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Abstract The present paper proposes a Galerkin finite
element projection scheme for the solution of the partial dif-
ferential equations (pde’s) involved in the probability density
evolution method, for the linear and nonlinear static analysis
of stochastic systems. According to the principle of preser-
vation of probability, the probability density evolution of a
stochastic system is expressed by its corresponding Fokker–
Planck (FP) stochastic partial differential equation. Direct
integration of the FP equation is feasible only for simple
systems with a small number of degrees of freedom, due to
analytical and/or numerical intractability.However, rewriting
the FP equation conditioned to the random event descrip-
tion, a generalized density evolution equation (GDEE) can
be obtained, which can be reduced to a one dimensional
pde. Two Galerkin finite element method schemes are pro-
posed for the numerical solution of the resulting pde’s,
namely a time-marching discontinuous Galerkin scheme and
the StreamlineUpwind/Petrov Galerkin (SUPG) scheme. In
addition, a reformulation of the classical GDEE is proposed,
which implements the principle of probability preservation
in space instead of time,making this approach suitable for the
stochastic analysis of finite element systems. The advantages
of the FE Galerkin methods and in particular the SUPG over
finite difference schemes, like the modified Lax–Wendroff,
which is the most frequently used method for the solution
of the GDEE, are illustrated with numerical examples and
explored further.
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1 Introduction

The first step to studying the evolution of a mechanical sys-
tem is to make accurate mathematical idealizations of its
properties. That is, the parameters of the system (system
geometry,materials, etc.), the response parameters (displace-
ment, stress, strain, etc.) and the constitutive laws that couple
them, have to be mathematically expressed in such a way
that the mathematical model is in good agreement with the
physical model. In the past, extensive research has been car-
ried out, in order to improve the structural models and the
constitutive laws that govern them, and even though this
research lead to improvement in the results, complete agree-
ment with the results from experiments could not be achieved
[27,34]. The reason for this lies in the nature of the vari-
ables involved in the system. Considering them to be of
deterministic nature was a simplification, dictated mainly
by the limitations of computational capacity. In order to
achieve a more reliable representation of the physical sys-
tem, randomness in the excitation as well as in the system
parameters, such as the material properties, the geometri-
cal parameters and the boundary conditions, uncertainties in
their estimation and their spatial variability had also to be
taken into account. This became feasible with the progress
of computational technology and the corresponding increase
of computer power.

In the effort to incorporate randomness in the modeling
of structures, the so called stochastic finite element method
(SFEM)was developed,which is an extension of the classical
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deterministic FE approach to the stochastic framework. Dif-
ferent methods have been developed for treating the response
variability calculation in the framework of SFEM, the most
eminent of them being theMonte Carlo simulation [37], vari-
ants of the direct MCS, such as importance sampling [36],
subset simulation [1] and line sampling [21], the random
perturbation technique [18], path integral techniques [19,20]
and the spectral stochastic finite element method (SSFEM)
[14]. Non-intrusive Monte Carlo simulation serves as a ver-
satile stochastic analysis method, which can be employed
in any type of problem, with the drawback though, that in
order to achieve high levels of accuracy, great computational
cost is required. In order to alleviate this often intractable
computational burden, customized solution strategies have
been proposed for the repeated solution of near-by systems
of algebraic equations required inMCS [28,29,38]. Random
perturbation technique on the other hand is more efficient
but is still unsuitable for problems with strong nonlinear-
ities and/or large parametric variations. Besides that, path
integral techniques, despite their analytical power, are so far
mostly applied to single degree of freedom systems, whereas
numerical difficulties arisewhen dealingwithmulti degree of
freedom systems.Moreover, intrusive approaches such as the
SSFEM has received great attention in the last decade lead-
ing to elegant Galerkin-based formulations. SSFEM requires
the solution of an augmented algebraic system of equations
with respect to the corresponding deterministic one, which
can become quite challenging due to the increased memory
and computational resources required. This increase in the
dimensions of the coefficientmatrix to be inverted can be dra-
matic in certain cases, such as those involving large variations
and/or non-Gaussian fields and may lead to a disproportion-
ate increase of the computational cost, especially in real
world problems with a large number of dof’s. This impli-
cation renders in certain cases the SSFEM intrusive solution
a more expensive method, compared to non-intrusive brute
force Monte Carlo simulation. In a recent publication [38]
the numerical performance of intrusive versus non-intrusive
methods is critically assessed on the basis of up-to-date
solvers and solution strategies, specifically tailored to the
needs of these analyses.

As an alternative to the above methodologies, a new
method has been recently proposed by Li and Chen [24],
namely the probability density evolution method (PDEM),
which has been successfully employed in both static and
dynamic, linear and nonlinear, stochastic problems. This
method is based on the principle of preservation of proba-
bility and, in a sense, introduces a new framework in solving
the stochastic conservation equation that governs the flow
of probability in the system under consideration. Similar
type of equations have been studied by Cho et al., Venturi
et al. and Wang et al. in computational fluid dynamics with
uncertain parameters [39–41] aswell as stochastic oscillators

[7]. The applicability, however, of these approaches to gen-
eral structural stochastic finite element systems has not yet
been addressed. The distinction between these approaches
and PDEM is that in PDEM the stochastic differential equa-
tion is re-derived from the random event perspective [4].
This way a generalized density evolution equation is defined
(GDEE), which is further reduced to a one-dimensional pde,
which is numerically tractable. A great advantage of PDEM
is that it can achieve high levels of accuracy, independently
of the problem under consideration and the random para-
meters involved in it, with the requirement of a relatively
small number of repeated deterministic analyses compared
to Monte Carlo Simulation.

