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Abstract

In this work, the Hill-Mandel macro-homogeneity condition is used to link
the micromechanical characteristics of carbon nanotube reinforced compos-
ites (CNT-RCs) with the random variation of their material properties at the
macroscale. To this purpose, a computational procedure is proposed for the
determination of mesoscale random fields describing the spatial variation of
the components of the apparent elasticity tensor from a variable number of
statistical volume elements (SVEs). Mesoscale images of composites are ex-
amined with specific weight fraction (%wt) of randomly scattered CNTs. The
cases of randomly oriented and unidirectionally aligned CNTs with random
wavy and straight geometry are considered. A stochastic description of the
random CNT waviness is adopted based on real measurements. The proposed
approach takes into account the local weight fraction variability by process-
ing microstructural models extracted directly from the mesoscale composite
images, using a standard moving window technique. Computational homog-
enization is then applied on a series of SVE finite element models using both
kinematic and static uniform boundary conditions. The response statistics
of the SVE models are obtained with Monte Carlo simulation (MCS). In
this way, the statistical characteristics of the upper and lower bounds of the
apparent material properties are effectively computed. The representative
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volume element (RVE) size is defined within a prescribed tolerance, by ex-
amining the convergence of these two bounds with respect to the mesoscale
size. The effect of waviness and orientation of CNTs on the mechanical re-
sponses, mesoscale random fields and RVE size of the CNT-RC is particularly
highlighted.

Keywords: Carbon nanotubes, Random Composites, Apparent Properties,
Mesoscale random fields, RVE size, Monte Carlo Simulation

1. Introduction

In the context of nanocomposite science, carbon nanotubes (CNTs) have
gained considerable interest due to their superior mechanical and physical
properties. Experimental measurements [1, 2, 3, 4] verified by numerical sim-
ulations [5, 6, 7, 8, 9] have determined the stiffness of carbon nanotubes at
about 1 TPa and their tensile strength at about 150 GPa. Additionally, their
high aspect ratio and low density lead to a low percolation threshold and thus
to enhanced thermal and electrical properties in polymer composites [10].
These exceptional characteristics make CNTs ideal reinforcing elements for
nanocomposites. The multiscale nature of CNT-reinforced composite (CNT-
RC) requires understanding of the material behavior across multiple length
scales, from atomistic to macroscopic level in order to determine overall ef-
fective properties. Through these scales, various uncertain parameters such
as random material and geometric properties of CNTs as well as random
distribution, agglomeration and alignment of CNTs are affecting the behav-
ior of the CNT-RCs and must be taken into account in a stochastic analysis
setting.

Different multiscale methods have been proposed in the past for model-
ing CNT-RC materials accounting for the coupling of multiple length scales
involved. Among them, concurrent and sequential approaches are the most
widely applied [11, 12]. Concurrent multiscale methodologies try to com-
bine molecular dynamics and continuum methods, bridging the atomistic
nanoscale to the continuum macroscale. In these approaches, the solution of
the atomistic problem provides the boundary conditions or kinematic con-
straints that must be imposed to the continuum problem. On the other
hand, sequential approaches apply a length scale separation and the prob-
lem is solved progressively form the lowest scale passing information to its
subsequent scale and upwards. Following the latter approach, Odegard et al.
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[13] modeled the CNT, the local polymer near the nanotube, and the CNT-
polymer interface as an effective continuum fiber. Other researchers followed
similar formulations for the modeling of CNT-RC interface [14, 15, 16]. Tser-
pes et al. [17] proposed a multiscale finite element based RVE model for
CNT-RCs integrating nanomechanics and continuum mechanics. In Savvas
and Papadopoulos [18] a nonlinear multiscale computational homogeniza-
tion was proposed for the characterization of the mechanical and damping
properties of CNT-RCs considering slippage at CNT/polymer interface.

The effect of random CNT waviness and orientaton on the mechanical
and physical properties of CNT-RCs has not been adequately addressed so
far. The work of Bradshaw et al. [19] was among the first where a single
infinitely long sinusoidal fiber within an infinite matrix was modeled by 3-d
finite elements and the effective modulus of the composite with aligned or
randomly oriented CNTs was predicted using a Mori-Tanaka scheme. The
Mori-Tanaka model was also used by Shi et al. [20] in order to study the
effect of a spiral shape CNT and agglomeration on the strength of the com-
posite material. Relative studies where analytical micromechanics models
have been implemented for predicting mechanical properties of CNT-RCs
can be found in [21, 22, 23]. Despite their efficiency, analytical models are
limited to a single CNT with deterministic shape and orientation. In contrast,
advanced numerical homogenization schemes can handle more complicated
material configurations [24, 25, 26, 27]. Rafiee [28] proposed a stochastic
multiscale modeling of CNT reinforced polymers and predicted the Young’s
modulus of the composite material by considering uncertainties in CNT cur-
vature, agglomeration, dispersion and length. In Su et al. [29] a computa-
tional structural modeling of CNT/Al composites was presented where the
size, morphology, orientation, location and volume fraction of CNTs were
reproduced similarly to the actual microstructure of the composite material.
Also, in Dong et al. [30] the elastic modulus and local stress distribution in
metal matrix composites with non-straight shape of CNTs were investigated
using finite element method (FEM) and a micromechanics model. Stein and
Wardle [31] studied the combined effect of CNT waviness and alignment on
the effective stiffness of polymer matrix nanocomposites by implementing a
stochastic 3-d morphology simulation and an extended rule of mixtures.

