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In this work a different Robust Design Optimization (RDO) approach is proposed implementing the
concept of Variability Response Function (VRF), which is a function that when combined with the power
spectral density of the stochastic field that models the system’s uncertainty, formulates an integral
expression for the variance of the system’s response. The basic idea is to exploit a very well-known
property of the VRF, which is its independence of the stochastic system parameters, in order to obtain
global optima that depend only on the deterministic parameters of the problem. This way, optimal
structural designs are achieved which are globally insensitive to uncertainties, that is to say they are free
of the spectral-distribution characteristics of the stochastic fields modeling the uncertainties. This is
achieved by setting in addition to the total material cost, the maximum VRF value as an objective func-
tion. The advantages of using the proposed methodology over traditional Robust Design Optimization are
illustrated through an application to a frame-type structure where it is demonstrated that the designs
achieved through classical RDO for a given stochastic field description are not optimal for a variation
on the spectral properties of the random field modeling the system uncertainty, while optimal designs
obtained with the VRF-based RDO remain optimum for the worst case scenario stochastic fields.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of Robust Design Optimization (RDO) has been
introduced in order to deal with intrinsic uncertainties in physical
systems that drive the system performance to deviate from the
deterministically expected performance into sub-optimal designs,
thus neutralizing the effort of the optimization procedure itself.
In RDO the analyst is taking into account the stochastic properties
of the system variables/parameters and/or system constraints and
effectively reaches a safer optimum design which should be less
sensitive to random system parameter variations. Various method-
ologies have been proposed in recent years regarding RDO and its
applications to various problems. In classical RDO formulation the
goal of minimizing objective function(s) is achieved by considering
the mean and/or the standard deviation of a response quantity and
trying to establish the designs that minimize the aforementioned
quantities considering deterministic or reliability constraints
[1,2]. In Reliability-based Robust Design Optimization (RRDO)
[3–5] usually care is taken to address the influence of probabilistic
constraints as a limit on the probability of failure in the context of
RDO of structures. Vulnerability-based Robust Design Optimiza-
tion (VRDO) [6] is a special case of RRDO where intermediate limit
states approaching the probabilistic constraints are also taken into
account thus providing possibly crucial information regarding
structural behavior and operational integrity.

All previously mentioned RDO formulations are to be carried
out in a stochastic finite element method (SFEM) framework so
as to efficiently estimate the required quantities associated with
system variations. This consideration of system randomness how-
ever, for it to be reliable, requires a precise knowledge of proba-
bilistic characteristics (marginal pdf’s and correlation structures)
of the respective random fields modeling system parameters
acquired only through corresponding experimental surveys or
otherwise careful assumption/selection of various statistical prop-
erties describing the system variables/parameters uncertainty.
Furthermore it increases substantially the analysis computational
cost as any candidate design requires full stochastic analysis for
the estimation of various statistical quantities. In the frequent case
that such conditions are not met, similar analyses are implemented
based on sensitivity analyses with respect to the aforementioned
parameters resulting in a significant further increase of the overall
computational cost.

In the present paper an alternative RDO procedure is proposed
utilizing Variability Response Functions (VRF) concept [7–15] in an
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effort to provide an answer in aforementioned known issues while
optimizing a frame structure involving stochastic field material
properties with respect to its total weight and robustness of its
displacement response. It is reminded here that system response
variance, as originally proposed in [7] and then extended and
further developed in [8–14], can be expressed in the following
integral form expression:

VarðuÞ ¼
Z 1

�1
VRFðj; rff Þ Sff ðjÞdj ð1Þ

In the above expression rff is the uncertain system variable stan-
dard deviation, Sff(j) is the stochastic field spectral density and j
the spatial frequency (rad/m). VRF’s product and integration with
the spectral density function Sff(j) of the stochastic field that mod-
els the uncertain system variable(s) amounts to system response
variance vector Var(u). In the above expression VRF, which is a vec-
tor comprised of a VRF for each degree of freedom of the FE system,
is assumed to be deterministic, an assumption proven rigorously
only for statically determinate beam-type structures. For a number
of other applications this assumption has been demonstrated
numerically while further evidence has been provided with the
introduction of the so called Generalized VRF (GVRF) which is a
VRF calculated from a family of spectral density functions and var-
ious pdfs. What is really beneficial under this assumption is the abil-
ity to establish spectral- and pdf-free upper bounds in a
straightforward manner described in the following equation as it
has been explained in [12]:

VarðuÞ 6 VRFðjmax; rff Þ r2
ff ð2Þ

where VRF(jmax,rff) is the maximum value of the VRF attained at
some wave number jmax. Therefore, setting maximum VRF value
as an objective function accounting for system response robustness,
in addition to the total weight, the system is ensured to exhibit, for
a given weight class, the lowest possible variance response under
conditions imposed by the worst possible stochastic field. The worst
possible stochastic field for a particular design candidate is deter-
mined by means of Eq. (2) i.e. it is a stochastic field with a
monochromatic SDF concentrated at jmax [12]. The optimum design
candidate for this particular weight class is the one that minimizes
the respective VRF(jmax,rff) value. Repeating this process for all
possible weight classes one a two dimensional Pareto front is cre-
ated for two objective functions: the weight and the system vari-
ance response accruing from Eq. (2).

In classical RDO formulation, optimization is performed for an a
priori selected stochastic field. In real life applications however
correlation structure of the uncertain system parameter is rarely
known thus rendering such an optimization procedure redundant.
Consequently the designer is obliged to conduct multiple such
optimization procedures to shield the designed system from all
possibilities. By using the proposed methodology this problem is
overcome because each design candidate is evaluated based on
its performance under the worst case scenario determined for
the specific design. Effectively the designer is ensured that the sys-
tem will have the best possible performance at the worst possible
conditions.

The advantages of using the proposed methodology over tradi-
tional Robust Design Optimization are illustrated through an appli-
cation to a frame-type structure where it is demonstrated that the
designs achieved through classical RDO for a given stochastic field
description are not optimal if a variation on the spectral properties
of the random field modeling the system uncertainty occurs. On
the other hand optimal designs obtained with the VRF-based
RDO remain optimum for the worst case scenario stochastic fields.
In order to demonstrate this, a bi-objective function is formulated
taking into account uncertainties in the material properties
modeled as random fields. Deterministic constraints of maximum
stress and displacement response are applied. A Pareto front is
initially constructed through a classical RDO formulation and
multi-objective Genetic Algorithm solver for the two conflicting
objective functions, namely the total structural weight and the sys-
tem response variability, for a given stochastic field with a classical
Robust Design Optimization formulation. Then, maximum possible
variances of the selected designs are computed from the respective
maximum values (see Eq. (2)) of the corresponding Variability
Response Functions characteristic to these designs. The resulting
front is then compared to a new Pareto front in which the second
objective function is the maximum possible system variance which
can be readily obtained by minimizing the maximum value of the
Variability Response Function minVRF(jmax,rff). The former
classical RDO front proves to be, as expected, sub-optimal to the
VRF-based one since the latter is by definition independent of
the probability distribution and the spectral density used to model
system’s uncertainty. It is mentioned that the generated front and
the respective proposed designs are referring to a variety of
stochastic fields in contrast to the classical RDO. It is also clarified
that the proposed designs are not necessarily optimal when exam-
ined under the scope of only one predesignated stochastic field. In
the case that an optimization is carried out for a specific correlation
structure the resulting design selection will be suboptimal with
respect to any other correlation structure.
2. Classical RDO formulation

A general formulation of an optimization problem can be stated
as:

optimize : f ðxÞ; ðaÞ
subject to : giðxÞ 6 0; i ¼ 1; . . . ; I; ðbÞ

hjðxÞ ¼ 0; J ¼ 1; . . . ; J; ðcÞ

9>=
>; ð3Þ

where (3b) represents the set of inequality constraints and (3c) the
set of equality constraints. In our case objective function f(x) is a bi-
objective function taking under consideration total material cost i.e.
total structural weight and system variance response. Thus our
problem falls into the category of multi-objective optimization with
structural cost and robustness of the response being the focus of our
design. So the RDO formulation in our example for demonstrative
purposes can be stated as follows:

mins2F f ¼ ½Cðs;xÞ; varðuÞ�T ð4Þ

subjected to deterministic constraints:

gjðxÞ 6 0 J ¼ 1; . . . ; k ð5Þ

where f are the objective functions related to the material cost C and
system variance response var(u). Vector s represents the design
variable vectors and x is the position vector. F is the feasible
region where all the deterministic constraint functions gj are satis-
fied. It is mentioned here that an alternative second objective
function could be selected as opposed to var(u) i.e. ðe½u� þ 3ruÞ
where ru ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðuÞp
, that would also be a very valid conceptually

selection as well. However this would lead to an identical selection
of design variables as with the methodology followed in the current
work since eðuÞ is almost constant with respect to different SDF as
shown in [11] and very close to the deterministic displacement
udet. Therefore, minfeðuÞ þ 3rugeðuÞ þ 3minðruÞ. Apart from this,
it is quite common that coefficient of variation COV alone is selected
as the second counterpart of a bi-objective function in a robust
design problem [1,2,6].
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3. Analysis of response variability using VRFs

Without loss of generality consider the linear stochastic FE sys-
tem of Fig. 1 which is a fixed–fixed beam/frame structure. The
inverse combined bending stiffness parameter EI is assumed to
vary randomly as a stochastic field along the length of the beam
according to Eq. (6) implying that both E and I are random param-
eters. Beam section area A is assumed deterministic since it is a
parameter essentially not contributing to the bending dominated
response of the frames.

1
ðEIÞðxÞ ¼ F0 ð1þ f ðxÞÞ ð6Þ

where E is the elastic modulus, I is the moment of inertia, F0 is the
mean value of the inverse of EI, and f(x) is a zero-mean homoge-
neous stochastic field modeling the variation of 1/(EI) around its
mean value.

Following a procedure similar to the one presented in [11], it is
possible to express the variance of the response variability of a
stochastic finite element system in the integral form expression
of Eq. (1). The numerical estimation of VRF in Eq. (1) involves a
FEM-based fast Monte Carlo simulation (FEM-FMCS) whose idea
is to consider the random field in Eq. (6) as a random sinusoid
[12,13] and plug its monochromatic power spectrum into Eq. (1),
in order to compute the respective mean and variance response
at various wave numbers. The steps of the FEM-FMCS approach
are the following:

(i) Generate N (5–10) sample functions of the below random
sinusoid with standard deviation rff and wave number �j
modeling the variation of the inverse of the combined stiff-
ness parameter 1/(EI) around its mean F0:
Fig. 1.
elemen
f jðxÞ ¼
ffiffiffi
2

p
rff cos ð�jxþujÞ ð7Þ

where j = 1, 2,. . ., N and uj varies randomly under uniform
distribution in the range [0, 2p]. These samples are generated
by dividing the range [0, 2p] at 5–10 equally spaced distances
Geometry and loading of the fixed–fixed frame discretized with 60 beam
ts.
and selecting the centers of these distances as values of ran-
dom phase angles uj’s.
(ii) Using these N generated sample functions it is straightfor-
ward to compute their respective response variance,
Var½u��j, by solving the corresponding FEM system under
the applied loading.

(iii) The value of the VRF at wave number �j can then be com-
puted as follows:
VRFðt; �j;rff Þ ¼ Var½u��j
r2

ff

ð8Þ

The previous equation is a direct consequence of the integral
expression in Eq. (2) in the case that the stochastic field
becomes a random sinusoid.
(iv) Get VRF as a function of wave number j by repeating previ-
ous steps for various wave numbers. The entire procedure
can be repeated for different values of the standard devia-
tion rff of the random sinusoid.

(v) Identify maximum VRF value and then apply Eq. (2) to calcu-
late spectral- and distribution-free upper bounds for each
degree of freedom of the FE system.

3.1. Numerical validation of the VRF with GVRF

In the context of this work and in order to validate our findings
we have utilized the recently established concept of GVRF [15] in
order to further evidence the assumption of independence of the
VRF of the stochastic parameters of the problem. For this purpose
a GVRF was calculated for a family of moving SDFs and then com-
pared to the VRF computed via FEM-FMCS.

For this purpose Eq. (1) can be rewritten in the following dis-
cretized form:

Var½uðxÞ� ¼ 2½Sf ðj1Þ Sf ðj2Þ � � � Sf ðjNÞ� �

VRFðx;j1Þ
VRFðx;j2Þ

..