Akey aspect of PDEMlies in solving accurately the result-
ing deterministic pde’s. These pde’s express mathematically
the conservation of probability and have the form of pure
advection, that is, there is no diffusion term in the equations.
In such cases numerical finite difference solutions tend to
be unstable, unless some diffusion is added artificially in
the scheme. Upwind methods, introduce such artificial dif-
fusion, but, even though they lead to a numerically stable
formulation, they may result in a considerable “smearing”
of the solution [12,22,31,33]. Moreover, in many practi-
cal applications the initial conditions involve discontinuities
(shock, sharp jumps) and resolving these discontinuities
may produce ‘unwanted’ wiggles (spurious oscillations). In
[24] a modified version of the Lax–Wendroff (LW) finite
difference scheme, enhanced with the Total Variation Dimin-
ishing (TVD) property, is proposed for solving the pde’s.
This scheme is proven very efficient and numerically sta-
ble, but can be prone to overly diffuse solutions. Besides
that, in order to ensure its stability, the well known Courant–
Friedrichs–Lewy (CFL) [11] condition is necessary to be
satisfied. This condition defines the incremental step of the
scheme, with the subsequent increase in the computational
cost.

In an attempt to improve the accuracy of the LW finite
difference schemes, an alternative numerical solution of the
PDEM is proposed in this paper, which is based on aGalerkin
finite element method approximation. More specifically, we
formulate the GDEE in the framework of time-marching DG
scheme [8–10,15,32], as well as SUPGFE scheme [2,13] for
the solution of the corresponding pde’s. Numerical results
are presented, which demonstrate that the use of the SUPG,
endowed with a shock capturing term [17], provides more
accurate results with respect to LW and DG, especially in the
areas near the boundary conditions at practically lower com-
putational effort. The decrease in the computational effort is
mainly attributed to the fact that the SUPG method is not
restricted by the CFL condition. In addition, a reformulation
of the classical GDEE is proposed, which implements the
principle of probability preservation in space instead of time,
making this approach suitable for the stochastic analysis of
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finite element systems. The advantages of the FE Galerkin
methods and in particular the SUPG over finite difference
schemes, like the modified LW, which is the most frequently
used method for the solution of the GDEE, are illustrated
with numerical examples and explored further. The remain-
ing of the paper is organized as follows: In the second section
a concise review of the fundamentals of the PDEM is pre-
sented. In the third section a reformulation of the PDEM for
general stochastic systems is introduced. In Sect. 4 the solu-
tion algorithm of the GDEE within the Galerkin framework,
namely, the DG-FEM and SUPG formulations, is illustrated.
Finally, in Sect. 5 the proposedmethodologies are applied for
the analysis of general stochastic systems and their applica-
bility as well as performance over conventional LWmethods
is demonstrated and further discussed.

2 Fundamentals of the probability density
evolution method

The principle of preservation of probability states that, the
inflows, outflows and change in storage of probability in a
control volume of the system must be in balance. This state-
ment is mathematically expressed in the probability density
evolution equation, namely the Fokker–Planck equation. It
wasn’t until the past few years, that a new perspective arose
[4,24], that of the random event description and the above
equation was re-derived, leading to a new family of GDEEs.
To illustrate this concept, consider an n-dimensional stochas-
tic dynamic system, whose equation of motion reads:

M(θ)ü + C(θ)u̇ + f(θ ,u) = F(θ , t) (1)

where M,C, f,F are the mass and damping matrices, the
restoring force vector and the excitation vector respectively;
ü,u̇,u are the acceleration, velocity and displacement vectors
of the structure; θ = (η, ζ ) the vector of all random parame-
ters, with η being the vector of random parameters involved
in the physical properties of the system and ζ the vector of
random parameters involved in the excitation.

Probing deeper into Eq. (1) reveals, that, besides the initial
stochastic input for the system, which is fully contained in
parameter θ , no other source of randomness enters or exits the
system, as it evolves with time. This means, that the principle
of preservation of probability holds, that is:

D

Dt

∫
Ωt×Ωθ

puθ (u, θ , t) dudθ = 0 (2)

where,
D

Dt
denotes the total or material derivative, Ωt × Ωθ

is any arbitrary domain in the augmented state space at time

t , Ωθ is the distribution range of the random vector θ and
puθ denotes the joint pdf of (u(t), θ).

After a series of mathematical manipulations [24,26] Eq.
(2) can be decoupled for each dof as

∫
Ω0×Ωθ

⎛
⎝∂puθ (u, θ , t)

∂t
+

m∑
j=1

u̇ j (θ , t)
∂puθ (u, θ , t)

∂u j

⎞
⎠

dudθ = 0 (3)

where m is the total number of dof’s. Since Eq. (3) holds
for any arbitrary domain Ω0 × Ωθ ∈ Ω × Ωθ , then for any
arbitrary Ωθ ∈ Ωθ ,

∫
Ωθ

⎛
⎝∂puθ (u, θ , t)

∂t
+

m∑
j=1

u̇ j (θ, t)
∂puθ (u, θ , t)

∂u j

⎞
⎠ dθ = 0

(4)

which results in the following partial differential equation:

∂puθ (u, θ , t)

∂t
+

m∑
j=1

u̇ j (θ , t)
∂puθ (u, θ , t)

∂u j
= 0 (5)

or in the case where m = 1, Eq. (5) reduces to

∂puθ (u, θ , t)

∂t
+ u̇(θ , t)

∂puθ (u, θ , t)

∂u
= 0 (6)