Computational homogenization of heterogeneous materials is based on
the notion of a representative volume element (RVE), which according to
Hill [32], is a sample that is structurally entirely typical of the whole mixture
on average, and contains a sufficient number of inclusions for the apparent
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overall moduli to be effectively independent of the surface values of traction
and displacement, as long as these values are macroscopically uniform. The
typical procedure to determine the RVE size and the corresponding effective
material properties consists in setting multiple realizations of the composite
microstructure followed by finite element simulation and statistical analysis
of the results [33, 34, 35]. However, effective properties are valid only at the
RVE level. In the case of volumes smaller than the RVE, the continuum de-
scription of the heterogeneous material involves statistical volume elements
(SVE) and mesoscale random fields of the apparent constitutive properties.
A computational approach for the determination of RVE size in composite
sheets with non-periodic distributed thin and straight needle-shaped inclu-
sions was presented in Ostoja-Starzewski and Wang [36]. A similar proce-
dure was implemented by Savvas et al. [37] for composites containing circular
inclusions, where the effect of local volume fraction variability on the deter-
mination of RVE size was also assessed. A statistical RVE definition based
on percolation analysis in CNT polymer composites has been presented in
Song et al. [38].

This paper proposes a computational procedure for the computation of
mesoscale random fields as well as for the determination of RVE size of CNT
reinforced composites. Computer-simulated images of composites containing
randomly oriented and unidirectionally aligned CNTs with random wavy and
straight geometry are generated. A stochastic description of the random CNT
waviness is adopted based on real measurements. The proposed approach
takes into account the local weight fraction variability, usually present in
this type of composite materials due to the random dispersion of CNTs inside
the polymer matrix. This is performed by processing microstructural models
extracted directly from the generated composite images, using the moving
window technique. A computational homogenization scheme is applied on a
series of SVE finite element models subjected to kinematic and static uni-
form boundary conditions. The response statistics of the SVE models are
obtained using Monte Carlo simulation (MCS). In this way, the statistical
characteristics of the upper and lower bounds of the apparent material prop-
erties are effectively computed. The size of the RVE is then defined within
a prescribed tolerance, by examining the convergence of these two bounds
with respect to the mesoscale size. The effect of waviness and orientation of
CNTs on the mechanical responses, mesoscale random fields and RVE size
of the CNT-RC is particularly highlighted.

The remaining of the paper is organized as follows: In section 2, some
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details on the modeling of CNT-RC RVEs are presented. Section 3 refers to
the computation of the local weight fraction variability. The computational
procedure for the determination of the RVE size of CNT-RCs is explained in
section 4. Numerical results regarding the effect of waviness and orientation
of CNTs on the mechanical responses, mesoscale random fields and RVE size
of CNT-RCs are included in section 5. Finally, section 6 points out the major
conclusions of the present study.

2. Modeling RVEs of CNT-RCs

2.1. Equivalent continuum modeling of CNT

Carbon nanotubes are allotropes of carbon with a cylindrical nanostruc-
ture built from a repeated hexagonal pattern of C-C covalent bonds. A single
wall CNT (SWCNT) can be also visualized as a tubular structure constructed
by rolling up a graphene sheet along a chiral vector. According to the ori-
entation of this chiral vector, CNTs are grouped into armchair, zigzag and
chiral. Multiwall CNTs (MWCNTs) are constructed by co-axially situated
SWCNTs with different radii connected to each other by weak van der Waals
forces.

In the context of CNT modeling, equivalent continuum approaches are
more efficient than other atomistic approaches such as molecular dynamics
(MD) and are used to simulate larger scale systems and longer time spans.
The core principle of the equivalent continuum modeling (ECM) approaches
is the replacement of the C-C bonds with energetically equivalent continuum
elements. The molecular structural mechanics (MSM) approach proposed by
Li and Chou [39] has been broadly used, where the C-C bonds are replaced
by 3-d Bernoulli beams. In this way the atomic lattice of a CNT is simulated
by a space frame finite element structure which can be further projected into
an equivalent beam element (EBE). The axial, bending and torsional stiffness
of this equivalent beam are derived from finite element simulation of specific
loading cases depicted in Fig. 1. More details on the multiscale modeling of
CNTs can be found in Savvas et al. [5] where the derived EBE is used as
the basic building element for the construction of full length CNTs at the
microscale.

2.2. Stochastic modeling of CNT waviness

Random CNT waviness is modeled as a non-homogeneous stochastic field
using the spectral representation method in conjunction with evolutionary
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Figure 1: Illustration of the computational procedure for the determination of axial, bend-
ing and torsional stiffness of the equivalent beam element.
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Figure 2: SEM image and processing of wavy geometry of selected CNTs.

power spectra (EPS). The statistical properties of the EPS are derived from
processing a number of CNT geometries from scanning electron microscope
(SEM) images (Fig. 2).

