randomly selected simulations. It should be mentioned 
that the PCG1 method requires 10 additional load steps 
in order to reach the critical load factor. This indicates 
that the NCG method with the same tolerance is in 
general more robust compared to the corresponding 
PCG method. 
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Fig. 6. Example 2. Number of conjugate gradient iterations in 
a typical Monte Carlo simulation (o'f = 0"10) .  

7 CONCLUSIONS 

This paper presents a methodology for accurately and 
efficiently estimating the reliability of stochastic finite 
element systems with application to space frames. 
Accurate solutions of the step-by-step limit elasto- 
plastic analysis are obtained using the preconditioned 
conjugate gradient method and the Neumann conjugate 
gradient method in each Monte Carlo simulation, while 
significant reduction in computing time and storage 
requirements is achieved compared to the conventional 
direct method of solution. With the implementation of a 
plastic zone defined by the yield surface and a second 
surface, homothetic and close to the first one, the 
efficiency of the step-by-step incremental analysis is 
substantially improved. Small load steps or spurious 
oscillations of points around the corners of the yield 
surface are avoided, while simultaneous formation of 
more than one plastic node at each load step is 
accomplished. The use of a mixed precision arithmetic 
formulation for the preconditioned conjugate gradient 
method and the Neumann conjugate gradient method 
may substantially reduce the computer time and storage 
requirements without impairing the accuracy of the 
solution. 

More specifically, the combination of a compact 
storage scheme for the stiffness matrix with the modified 
factorization procedure, in which alterations to the 
factorized matrix are confined to the bottom right-hand 
corner, appear to have a significant influence on the 
performance of the direct method. The storage require- 
ments are reduced almost by half, while the computing 
time is less than 60% for the second example. The use of 
the complete factorized matrix as a preconditioner for 
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Table 10. Example 2. Average critical load factors computed and the corresponding number of load steps for three randomly selected 
simulations and different solution schemes (~rf = 0-10, ~s : 0-01) 

Method DIR DIR-M PCG 1 PCG2 NCG PCG 1 - D P  PCG2-DP NCG-DP 

Steps 70 70 80 67 70 80 67 70 
Ac 2.25 2.25 2"26 2.24 2'24 2'26 2.24 2'25 

the PCG method produces a 25% reduction in 
computing time, with regard to the modified direct 
method. The improvement of the quality of the 
preconditioning matrix with a first-order Neumann 
series expansion of the inverse of the stiffness matrix, 
although it results in a reduction of 30% in the number 
of iterations compared to the PCG version, accom- 
plishes a marginal improvement on the computing time. 
Nevertheless, it was found that the NCG method 
produces more robust results than the corresponding 
PCG method. The mixed precision implementation gives 
a 50% reduction in computer storage compared to the 
double precision implementation, while it requires 30% 
less computing time. It may, therefore, be concluded 
that the proposed PCG and NCG methods are superior 
compared to the conventional direct solution method 
for the stochastic finite element-based reliability analysis 
of large scale three-dimensional building frames using 
Monte Carlo simulation. 
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The matrix containing the derivatives of the shape 
functions is given by 
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A.1 Stochastic element stiffness matrix of  a 3-D beam 
element 

Using the standard displacement-based finite element 
analysis the matrix containing the shape functions for 
the 3-D beam element is given by 

where 
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The deterministic matrices Ko @, AK0 ~e), AKI (e), AK (e) 
involved in eqn (5) are defined as follows: 
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