Equations (5), (6) (Eqs. (64b), (65) in [4]) are referred as
the GDEEs and possess some significant advantages over the
classical probability density evolution equations (Liouville,
FP, etc.).More specifically, they reduce the high-dimensional
stochastic differential equation, which can be unfeasible to
solve numerically for problemswithmany dof’s, into a series
of one-dimensional deterministic partial differential equa-
tions. To solve the pde’s we need the initial conditions for
the problem, which for most of the cases are of the form:

puθ (u, θ , t) |t=t0= δ(u − u0)pθ (θ) (7)

Then, the solution to Eq. (6) leads to the marginal pdf of u(t)
as:

pu(u, t) =
∫

Ωθ

puθ (u, θ , t)dθ (8)

Taking into account that Eq. (4) holds for any Ωq ∈
Ωθ ,then if we partition Ωθ into sub-domains, Ωq ’s, q =
1, 2, . . . , n pt , such thatΩi∩Ω j = ∅, ∀i �= j and∪n pt

q=1Ωq =
Ωθ , Eq. (6) becomes (for m = 1):
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∫
Ωq

(
∂puθ (u, θ , t)

∂t
+ u̇(θ , t)

∂puθ (u, θ , t)

∂u

)
dθ = 0,

q = 1, 2, . . . , n pt (9)

The probability corresponding to the sub-domain Ωq is then
expressed as:

Pq =
∫

Ωq

pθ (θ)dθ , q = 1, 2, . . . , n pt (10)

If we denote

pq(u, t) =
∫

Ωq

puθ (u, θ , t)dθ , q = 1, 2, . . . , n pt (11)

then,

p(u, t) =
n pt∑
q=1

pq(u, t) (12)

The procedure described above is referred to as the prob-
ability density evolution method and it is evident that the
accuracy of this method depends solely on two parameters:
(a) the partitioning of the probability domain and (b) the
accurate solution of the corresponding pde’s. For the latter,
it has to be mentioned that, solving these pde’s is not a triv-
ial task, due to the fact that these equations are of the pure
advection formwith, inmost cases, discontinuous initial con-
ditions (shock-type). Therefore, the introduction of artificial
dissipation (viscosity) is necessary to ensure the numerical
stability of the solution, while adding too much dissipation
will, as mentioned previously, result in a severe smearing of
the solution.

3 PDEM for general stochastic systems

A reformulation of the GDEE for the analysis of general sto-
chastic systems can be derived in a straightforward manner
by following exactly the same steps deployed in the previous
section. Consider the equation of equilibrium of a multi-
degree-of freedom system

K(θ) · u = F(θ) (13)

where, u stands for the displacement vector along the dimen-
sion of one global degree of freedom. In this case our interest
lies in finding the evolution of probability density function,
along the material points or in other words, as a function of
the position vector of the system, henceforth denoted as x in
the case of one dimensional structures. The difference with
the previous case is that, now, the rate or “velocity” of u is

Fig. 1 Generic element with the randomness involved in the loading
and the system parameters

with respect to the length of the structure and x replaces t in
all the above equations.

Thus, we rewrite Eq. (6) as follows:

∂puθ (u, θ , x)

∂x
+ du(θ , x)

dx

∂puθ (u, θ , x)

∂u
= 0 (14)

with initial conditions:

puθ (u, θ , x) |x=x0= δ(u − u0)pθ (θ) (15)

Then the marginal pdf of u(x) can be written as

pu(u, x) =
∫

Ωθ

puθ (u, θ , x)dθ (16)

For example, if we consider the generic element of Fig. 1
as a typical part of stochastic static system, it is obvious
that the randomness involved in the loading q and the bend-
ing stiffness E I of the element, will lead to a random field
u(x), along the length of the element, which can be eval-
uated via Eq. (14) with the initial conditions expressed in
Eq. (15). The initial conditions can be found at the edge
nodes of the element. For instance, if we have fixed sup-
port at node i , then the displacement at this position will be
zero with certain probability, and the initial condition reads:
puθ (u, θ , x) |x=0= δ(u − 0)pθ (θ).

4 Solution of the GDEE

The basic steps needed to solve the GDEE in Eq. (14), as pro-
posed by Li and Chen [24], are outlined here. These steps are
slightly modified to fit the case of general stochastic systems
and are the following:

Step 1 Discretize the probability-assigned space and
select representative point sets (random events) θq =
(θq,1, θq,2, . . . , θq,s) with q = 1, 2, . . . , n pt , where n pt

is the cardinal number of the point set. To each point set
determine the assigned probabilities Pq ’s via Eq. (10).
Step 2Discretize the physical space intom partitions. For
the prescribed θ = θq solve the discretized determinis-
tic equilibrium equation (Eq. (13)) with a standard FE
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solver, to evaluate
du

(
θq , xm

)
dx

, where xm = m�x (m =
1, 2 . . .), �x is the length step, 0 ≤ xm ≤ L , L being the
length of the structure.Note that in case this partition does
not coincide with the FE discretization, an extrapolation
from the corresponding Gauss points is required.

Step 3 Introducing
du

(
u0,q , θq , xm

)
dx

into theGDEEs and

taking into account the discretized version of Eq. (15),
that is, pq(u, x) |x=x0= δ(u−u0)Pq , solve Eq. (14) with
a finite difference method, or a finite element method, as
proposed in the next chapters, to obtain the numerical
solution of pq(u, x).
Step 4Repeat steps 2, 3 for q = 1, 2, . . . , n pt and take the
numerical integration in Eq. (16) to compute the numer-
ical solution of pu (u, x).