The EPS depend not only on the frequency ω but also on spatial state
variables. In cases of separable or approximately separable EPS, which is
the case of geometric imperfections [40] such as the CNT waviness, the cor-
responding EPS can be expressed as the product of a homogeneous power
spectrum Sh(x) and a spatial envelope function gh(x) as follows:

S(ω, x) = Sh(ω) · gh(x) (1)

Various methodologies have been proposed in the past for estimating
EPS from available experimental measurements, i.e., from real samples of
stochastic signals. Among them the most widely used are the short-time
Fourier transform and the wavelet-based EPS estimation [41, 42, 43]. The
basic disadvantage of these approaches is that they cannot achieve simulta-
neous resolution in space and frequency domains. A novel methodology was
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proposed in Schillinger and Papadopoulos [40] to obtain estimates of EPS of
separable processes. This method is based on simple principles of stochastic
process theory and for this reason it is easy to implement and computa-
tionally efficient, while at the same time proved to be accurate enough with
optimum simultaneous resolution in space and frequency [44, 40].

According to this approach an estimate of the first term in Eq. (1) can
be readily obtained by averaging the periodograms over the ensemble:

Sh(ω) = E

[
1

2πL

∣∣∣∣∫ L

0

f (i)(x) · e−iωxdx
∣∣∣∣] (2)

where f (i)(x) is a sample of the stochastic field (in particular the wavy ge-
ometry of the ith CNT) and E[·] denotes the mathematical expectation. An
estimate of the spatial envelope function can be obtained from the distribu-
tion of the mean square over the samples as follows:

gh(x) =
E
[
|f(x)|2

]
2
∫∞
0
Sh(ω)dω

(3)

It can be easily shown that an unbiased estimate of the evolutionary power
spectra may be obtained as follows:

Sh(ω, x) = E
[∣∣f (i)(x)

∣∣2] Sh(ω)

2
∫∞
0
Sh(ω)dω

(4)

Having estimated the EPS from a number of selected CNTs taken from Fig. 2
samples of wavy CNTs can be generated using Eq. (4) for the spectral rep-
resentation method, as follows [45]:

f̂ (j)(x) =
√

2
N−1∑
n=0

Ancos
(
ωnx+ φ(j)

n

)
(5)

where

An =
√

2Sh(ωn, x)∆ω n = 0, 1, ..., N − 1

ωn = n∆ω n = 0, 1, ..., N − 1

∆ω =
ωup
N

A0 = 0, Sh(ω0, x) = 0

(6)
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The parameter ωup refers to an upper limit of the frequency, beyond which

the spectral density function is supposed to be zero. Parameter φ
(j)
n stands

for random phase angles in the range [0, 2π], for the jth sample realization.

2.3. The embedded element technique

To avoid complicated mesh discretization in the FEM analysis of the
CNT-RCs the embedded element technique is used where the translational
degrees of freedom (dofs) of the embedded element are kinematically con-
strained to the translational dofs of the host element. Suppose that a CNT
is modeled by a 2-d beam element (embedded element) and lies in the com-
posite matrix which is modeled by a quadratic plane elasticity element (host
element) as shown in Fig. 3. The dof vector of the embedded element ue =[ua,
νa, ub, νb, θa, θb]

T is kinematically related to an extended dof vector contain-
ing both the translational dofs of the host element and the unconstrained
rotational dofs of the embedded element uh =[u1, ν1, u2, ν2, u3, ν3, u4, ν4,
θa, θb]

T . The kinematic constraint is expressed as follows:

ue = Nuh (7)

where

N 6×10 =

N a
h 2×8 ∅

N b
h 2×8 ∅
∅ I2×2

 (8)

and

N i
h =

[
N i
h1 0 N i

h2 0 N i
h3 0 N i

h4 0
0 N i

h1 0 N i
h2 0 N i

h3 0 N i
h4

]
(9)

with i = a, b denoting the coordinates (xi, yi) of the end points of the
embedded beam element A and B, respectively where the shape functions of
the host element are evaluated. The dof vector of the embedded element is
transformed to its local cordinate system using the rotation matrix R

uloce = Rue (10)

with

R6×6 =

Q2×2 ∅ ∅
∅ Q2×2 ∅
∅ ∅ I2×2

 , Q =

[
cosφ sinφ
−sinφ cosφ

]
(11)
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Figure 3: Illustration of the embedded beam element.

The axial strain εs at a point (xs, ys) of the embedded beam element is
calculated as:

εs =
dus
ds
− ys

d2νs
ds2

= T ∗Bs
huh − ysBs

eu
loc
e (12)

where
T ∗ =

[
cos2φ, sin2φ, cosφ sinφ

]
(13)

and Bs
h, B

s
e are matrices containing the spatial derivatives of the shape func-

tions Nh for the host element and Ne for the embedded element, respectively.
The overall stiffness matrix is formulated as follows:

K = Kh +Ke (14)

where

Kh =

∫
Vh

BT
hDBhdVh (15)
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is the stiffness matrix of the host element and

Ke =

∫
s

[T ∗Bs
h]
T (EA)[T ∗Bs

h]ds+ [RN ]T
[∫

s

[Bs
e]
T (EI)[Bs

e]ds

]
[RN ]

(16)
is the stiffness matrix of the embedded element. D is the 2-d elasticity tensor
representing the material of the composite matrix, while EA and EI are the
axial and bending stiffness of the CNT derived according to the equivalent
continuum modeling of section 2.1.