Itmust bementionedhere that the strategyof selecting rep-
resentative point sets at step 1 is of paramount importance to
the efficiency of the method. Apart from the grid-type parti-
tioning of the probability domain, many other strategies have
been successfully employed, depending on the nature of the
problem, that significantly reduce the computational cost of
the method, such as the Number Theoretical Method [6,25],
Tangent Sphere Method [3], Q-SPM [42], RQ-SPM [5] etc.
In addition, solving the deterministic pde (Eq. (14)) at step 3
accurately and efficiently is a vital component of the whole
procedure. When faced with this task, one quickly realizes
that there is a wide range of methods to do so, including
finite difference schemes, finite volume and finite element
methods. The selection of the optimum scheme though isn’t
always an easy task. On the one hand, it depends on the prob-
lem under consideration (e.g. existence of steep gradients) as
well as on the scheme chosen, as some schemes tend to be
more dispersive and others more dissipative. From the three
methods mentioned, finite difference schemes are the easiest
to implement but they have certain drawbacks. For instance,
central finite difference schemes lead to unstable solutions,
while upwind methods suffer from overdissipation. In addi-
tion, finite difference schemes depend heavily upon the CFL
condition, which poses a restriction on the incremental step
of the method and as a consequence, an increase in the com-
putational cost for the solution.

In this work we investigate two alternative to the widely
used up to now LW schemes, based on Galerkin finite ele-
ment approximations for solving Eq. (14). More specifically,
we employ a time-marching discontinuous Galerkin scheme
(DG-FEM) and the Streamline Upwind/Petrov Galerkin
(SUPG) method. The motivation behind that, is the fact
that Eq. (14) describes a conservation law and resembles
the 1D hyperbolic advection equation. Both these meth-
ods have been successfully used for treating this type of
pde’s, each with its own merits [13,15]. Especially for the

SUPG formulation, it’s worth mentioning, that this method
has the additional advantage of not being subjected to the
CFL condition and, thus, leading to a more efficient solution
scheme.

4.1 Space–time finite elements: the
StreamlineUpwind/Petrov–Galerkin formulation

The StreamlineUpwind/Petrov–Galerkin concept (SUPG)
was introduced by Hughes and Brooks [2,17], and the basic
idea behind this method is to add numerical diffusion along
the streamlines. In the above mentioned references, its appli-
cation in the linear scalar advection equation is demonstrated.
Since Eq. (14) resembles the advection equation, we can
rewrite it in the following form:

w·∇ p = 0 (17)

where, w = (1, α(x)) the velocity field, α(x) is the flux
du(x)

dx
and ∇ p = (∂p/∂x, ∂p/∂u). A finite element parti-

tion of the computational domain Ω = Ωu × Ωx ⊂ R2 is
denoted by {Ωe} for e = 1, 2, . . . , Nel . Since the domain
is two dimensional, we can use quadrilateral elements to
discretize Ω . Figure 2 illustrates this discretization of the
physical domain with quadrilateral elements, where each dof
corresponds to the probability at this position. The bound-
ary conditions are Dirichlet on all of the boundary ∂Ω , that
is, p = g. According to [13] we can define the space of
trial solutions as V = {p|p ∈ H1(Ω), p = g on ∂Ω},
where H1 = {p : Ω → R|p, ∂p

∂x ,
∂p
∂u ∈ L2(Ω)} is the

umax

umin

xmin xmax

p4=p(ui,xm)

p1=p(uj,xm)

p3=p(ui,xn)

p2=p(uj,xn)

uj

ui

Element 
(e)

xm xn

1 2

34

Fig. 2 Discretization of the physical domain into 4-nodedquadrilateral
finite elements with 1 degree of freedom per node, corresponding to the
probability assigned to the displacement value and this position
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Sobolev space and we also define the space V0 = {ψ |ψ ∈
H1(Ω),ψ = 0 on ∂Ω}. The basic idea of Petrov–Galerkin
approximation is to specify a weak formulation in which the
space of test (weighting) functions is taken to be different
than the space of the trial solutions.More specifically, the
test space is the space spanned by functions of the form:

ψ̃ = ψ + τw∇ψ (18)

where ψ ∈ V0 is the Galerkin-type weighting function and
τ is a coefficient, which for each element e is given by the
following expression [2]:

τe = aλe

2|we| (19)

In the above expression λe is the characteristic length of the

e element given by λe = min

(
λx

cosϑ
,

λu

sinϑ

)
with λx , λu

being the rectangle’s lengths in x and u direction, respec-

tively, and ϑ = arctan
(∣∣∣wu

wx

∣∣∣
)
. In the following equations

we will use the subscript h to refer to the discrete finite ele-
ment problem. The weak form of Eq. (17) can be written as

∫
Ω

ψhw∇ phdΩ +
nel∑
e=1

∫
Ωe

τw∇ψhw∇ phdΩe = 0 (20)

In Eq. (19) a is the upwind function, which depends on the
element Peclet number Pe (Pe = ∞ for pure advection).
The expression a = coth(Pe) − 1

Pe , with a being equal to
1 in our case, can be used.

In order to further enhance the accuracy of themethod, we
add a discontinuity capturing term in Eq. (20) based on the
methodology presented in [17]. Then, Eq. (20) is rewritten
as follows:

∫
Ω

ψhw∇ phdΩ +
nel∑
e=1

∫
Ωe

τ1w∇ψhw∇ phdΩe

+
nel∑
e=1

∫
Ωe

τ2w∇ψhw‖∇ phdΩe = 0 (21)

where, w‖ denotes the projection of w onto ∇ ph , that is,

w‖ =

⎧⎪⎨
⎪⎩

w∇ ph

|∇ ph |22
, if ∇ ph �= 0

0, if ∇ ph = 0
(22)

According to [17], τ1 = τ and τ2 = max
(
0, τ‖ − τ

)
, where

τ‖ is computed as indicated in Eq. (19), but using w‖ instead
of w. In a matrix notation, Eq. (21) can be rewritten as:

Kp = 0 (23)

where,

K = A + S (24)

Ki j = Ai j + Si j (25)

Ai j =
∫

Ω

(
w∇ϕ j

)
ϕi (26)

Si j =
nel∑
e=1

∫
Ωe

τ1w∇ϕ jw∇ϕi +
nel∑
e=1

∫
Ωe

τ2w∇ϕ jw‖∇ϕi

(27)

and {ϕ} is the basis that spans the functional spaces.

4.2 Discontinuous Galerkin finite element method
(DG-FEM)

The DG method is a robust and compact finite element
projection method, well suited for dealing with partial
differential equations describing conservations laws (e.g.
advection equation). It can be seen as a combination of the
finite element method and the finite volume method, taking
advantages from both. An important distinction between the
DGmethod and the usual finite-element method is that in the
DG-FEM the resulting equations are local to the generating
element and the coupling of the elements is achieved using
the appropriate numerical flux across the elements. Thus,
each element may be thought of as a separate entity that
merely needs to obtain some boundary data from its neigh-
bours and no global linear or nonlinear systems need to be
solved. Moreover, a numerical flux can be chosen to be more
or less dissipative, depending on the problem under consid-
eration.

Consider the following equation representing a GDEE.

∂pq(u, x)

∂x
+ αq(x)

∂pq(u, x)

∂u
= 0, for q = 1, 2, . . . n pt

(28)

under the initial condition:

pq(u, 0) = pq,0(u) (29)

where,αq(x) is the flux
duq(x)

dx
, u ∈ [umin, umax ] = Ωu and

0 ≤ x ≤ L , with L being the length under consideration in
the stochastic system. Without introducing any ambiguities,
we will omit the subscript q in the above expression and
introduce the subscript h to refer to the discrete solution.
Partitioning the domain Ωu by K non-overlapping elements
u ∈ [

ukl , u
k
r

] = Dk such that

Ωu ∼= Ωh
u =

K⋃
k=1

Dk (30)
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where ukl and ukr are the left and right displacements of ele-
ment k, then on each of these elements the local solution can
be expressed as a polynomial of order N = Np − 1.

u ∈ Dk : pkh (u, x) =
Np∑
i=1

pkh

(
uki , x

)
lki (u) (31)

where lki (u) are the interpolating Lagrange polynomials and
pkh

(
uki , x

)
refers to the nodal values. The global solution

p (u, x) is then assumed to be approximated by the N -th
order polynomial approximation ph (u, x), that is:

p(u, x) ∼= ph(u, x) =
K⊕

k=1

pkh(u, x) (32)

defined as the direct sum of the K local polynomial solutions
pkh (u, x).

Following the procedure described in [15] a strong DG-
form of (28) for each element k can be written in matrix
notation as follows

Mk d

dx
pkh + Skα pkh =

[
lk(u)(αpkh − f 
)

]ukr
ukl

(33)

where Mk and Sk are the element’s mass and stiffness matri-
ces respectively. More specifically:

Mk
i j =

∫
Dk

lki (u)lkj (u)du (34)

Ski j =
∫
Dk

lki (u)
dlkj (u)

du
du (35)

and f 
 is a suitably chosen numerical flux, which controls
the information entering and exiting the element. In our cal-
culationswe used themonotone Lax–Friedrichs flux [23,30],
while for the integration with respect to x we used a third-
order three-stage Runge–Kutta scheme [15]. In addition, in
order to prevent the well known oscillations appearing in the
DG-FEM solution, the DG scheme was equipped with the
MUSCL (Monotone Upstream-centered Scheme for Conser-
vations Laws) slope limiter [23].

It must be mentioned here, that the stability of the DG
method is controlled by the CFL condition, which generally
depends on the selection of numerical flux, the order of ele-
ments used and the finite difference scheme employed. In our

case, the inequality �x ≤ 1

|α|�u poses a reasonable bound

for the choice of �u and �x .

4.3 Lax–Wendroff finite difference method with TVD
scheme

A modified version of the LW scheme proposed in [24]
is also used for solving Eq. (14), in order to compare its
efficiency and accuracy to the previously described SUPG
and DG methods, equipped with flux limiters to ensure the
non-negativity of the solution, imposed by the nature of the
pdf. More specifically, if we denote pu(u j , θ , xm) = p j,m ,
then,as described in Eq. (29) of reference [24], Eq. (14) is
discretized into the form

p j,m+1 = p j,m − rL
[1
2
(gm + |gm |)(p j,m − p j−1,m)

+ 1

2
(gm−|gm |)(p j+1,m − p j,m)

]
− 1

2
(1−|rLgm |)

× |rLgm |
[
χ

(
r+
j+ 1

2
, r−

j+ 1
2

)
(p j+1,m − p j,m)

− χ

(
r+
j− 1

2
, r−

j− 1
2

)
(p j,m − p j−1,m)

]
(36)

where xm = m ·�x and�x is the length step in the difference
method; rL = �x

�u is the lattice ratio; Also,

r+
j+ 1

2
= p j+2,m − p j+1,m

p j+1,m − p j,m
, r−

j+ 1
2

= p j,m − p j−1,m

p j+1,m − p j,m

r+
j− 1

2
= p j+1,m − p j,m

p j,m − p j−1,m
, r−

j− 1
2

= p j−1,m − p j−2,m

p j,m − p j−1,m
(37)

The coefficients gm take the value

gm = 1

2

(
du (θ , xm−1)

dx
+ du (θ , xm)

dx

)
(38)

χ(r+, r−) is the flux limiter, which is constructed based on
the Roe-Sweby flux limiter

χsb(r
−) = max(0,min(2r−, 1),min(r−, 2)) (39)

and

χ(r+, r−) = H(−gm)χsb(r
+) + H(gm)χsb(r

−) (40)

with H being the Heaviside function.
A necessary (but not sufficient) condition for the stability

of the scheme is the CFL condition, which for Eq. (36) reads:
|rLgm | ≤ 1.