3. Computation of local weight fraction variation

In this section the variability of local weight fraction (wt) of CNTs due to
their random distribution inside a polymer matrix is calculated for various
computer-simulated composites. The weight fraction is connected to the
volume fraction (vf) through the relation:

wt =
α

νf + α− 1
(17)

where α is the ratio of the density of CNT (ρcnt = 1.8 gr/cm3) over the
density of the polymer matrix (ρmtrx = 1.4 gr/cm3). An algorithm has been
implemented which performs the uniform random distribution of an initial
amount of 0.2 wt% CNTs inside a rectangular polymer matrix. Four images
have been constructed in this way corresponding to composites with a) wavy
and randomly oriented, b) wavy and unidirectionally aligned, c) straight
and randomly oriented and d) straight and unidirectionally aligned CNTs,
which are shown in Fig. 4. All images have dimensions Limage × Limage with
Limage = 100 µm and contain approximately 6000 randomly scattered CNTs
with random length Lcnt ∈ U (1, 2 µm).

The local weight fraction variation is evaluated by processing window
models extracted from the composite image using the moving window tech-
nique. In this method an initial window of area L × L is set at a starting
point O of the image and then, by moving it over the image by a vector
~ξp = ξxp ~ex + ξyp ~ey a set of windows of the same area is extracted (see Fig. 5).
The moving step ∆ξ is assumed to be the same along both directions. This
means that ξxp = i∆ξ and ξyp = j∆ξ, with i, j the number of steps along the
x and y directions, respectively. The total number of windows nw extracting
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Figure 4: Computer simulated images of random CNT-RCs with 0.2 wt% of a) wavy ran-
domly oriented (image 1), b) wavy unidirectionally aligned (image 2), c) straight randomly
oriented (image 3) and d) straight unidirectionally aligned (image 4) CNTs.
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Figure 5: Illustration of the moving window technique.

from the composite image depends on its size Limage, the window size L and
the selected moving step ∆ξ as follows:

nw =

(
Limage − L

∆ξ
+ 1

)2

(18)

By choosing ∆ξ = L/4 with L=2, 5, 10, 25 and 50 µm, 5 sets containing
nw=38809, 5929, 1369, 169 and 25 windows, respectively are extracted. The
wt of CNTs is computed in each window by using image analysis tools and
Eq. (17). The histograms of the wt with respect to the non-dimensional
parameter δ = L/d, where d = 2 µm the maximum length of CNTs, are
shown in Fig. 6 for each composite image of Fig. 4. As the dispersion of the
CNTs within the composite materials is random, it is obvious that there are
regions rich or poor in inclusions. This is clearly illustrated in the histograms
where a very large variability of wt is observed for the sets containing windows
of small size. On the other hand, for large δ the empirical PDFs of wt
become very narrow and tend to a spike. These results indicate that wt varies
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Figure 6: Histograms (relative frequency) of wt for various window sizes δ for a) image 1,
b) image 2 c) image 3, d) image 4 of Fig. 4.

significantly with the size and location of the windows. Therefore choosing
a relatively small RVE without considering local weight fraction variability
can lead to unrealistic estimations of the effective mechanical behavior of
composites [46, 47, 37].

4. Computational procedure for RVE determination

4.1. Computation of apparent properties on mesoscale

Miehe and Koch [24] proposed a computational procedure to define ap-
parent properties (homogenized stresses and overall tangent moduli) of mi-
crostructures undergoing small strains. They have shown that apparent prop-
erties can be defined in terms of discrete forces and stiffness properties on
the boundary of discretized microstructures. Using these deformation-driven
algorithms, the apparent stiffness or compliance tensor of a mesoscale model
of size δ can be calculated by solving a uniform strain or a uniform stress
boundary value problem, respectively. These boundary conditions satisfy a
priori the Hill-Mandel macro-homogeneity condition [32]. The adopted com-
putational procedure is outlined below for the two cases of uniform boundary
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conditions.

4.1.1. Uniform strains

A prescribed uniform strain tensor ε̄ = [ε̄11 ε̄22 2ε̄12]
T is applied on the

boundary ∂Bδ of a discretized mesoscale model through displacement bound-
ary conditions (Dirichlet) in the form:

ub = DT
b ε̄ (19)

where Db is a geometric matrix which depends on the coordinates of the
boundary node b and is defined as:

Db =
1

2

2Y1 0
0 2Y2
Y2 Y1

 with (Y1, Y2) ∈ Y (20)

Note that the stiffness matrix K of the model can be rearranged into sub-
matrices associated with interior nodes i and boundary nodes b. Thus the
static problem is denoted by:[

Kii Kib

Kbi Kbb

] [
U i

U b

]
=

[
F i

F b

]
(21)

Then the apparent stiffness tensor CD
δ (θ) of the mesoscale model of size

δ under Dirichlet boundary conditions can be calculated in terms of the
condensed stiffness matrix K̃bb = Kbb −KbiK

−1
ii Kib in the form:

CD
δ (θ) =

1

Vδ
DK̃bbDT (22)

where D = [D1 D2 ...DM ] with M the total number of boundary nodes.