5 Numerical examples

Example 1 Portal frame.
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P

L

L

Fig. 3 1-story stochastic structure

The simple example of the portal frame of Fig. 3 is chosen
first, in order to test the accuracy of the proposed methodolo-
gies. For this frame of length and height equal to L = 5 m,
a HEB 220 [35] cross-section is assigned to all its members.
The random parameters considered are the modulus of elas-
ticity E and the horizontal force P , which are assumed to
follow the gaussian distribution with mean Ē = 21000 kN

cm2 ,

coefficient of variationCOVE = 0.10,mean P̄ = 30kN and
COVP = 0.15. In this case, our interest lies in finding the
evolution of the probability density function of the horizon-
tal displacement u along the length of each member of the
frame. Geometric and material nonlinearities are included in
the model. For the material nonlinearity an elastic-perfectly
plastic constitutive law is assummed with a yield stress of
Fy = 355 MPa. In the absence of an analytical solution to
our problem the results of a large number of Monte Carlo
simulations were considered as the ‘exact solution’ for com-
parison purposes.

Depicted in the following figures are the mean value and
variance along the length of the path, the evolution of the pdf
p(u, x), and typical pdf profiles at certain positions (snap-
shots), computed with the various proposed methodologies
and the brute force Monte Carlo Simulation (MCS). Fig-
ure 4 presents a comparison in the mean value between the
MCS and the three different approaches, SUPG, LWandDG-
FEM, respectively. We notice a perfect match in all cases.
The same comparison in terms of variance is depicted in
Fig. 5 for two different grids used to discretize the domain
Ωu × Ωx , namely, grid A with 150×600 elements and grid
B with 450×1500. Figure 5a, b presents the results for grid
A and grid B, respectively. It can be seen in these figures
that only SUPG has converged to the MC solution with the
coarse grid A, while the DG and LW require a more dense
mesh to achieve the same accuracy. The reason behind this
is excessive dissipation observed (see Fig. 7) in LW and DG-
FEM, which leads to overly diffuse and spread out solutions.
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Fig. 4 Comparison in mean value between the SUPG, the modified
LW and the DG-FEM for a 150×600 grid with brute force Monte
Carlo simulation. (Color figure online)
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Fig. 5 Comparison in variance between the SUPG, the modified LW
and the DG-FEM for a a 150×600 grid and b 450×1500 grid with
brute force Monte Carlo simulation. (Color figure online)
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Fig. 6 Convergence error (%) in variance as a function of the number
of elements in the Ωu domain for the SUPG, the modified LW and the
DG-FEM. (Color figure online)

Nevertheless, in Fig. 5b it becomes apparent, that a finer grid
tends to significantly improve the results. Besides that, from
Figs. 4, 5 it is also worth noticing that the mean value and the

variability of the horizontal displacement u, remains invari-

ant along the length of the beam, since the term
du

dx
in Eq.

(14) becomes equal to zero and therefore, p(u, x) becomes
constant. The faster convergence of SUPG is further illus-
trated in the convergence study of Fig. 6 from which, it is
evident that SUPG has the highest convergence rate among
the three methods and achieves a considerably smaller error
for the same number of elements in the Ωu domain. The cor-
responding mesh sizes were selected as the minimum ones
that satisfy the CFL condition for the LW and DG-FEM, in
order for the solution to be stable. This CFL imposed restric-
tion can be avoided, however, if we choose to employ the
SUPG method, in which the discretization on Ωu can be
refined indepedently of the Ωx discretization. This advan-
tage of the SUPGwill be illustrated in more detail in the next
example.

In Fig. 7 the evolution of p(u, x) along each position of
the structure is presented, where the 450×1500 grid was
applied in all cases. In this figure it is demonstrated how
the initial probability “flows” through the physical domain
for (a) the MCS method, (b) the SUPG formulation, (c) the

Fig. 7 Evolution of the probability density function p(u, x) for a theMonte Carlo Simulation, b the SUPG, c the modified LW and d the DG-FEM.
(Color figure online)
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Fig. 8 PDF profiles at x=2.50 m for the SUPG, the modified LW and
the DG-FEM for a a 150×600 grid and b 450×1500 grid versus brute
force Monte Carlo. (Color figure online)

modified Lax Wendroff scheme and (d) the DG-FEM. The
x-axis denotes the position of the structure, with x rang-
ing from 0 to 3L , the y-axis denotes the possible values of
the horizontal displacement u and the z-axis the pdf val-
ues p(u, x) in each position. An intersection with a vertical
plane parallel to the y-axis will give the pdf profile at this
position. Due to the geometry and boundary conditions of
the structure, a symmetrical profile of the evolution of the
pdf is expected, and also, in the locations of the supports
(x = 0 and x = 3L) all the probability should be lumped at
the certain event of a zero displacement. From these figures
it is obvious, that only the SUPG method equipped with the
shock capturing terms in Eq. (21) can capture this symmetry.
The DG-FEM formulation and the modified LW scheme fail
to do so, due to the artificial dissipation added in these meth-
ods. Even with an increase in the number of elements in the
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Fig. 9 PDF profiles at x=7.50 m for the SUPG, the modified LW and
the DG-FEM for a a 150×600 grid and b 450×1500 grid versus brute
force Monte Carlo. (Color figure online)

grid, the probability at this boundary could not be accurately
captured.

Finally, Figs. 8, 9 plot the pdf profiles at the positions
x = 2.50 and x = 7.50 m, respectively, for the two mesh
sizes mentioned earlier. Inspection of these figures reveals
some very useful conclusions for each method. Specifically,
SUPG has the disadvantage of not being a monotone method
and thus, developing an undershoot at the base of the advanc-
ing discontinuities, which results in negative pdf values in
their neighbourhood. This conclusion is more obvious in Fig.
8a, which is closer to the boundaries of the structure, and less
in Fig. 9a. This problem, though, can be significantly amelio-
rated by considering a denser mesh, which is able to resolve
the discontinuities [16]. Indeed, from Figs. 8b, 9b where a
denser mesh (450× 1500) is applied, a significant reduction
of the undershoot associatedwith SUPG can be observed. On
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Fig. 10 3-story, 2-bay stochastic frame structure. (Color figure online)

the other hand, the LW and DG-FEM possess the TVD prop-
erty and thus the non-negativity of the solution is ensured.
From Figs. 8a, 9a however, we observe that both these meth-
ods suffer fromanoticeable “smearing” in the solution profile
due to the excess dissipation added in the schemes.Again, the
situation can be improved by using a finer grid (Figs. 8b, 9b).

Example 2 Static response of a two-bay, three-story frame.

A more realistic case which is the 3-storey, 2-bay struc-
ture of Fig. 10 is considered as the second test case. In this
more complex structure, the path, along which we estimate
the evolution of probability is not unique. In Fig. 10 the
red (dashed) line denotes the path we chose to investigate,
but alternative paths can be chosen as well, provided that
the initial conditions are well defined. Initial conditions are
not necessarily defined at some support of the structure. For
instance if we have already evaluated the pdf at the upper left
node of the first story, then we can proceed along the path
denoted with the blue (solid) line in Fig. 10 defining as initial
conditions the calculated pdf at this point. The loading, the
moduli of elasticity of each column, the beams of each floor
and the yielding stresses of the materials in each storey are
considered as random parameters, with properties the ones
presented in Table 1. The partitioning of the corresponding
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Fig. 11 Comparison in mean value between the SUPG, the modified
LW and the DG-FEM with brute force Monte Carlo simulation. (Color
figure online)
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Fig. 12 Comparison in variance between the SUPG, the modified LW
and theDG-FEMwith brute forceMonteCarlo simulation. (Color figure
online)

probability domainplays an important role in the efficiencyof
the method and for this reason we chose to employ the Rota-
tional Quasi-Symmetric Point Method (RQ-SPM) method in
order to determine the representative point sets of the domain.
Implementation aspects of the RQ-SPM can be found in [5].
Only 286 representative point sets are required for themethod
to achieve a partioningof the probability domainwith an error
of 3.58 %, which can be considered as small enough. These
sets can also be found in [5]. As in the previous example, we

Table 1 Random parameters of
the structure

E1−E4 E5−E8 E9−E11 fy1 fy2 fy3 q

Mean 210 GPa 200 GPa 190 GPa 425 MPa 355 MPa 275 MPa 10kN/m2

COV 0.2 0.2 0.2 0.2 0.2 0.2 0.2
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Fig. 13 Convergence error (%) in variance as a function of the number
of elements in the Ωu domain for the SUPG, the modified LW and the
DG-FEM cases. (Color figure online)
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Fig. 14 Convergenve error (%) in variance as a function of the total
number of degrees of freedom ntot in the Ωu × Ωx domain for the
SUPG1 and SUPG2 cases. (Color figure online)

Fig. 15 Evolution of the probability density function p(u, x) for a the Monte Carlo Simulation, b the SUPG, c the modified LW and d the
DG-FEM. (Color figure online)
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Fig. 16 PDF profiles at x=10.00 m for SUPG 100×400, SUPG
200×400, modified LW and DG-FEM versus brute force Monte Carlo.
(Color figure online)
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Fig. 17 PDF profiles at x=30.00m for SUPG 100×400, SUPG
200×400, modified LW and DG-FEM versus brute force Monte Carlo.
(Color figure online)

used HEB 220 for all section types of the frame members,
all having a length of L = 5 m. Geometrical and material
nonlinearities were also included in the model.

Figures 11 and 12 present the mean and variance as a
function of the position along the selected path, calculated
with all aforementioned methodologies, for a 100×400 grid.
From these figures it is apparent that, as in the previous exam-
ple, in terms of mean all methods provide excellent results,
while in terms of variance SUPG provides the most accurate
results. The convergence rates in variance for each method
are also investigated and the results are depicted in Fig. 13.
Again, the superiority of SUPG is evident. Asmentioned pre-
viously, another advantage of the SUPGmethod, that has not
been exploited yet, is the fact that thismethod is not restricted
under the CFL condition, like the other two methods. There-

Table 2 Computational cost for each method

Solving one pde Number of
analyses

Total CPU time

SUPG 0.289s 286 82.709s

Lax–Wedroff 1.829s 286 523.032s

DG-FEM 1.904s 286 544.663s

fore, the Ωx domain in SUPG can be discretized in as many
elements as necessary to obtain an accurate solution inde-
pedently of the Ωu disretization. In the LW and DG-FEM
cases the number of elements in Ωx must obey the CFL con-
dition and thus they should be significantly increased leading
to a more expensive mesh. This advantage of the SUPG is
demonstrated in Fig. 14, which plots the convergence error in
variance against the total number of elements in the domain
for two cases, namely ‘SUPG1’ and ‘SUPG2’. In both cases
the same number of elements for the discretization of Ωu is
used, but in the former case (‘SUPG1’) the Ωx is discretized
in as many elements as required by the CFL condition, while
for the latter (‘SUPG2’) a smaller number is used, namely 160
elements for all analyses. From this figure, it can be observed
that SUPG can achieve almost the same level of accuracy for
a significantly coarser mesh with the consequent reduction
in the computational burden.