4.1.2. Uniform stresses

A prescribed uniform stress tensor σ̄ = [σ̄11 σ̄22 2σ̄12]
T is applied on

the boundary surface ∂Bδ of a discretized mesoscale model through traction
boundary conditions (Neumann) as follows:

F b = STb σ̄ (23)
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where Sb is a matrix depending on the components of the discrete area
vector ab which is given in terms of the nodal coordinates of the neighboring
boundary nodes b− 1, b and b+ 1 in the form:

ab =
1

2
[Y b+1 − Y b−1]× en (24)

These nodes are oriented so that the cross product with the Cartesian, out-of-
plane, base vector en yields ab as an outward normal vector at the boundary
node b. Thus the matrix Sb is defined as:

Sb =

ab1 0
0 ab2

ab2 ab1

 (25)

Then the apparent compliance tensor SNδ (θ) of the mesoscale model of size
δ under Neumann boundary conditions can be calculated in terms of the
condensed stiffness matrix K̃bb in the form:

SNδ (θ) =
1

Vδ
SK̃−1bb ST (26)

where S = [S1 S2 ... SM ] with M the total number of boundary nodes. For
this type of boundary conditions the apparent stiffness tensor is obtained by
inverting the compliance tensor of Eq. (26):

CN
δ (θ) =

[
SNδ (θ)

]−1
(27)

Dirichlet and Neumann boundary conditions provide upper and lower bounds
of the strain energy which converge to each other as the mesoscale size δ is
increasing. Thus the following relation holds [48]:

1

2

[
ε̄ : CN

δ (θ) : ε̄
]
<

1

2

[
ε̄ : CD

δ (θ) : ε̄
]

for δ finite

1

2

[
ε̄ : CN

∞ (θ) : ε̄
]

=
1

2

[
ε̄ : CD

∞ (θ) : ε̄
]

for δ →∞

 (28)

In case of uniaxial strains ε̄ =
(

[1 0 0]T or [0 1 0]T
)

or simple shear ε̄ =

[0 0 1]T the following notation can be used:

CN
δ (θ) ≤ CD

δ (θ) (29)
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5. Results and discussion

In this section, the spatial average (mean) of the apparent moduli of the
CNT-RC is calculated at each size δ from the nw corresponding mesoscale
models extracted from the moving window technique of section 3. Thus the
following formula for the mean can be used:

Cδ (θ) =
1

nw

nw∑
p=1

Cδ

(
~ξp, θ

)
(30)

with ~ξp the position vector of the p-th mesoscale window model on the im-

age (see Fig. 5). Following the notation of Eq. (29) the bounds CN
δ (θ)

and CD
δ (θ) are calculated for the axial and shear components of the ap-

parent elasticity tensor. Note that, the computational homogenization of
section 4.1 results in an anisotropic apparent elasticity tensor due to the na-
ture of the CNT-reinforcement and spatial randomness. The CNTs chosen
for reinforcement are considered multi-walled of type armchair with an outer
radius dcnt ≈ 14 nm and Young’s modulus Ecnt = 1 TPa. The polymer
matrix is considered linear elastic with Emtrx = 1 GPa and Poisson ratio
νmtrx = 0.3. In the following numerical results all the computed components
of the apparent elasticity tensor are in GPa.

5.1. Effect of CNT waviness and orientation

The effect of CNT waviness and orientation on the axial (C11) and shear
(C33) stiffness component of the apparent elasticity tensor of the composites
of section 3, as well as on the determination of the RVE size is illustrated
in Fig. 7 and 8, respectively. These figures depict the convergence of the
numerical upper (Dirichlet) and lower (Neumann) bounds for C11 and C33

with respect to the mesoscale size δ. Figure 7 shows that the composites with
unidirectionally aligned CNTs have larger axial stiffness than the composites
with randomly oriented CNTs. From the same figure it can be observed
that the effect of CNT waviness on the stiffness of the composite is more
important in the case of unidirectionally aligned CNTs. On the other hand,
Fig. 8 shows that the composites with randomly oriented CNTs have larger
shear stiffness than the composites with unidirectionally aligned CNTs. Note
that the straight unidirectionally aligned CNTs have no reinforcement effect
on the elasticity tensor of the polymer matrix except in the longitudinal
direction of the CNTs (axial stiffness component C11). The shear stiffness
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Figure 7: Comparison of numerical bounds of apparent property C11 for the composites
of a) images 1, 2 and b) images 3, 4.

of the composite with straight unidirectionally aligned CNTs corresponds to
that of the polymer matrix which is homogeneous. Therefore C33 is in this
case an effective property and does not depend on mesoscale size δ.

In Fig. 9 the discrepancy (tolerance) eδ between the computed numerical
bounds of axial and shear stiffness is plotted as a function of δ for each
composite (images 1-4 of Fig. 4). The discrepancy is calculated as:

eδ =

∣∣∣∣∣CD
ij − CN

ij

CD
ij

∣∣∣∣∣
δ

(31)

where CD
ij and CN

ij are the components of the spatially averaged apparent
elasticity tensor obtained by applying Dirichlet and Neumann boundary con-
ditions, respectively (see section 4.1). Fig. 9 shows that, when the axial
stiffness C11 is monitored, the case of straight and unidirectionally aligned
CNTs leads to relatively slow convergence rate for the RVE size. On the
other hand, when the shear stiffness C33 is monitored, the case of straight
and randomly oriented CNTs leads to relatively slow convergence rate. For
example, in order to attain the RVE within a tolerance of 5% when C11

18



Figure 8: Comparison of numerical bounds of apparent property C33 for the composites
of a) images 1, 2 and b) images 3, 4.

is considered, a mesoscale window of size δ ≥ 5 is required for composites
containing randomly oriented CNTs, whereas a size δ > 12 is required for
composites containing unidirectionally aligned CNTs. If C33 is considered,
δ ≥ 5 is an adequate size in order to attain the RVE with maximum 5%
discrepancy for all the examined types of composites. A general observation
is that CNT waviness has a relatively small effect on the RVE convergence
rate, whereas the effect of orientation is dominant.

Fig. 10 illustrates the effect of waviness and orientation of CNTs on the
level of anisotropy of the apparent elasticity tensor of the examined compos-
ites. Two measures are used to quantify anisotropy. The quantity eC22

C11
=

mean(|C11−C22|/2C22) and the isotropy indicator αiso = mean(2C33/(0.5(C11−
C22)−C12)). Note that the isotropy is approached as eC22

C11
tends to zero and

αiso tends to unity. As expected, the unidirectionally aligned CNTs result
in high level of anisotropy which is verified by both indicators. The level of
anisotropy decreases with the increase of mesoscale size δ. This observation
is in accordance with the assumption that at the RVE level the material can
be considered isotropic in the mean sense.
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Figure 9: Discrepancy between upper and lower bounds of a) axial and b) shear stiffness
with respect to mesoscale size δ for the composites of images 1-4.

Figure 10: Effect of CNT waviness and orientation on the degree of anisotropy of the
apparent elasticity tensor.
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5.2. Determination of mesoscale random fields

In the context of stochastic multiscale analysis of composites with the
stochastic finite element method, the material properties provided by the
up-scaling procedure appear either as random fields (apparent properties in
case of SVEs) or as random variables (effective properties in case of RVEs)
[49, 50, 51]. As shown in section 5.1 the RVE for CNT-RCs cannot always
be attained within an acceptable tolerance.

In this section, random fields for the axial stiffness component C11 of the
apparent elasticity tensor of CNT-RCs are extracted for various mesoscale
sizes δ. For this purpose a large number of SVE models are generated using
the moving window technique as explained in section 3 and analyzed as
described in section 4.1. Specifically, the random fields are calculated at
δ =2.5, 5 and 12.5 by simulating nw =5929, 1369 and 169 SVE models under
kinematic uniform boundary conditions.

Figs. 11-14 depict the computed random fields along with the respec-
tive empirical distributions and 2-D spatial correlations of C11 at the afore-
mentioned three mesoscale sizes δ for the composites of images 1-4, respec-
tively. Note that the spatial correlations ρBA have been calculated for every
lag (ξx, ξy) according to the following formula:

ρBA (ξx, ξy) =
1

nw − 1

√
nw∑
i=0

√
nw∑
j=0

(
A (xi, yj)− Ā

σA

)(
B (xi + ξx, yj + ξy)− B̄

σB

)

−
√
nw∆ξ ≤ ξx ≤

√
nw∆ξ , −

√
nw∆ξ ≤ ξy ≤

√
nw∆ξ

(32)
with ρBA denoting auto-correlations when quantity A ≡ B, otherwise cross-
correlations are defined. Ā, B̄ are the spatial average values while σA, σB
are the standard deviations of quantities A, B, respectively. A general obser-
vation for all mesoscale random fields is that their empirical PDFs become
narrower as the mesoscale size δ increases. In other words, the random field
tends to a random variable and thus the SVE tends to the RVE as δ increases.
As it can be observed from all the examined composites, the variability of
the apparent stiffness property is larger for smaller sizes δ. However, the
randomly oriented CNTs result in small variability of the apparent property
of the composites even at small sizes δ, compared to the unidirectionally
aligned CNTs. The auto-correlations for lag (ξx = 0, ξy = 0) are 1 and tend
to zero for lag values |ξx| > L and |ξy| > L.
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Figure 11: Mesoscale random fields for the axial stiffness C11 for the composite of image
1.

Figure 12: Mesoscale random fields for the axial stiffness C11 for the composite of image
2.
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Figure 13: Mesoscale random fields for the axial stiffness C11 for the composite of image
3.

Figure 14: Mesoscale random fields for the axial stiffness C11 for the composite of image
4.
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Figure 15: Cross correlations ρC11
wt at (ξx, ξy = 0) and (ξx = 0, ξy) for the composites of

images 1-2.

The 1-D cross correlations ρC11
wt and ρC11

C22
are depicted in Figs. 15-16 and

Figs. 17-18, respectively, for lag values along x (ξx, ξy = 0) and y (ξx = 0, ξy).
The first row of these figures corresponds to composites with randomly ori-
ented CNTs while the second row to composites with unidirectionally aligned
CNTs. All cross-correlations are between -1 and +1 and tend to zero for
|ξx| > L or |ξy| > L. This can be attributed to the fact that the probability
of SVE models to share common CNT reinforcements decreases as the length
of the vector ~ξp (see Fig. 5) increases. As expected, the cross-correlation
between C11 and C22 becomes negligible for the composite reinforced with
straight unidirectionally aligned CNTs (see second row of Fig. 18).
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Figure 16: Cross correlations ρC11
wt at (ξx, ξy = 0) and (ξx = 0, ξy) for the composites of

images 3-4.
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Figure 17: Cross correlations ρC11

C22
at (ξx, ξy = 0) and (ξx = 0, ξy) for the composites of

images 1-2.
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Figure 18: Cross correlations ρC11