Figure 15 presents the evolution of the pdf along the length
of the chosen path for the (a) MCS, (b) SUPG, (c) LW and
(d) DG-FEM formulation. Again, it is apparent that only the
SUPG can capture accurately the probability at the end of
the domain. As in the previous example, the variability of
the horizontal response remains constant along the beams, a
result that agrees with the physical interpretation. In Figs. 16
and 17 the pdf profiles at the positions x = 10.0 and x =
30.0 m respectively, are presented. In all cases we used the
same 100×400 grid, expect for the SUPG casewhere we also
used a 200×400 grid for comparison purposes. The results
are of fair accuracy but some weaknesses for each method
can also be reported. More specifically, SUPG allows the
pdf to take negative values, while LW and DG-FEM produce
more “smeared” profiles. For the SUPG case, in particular,
this problem could be ameliorated by considering a finer grid
and this becomes evident from the results of the SUPG case
with the denser mesh, where a noticeable improvement can
be reported.

Finally, an assessment of the performance of the proposed
methodologies is attempted here on the basis of computing
time required to reach the solution. In order for the com-
parison to be fair we used the exact grid that gives an error
of 3 % in variance for each method. More specifically, we
considered a 84×160, a 241×513 and a 400×851 grid for
SUPG, LW and DG-FEM respectively. The computational
cost for each method in terms of total CPU time is illus-
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Fig. 18 L-shaped plane stress problem

Table 3 Random parameters of the structure

E F ν

Mean 21 GPa 5000 kN 0.3

COV 0.2 0.2 0.2
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Fig. 19 Comparison in variance between SUPG and brute forceMonte
Carlo simulation. (Color figure online)

trated in Table 2. From this table it is apparent that the SUPG
method is the most efficient choice, while the LW and the
DG-FEM require six to seven times the cost of SUPG.

Example 3 Plane stress problem.
Finally, the L-shaped plane stress problem of Fig. 18 is

considered, in order to demonstrate the applicability of the
proposed methodology to general stochastic finite element

Fig. 20 Evolution of the probability density function of the vertical
displacement p(uv, x) obtained by the PDEM with the SUPG formu-
lation
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Fig. 21 PDF profiles at x=2.0 m for the SUPG and brute force Monte
Carlo simulation. (Color figure online)

systems. In this example the modulus of elasticity E , the
forces F and the Poisson ratio ν are assumed random and
follow a Gaussian distribution with properties the ones pre-
sented in Table 3. For the solution of the physical problem,
the plate is discretized into 340 quadrilateral finite elements
resulting in 682 dof’s. In this case, our interest lies in esti-
mating the evolution of the pdf of the vertical displacement
uv . It should be noted here that, despite the fact that the prob-
lem is two-dimensional, the one-dimensional version of the
GDEE in Eq. (14) can be implemented in the same way, that
it was implemented in the previous Example 2. Therefore, a
path has to be selected at first, in order to apply the proposed
methodology. Such a path is depicted with the red (dashed)
line in Fig. 18 and its total length is 3.1 m.

Figure 19 plots the variance of the vertical displacement
along the selected path computedwith the PDEMwith SUPG
and MCS. As shown in this figure, the results are in close
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Fig. 22 Contour plots of variance for a the Monte Carlo Simulation and b the SUPG. a Monte Carlo Simulation. b StreamlineUpwind/Petrov
Galerkin. (Color figure online)

agreement. Figure 20 presents the evolution of the pdf of
the vertical displacement p(uv, x) along the length of the
selected path for the SUPG. It becomes obvious that SUPG
indeed manages to capture accurately the probabilistic infor-
mation at the boundaries.An intersectionwith a vertical plane
parallel to the uv-axis at position x = 2.0 m, which corre-
sponds to node A with coordinates (0.9, 0.6), will give the
pdf profile of the vertical displacement at this position, as
illustrated in Fig. 21. Again the results between MCS and
PDEM are in almost perfect match. Lastly, instead of the
chosen path we could consider a path that runs through all
the nodes of the problem and estimate the complete prob-
abilistic characteristics of the vertical displacement. In this
case though, boundary conditions would have to be imposed
not only at the edges of the path, but also at the interior posi-
tions where the path reaches a support that constraints the
vertical displacement. SUPG is the only method that enables
insertion of such constraints in the resulting system of alge-
braic equations (Eq. (23)). This property renders SUPG the
onlymethod that can be applied directly to such general finite
element systems since it is the only capable of gathering the
probability at the certain event of zero displacement at the
supports. The results of this calculation are presented in the
contour plots of the variance of the vertical displacement
depicted in Fig. 22a, b for MCS and SUPG, respectively.
These results demonstrate a fair accuracy of the SUPG with
respect to the ‘exact’ MCS solution.

6 Conclusions

An alternative methodology of applying the probability den-
sity evolution method in general stochastic FE systems is

outlined. With the proposed methodology the probability
density function at a given position of the structure can be
estimated via the solution of a series of pure advection pde’s
and thus, the complete probabilistic information of the sys-
tem under consideration can be accurately and efficiently
captured. In an attempt to increase the accuracy of the most
frequently used finite differenceLWschemes,which are used
in order to solve the pde’s involved in the method, two alter-
native Galerkin-based techniques were investigated, namely,
the DG-FEM and the Streamline Upwind/Petrov Galerkin
method. The results were compared to the LW equipped with
the TVD property, as well as with brute force Monte Carlo
Simulation. Our investigations showed SUPG to be more
efficient, having higher convergence rates than the other two
methods, while being the only method that could capture
accurately the evolution of pdf near the boundaries of the
structure.
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