C22
at (ξx, ξy = 0) and (ξx = 0, ξy) for the composites of

images 3-4.
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6. Conclusions

In this paper, a novel computational procedure has been proposed for
the extraction of mesoscale random fields as well as for the determination
of RVE size of CNT reinforced composites. The method can be applied to
composites containing randomly dispersed CNTs with random waviness and
orientation. The effect of the above uncertain morphological parameters on
the apparent material properties and RVE size of CNT-RCs has been as-
sessed. Specifically, by processing different computer-simulated images of
random CNT reinforced composites, a variable number of statistical volume
elements has been generated using the moving window technique. The lo-
cal weight fraction variability, present in this kind of composites due to the
random scattering of CNTs, has been calculated from the set of the aforemen-
tioned SVE models. A multiscale equivalent continuum modeling approach
has been adopted to simulate CNTs, while real measurements have been used
for the stochastic description of the random CNT waviness. Finite element
models of the CNT-RC SVEs with simple meshes have been constructed by
exploiting the embedded element technique. The discretized models were
subjected to both kinematic and static uniform boundary conditions and by
combining computational homogenization with Monte Carlo simulation the
response statistics of the apparent material properties were calculated. The
presented numerical results demonstrate that the effect of CNT waviness on
the determination of RVE size is minimal, while CNT orientation has the
dominant effect. The RVE must be attained with regard to a specific mon-
itored component of the apparent elasticity tensor. Finally, it was shown
that for sizes smaller than the RVE, mesoscale random fields for the appar-
ent material properties can be obtained from the proposed computational
procedure, which could be used in the context of stochastic finite element
analysis of composite structures.

Acknowledgements

The financial support provided by the European Research Council Ad-
vanced Grant ”MASTER - Mastering the computational challenges in nu-
merical modeling and optimum design of CNT reinforced composites” (ERC-
2011-ADG 20110209) is gratefully acknowledged by the authors. The support
provided by the Research Committee of the Aristotle University of Thessa-
loniki is also gratefully acknowledged.

28



References

[1] B. Demczyk, Y. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl,
R. Ritchie, Direct mechanical measurement of the tensile strength and
elastic modulus of multiwalled carbon nanotubes, Materials Science and
Engineering: A 334 (1) (2002) 173–178.

[2] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff,
Strength and breaking mechanism of multiwalled carbon nanotubes un-
der tensile load, Science 287 (5453) (2000) 637–640.

[3] J.-P. Salvetat, J.-M. Bonard, N. Thomson, A. Kulik, L. Forro,
W. Benoit, L. Zuppiroli, Mechanical properties of carbon nanotubes,
Applied Physics A 69 (3) (1999) 255–260.

[4] S. Iijima, et al., Helical microtubules of graphitic carbon, nature
354 (6348) (1991) 56–58.

[5] D. Savvas, V. Papadopoulos, M. Papadrakakis, The effect of interfa-
cial shear strength on damping behavior of carbon nanotube reinforced
composites, International Journal of Solids and Structures 49 (26) (2012)
3823–3837.

[6] E. T. Thostenson, C. Li, T.-W. Chou, Nanocomposites in context, Com-
posites Science and Technology 65 (3) (2005) 491–516.

[7] M. Arroyo, T. Belytschko, Finite crystal elasticity of carbon nanotubes
based on the exponential Cauchy-Born rule, Physical Review B 69 (11)
(2004) 115415.

[8] T. Chang, H. Gao, Size-dependent elastic properties of a single-walled
carbon nanotube via a molecular mechanics model, Journal of the Me-
chanics and Physics of Solids 51 (6) (2003) 1059–1074.

[9] Y. Jin, F. Yuan, Simulation of elastic properties of single-walled carbon
nanotubes, Composites Science and Technology 63 (11) (2003) 1507–
1515.

[10] B. P. Grady, Carbon nanotube-polymer composites: manufacture, prop-
erties, and applications, John Wiley & Sons, 2011.

29



[11] D. Qian, W. K. Liu, Q. Zheng, Concurrent quantum/continuum cou-
pling analysis of nanostructures, Computer Methods in Applied Me-
chanics and Engineering 197 (41) (2008) 3291–3323.

[12] J. Wernik, S. A. Meguid, Coupling atomistics and continuum in solids:
status, prospects, and challenges, International Journal of Mechanics
and Materials in Design 5 (1) (2009) 79–110.

[13] G. Odegard, T. Gates, K. Wise, C. Park, E. Siochi, Constitutive model-
ing of nanotube–reinforced polymer composites, Composites science and
technology 63 (11) (2003) 1671–1687.

[14] W. Lu, J. Wu, J. Song, K. Hwang, L. Jiang, Y. Huang, A cohesive
law for interfaces between multi-wall carbon nanotubes and polymers
due to the van der Waals interactions, Computer Methods in Applied
Mechanics and Engineering 197 (41) (2008) 3261–3267.

[15] A. Needleman, T. Borders, L. Brinson, V. Flores, L. Schadler, Effect of
an interphase region on debonding of a CNT reinforced polymer com-
posite, Composites Science and Technology 70 (15) (2010) 2207–2215.

[16] H. Tan, L. Jiang, Y. Huang, B. Liu, K. Hwang, The effect of van der
Waals-based interface cohesive law on carbon nanotube-reinforced com-
posite materials, Composites Science and Technology 67 (14) (2007)
2941–2946.

[17] K. Tserpes, P. Papanikos, G. Labeas, S. G. Pantelakis, Multi-scale mod-
eling of tensile behavior of carbon nanotube-reinforced composites, The-
oretical and applied fracture mechanics 49 (1) (2008) 51–60.

[18] D. Savvas, V. Papadopoulos, Nonlinear multiscale homogenization of
carbon nanotube reinforced composites with interfacial slippage, Inter-
national Journal for Multiscale Computational Engineering 12 (4) (2014)
271–289.

[19] R. Bradshaw, F. Fisher, L. Brinson, Fiber waviness in nanotube-
reinforced polymer composites-II: modeling via numerical approxima-
tion of the dilute strain concentration tensor, Composites Science and
Technology 63 (11) (2003) 1705–1722.

30



[20] D.-L. Shi, X.-Q. Feng, Y. Y. Huang, K.-C. Hwang, H. Gao, The effect of
nanotube waviness and agglomeration on the elastic property of carbon
nanotube-reinforced composites, Journal of Engineering Materials and
Technology 126 (3) (2004) 250–257.

[21] V. Anumandla, R. F. Gibson, A comprehensive closed form microme-
chanics model for estimating the elastic modulus of nanotube-reinforced
composites, Composites Part A: Applied Science and Manufacturing
37 (12) (2006) 2178–2185.

[22] L. Shao, R. Luo, S. Bai, J. Wang, Prediction of effective moduli of
carbon nanotube–reinforced composites with waviness and debonding,
Composite Structures 87 (3) (2009) 274–281.

[23] E. Shady, Y. Gowayed, Effect of nanotube geometry on the elastic prop-
erties of nanocomposites, Composites Science and Technology 70 (10)
(2010) 1476–1481.

[24] C. Miehe, A. Koch, Computational micro-to-macro transitions of dis-
cretized microstructures undergoing small strains, Archive of Applied
Mechanics 72 (4-5) (2002) 300–317.

[25] S. Torquato, Random Heterogeneous Materials: Microstructure and
Macroscopic Properties, Springer, New York, 2002.

[26] T. I. Zohdi, P. Wriggers, An Introduction to Computational Microme-
chanics, 2nd Edition, Lecture Notes in Applied and Computational Me-
chanics, vol. 20, Springer, Heidelberg, 2008.

[27] M. Geers, V. Kouznetsova, W. Brekelmans, Multi-scale computational
homogenization: Trends and challenges, Journal of Computational and
Applied Mathematics 234 (7) (2010) 2175–2182.

[28] R. Rafiee, Influence of carbon nanotube waviness on the stiffness re-
duction of CNT/polymer composites, Composite Structures 97 (2013)
304–309.

[29] Y. Su, Z. Li, L. Jiang, X. Gong, G. Fan, D. Zhang, Computational struc-
tural modeling and mechanical behavior of carbon nanotube reinforced
aluminum matrix composites, Materials Science and Engineering: A 614
(2014) 273–283.

31



[30] S. Dong, J. Zhou, H. Liu, D. Qi, Computational prediction of wavi-
ness and orientation effects in carbon nanotube reinforced metal matrix
composites, Computational Materials Science 101 (2015) 8–15.

[31] I. Y. Stein, B. L. Wardle, Mechanics of aligned carbon nanotube poly-
mer matrix nanocomposites simulated via stochastic three-dimensional
morphology, Nanotechnology 27 (3) (2015) 7.

[32] R. Hill, Elastic properties of reinforced solids: some theoretical prin-
ciples, Journal of the Mechanics and Physics of Solids 11 (5) (1963)
357–372.

[33] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination
of the size of the representative volume element for random composites:
statistical and numerical approach, International Journal of solids and
structures 40 (13) (2003) 3647–3679.

[34] M. Silani, H. Talebi, S. Ziaei-Rad, P. Kerfriden, S. P. Bordas,
T. Rabczuk, Stochastic modelling of clay/epoxy nanocomposites, Com-
posite Structures 118 (2014) 241–249.

[35] J. Wimmer, B. Stier, J.-W. Simon, S. Reese, Computational homogeni-
sation from a 3D finite element model of asphalt concrete–linear elastic
computations, Finite Elements in Analysis and Design 110 (2016) 43–57.

[36] M. Ostoja-Starzewski, X. Wang, Stochastic finite elements as a bridge
between random material microstructure and global response, Computer
Methods in Applied Mechanics and Engineering 168 (1) (1999) 35–49.

[37] D. Savvas, G. Stefanou, M. Papadrakakis, Determination of RVE size
for random composites with local volume fraction variation, Computer
Methods in Applied Mechanics and Engineering (in press, 2016).

[38] W. Song, V. Krishnaswamy, R. V. Pucha, Computational homogeniza-
tion in RVE models with material periodic conditions for CNT polymer
composites, Composite Structures 137 (2016) 9–17.

[39] C. Li, T.-W. Chou, A structural mechanics approach for the analysis of
carbon nanotubes, International Journal of Solids and Structures 40 (10)
(2003) 2487–2499.

32



[40] D. Schillinger, V. Papadopoulos, Accurate estimation of evolutionary
power spectra for strongly narrow-band random fields, Computer Meth-
ods in Applied Mechanics and Engineering 199 (17) (2010) 947–960.

[41] L. Cohen, Time-frequency analysis, vol. 778, Prentice Hall PTR Engle-
wood Cliffs, New Jersey, 1995.

[42] D. E. Newland, Wavelet analysis of vibration. I: Theory, Journal of
vibration and acoustics 116 (4) (1994) 409–416.

[43] P. D. Spanos, J. Tezcan, P. Tratskas, Stochastic processes evolution-
ary spectrum estimation via harmonic wavelets, Computer Methods in
Applied Mechanics and Engineering 194 (12) (2005) 1367–1383.
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