.

VRFðx;jNÞ

2
66664

3
77775Dj ð9Þ

Having assumed that VRF is independent of the power spectral
density and the marginal pdf, it is natural to assume that the same
VRF values can be used to estimate system variance for various
SDFs. Therefore the following relation should also be true, only
now that VRF is named Generalized Variability Response Function
(GVRF)

Var½uðxÞ1�
Var½uðxÞ2�

..

.

Var½uðxÞN �

2
66664

3
77775¼2

Sf 1 ðj1Þ Sf 1 ðj2Þ ��� Sf 1 ðjNÞ
Sf 2 ðj1Þ Sf 2 ðj2Þ ��� Sf 2 ðjNÞ

..

. ..
. . .

. ..
.

SfN ðj1Þ SfN ðj2Þ ��� SfN ðjNÞ

2
66664

3
77775�

GVRFðx;j1Þ
GVRFðx;j2Þ

..

.

GVRFðx;jNÞ

2
66664

3
77775Dj

ð10Þ
For the computation of the GVRF the left hand side vector,

which is the vector of different system variances, is calculated by
respective brute-force Monte Carlo simulations. The matrix on
the right hand side is the matrix of SDF values for various corre-
sponding spectral density types Sf i ðjÞ; i ¼ 1;2; . . . ;N. For the pur-
poses of this work a parent SDF SP of exponential form has been
used given by:

SP ðjÞ ¼ r2
ffexp ð�2jjjÞ ð11Þ

In each row of Eq. (10) corresponds a different SDF of the SP family.
The ith SDF in the ith row of Eq. (10) is defined as follows:

SPi ðjÞ ¼
SPðjþ ju � iDjþ DjÞ; 0 6 j 6 ði� 1ÞDj
SP ðj� iDjÞ; iDj 6 j 6 ju

�
ð12Þ
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Four different SDFs of the SP family are depicted in Fig. 2. Effec-
tively, Eq. (10) describes a system of N linear equations with N
unknowns, thus providing a unique solution for the GVRF vector.

4. RDO using Variability Response Functions

RDO using VRFs (VRF-RDO) implements a bi-objective function
involving maximum VRF value and total structural weight.
The constraints of this function can be either stress-and/or
displacement-related. VRF is a function characterizing variability
response of the system regardless of the spectral density function
of the stochastic field modeling the inverse of the combined
bending stiffness parameter EI. Thus, minimizing its maximum
value selects a design candidate for the system that has the optimal
performance with respect to the worst case scenario.

A general formulation of the VRF-RDO can be stated as follows:

mins2F f ¼ ½Cðs;XÞ;VRFðjmax;rff Þ�T ð13Þ
subjected to deterministic constraints:

gj ðXÞ 6 0 J ¼ 1; . . . ; k ð14Þ
where f are the objective functions related to the material cost C and
the vector that contains the maximum values of selected Variability
Response Function quantities VRFðjmax;rff Þ. Material cost C is an
obvious selection as an objective function in most structural design
problems. Maximum attained VRF value VRFðjmax;rff Þ, is chosen as
the second objective function to minimize, accounting for system
variability and effectively dealing with existing uncertainty in a
structural probabilistic environment. Vector s represents the design
variable vectors and X is the position vector. F is the feasible region
where all the deterministic constraint functions gj are satisfied. The
VRFðjmax;rff Þ is qualified as an objective function because it pro-
vides with more general system inherent information independent
of the stochastic field correlation structure. Therefore under the
VRF-RDO formulation the design candidate is selected so that it
attains the lowest possible variability response when the worst case
scenario, in terms of stochastic field spectral density, is applied.

5. Multi-objective optimization using Genetic Algorithms

The solution of a multi-objective optimization problem is given
in the form of a so-called Pareto front as opposed to a single-
objective problem where the solution is singular. Several methods
have been proposed for multi-objective optimization such as the
weighted sum method [16], goal programming [17], physical pro-
gramming [18,19], compromise programming [20], as well as
recently developed evolutionary algorithms such as Strength Par-
eto Evolutionary Algorithm 2 (SPEA-2) [21], simulated annealing
[22], particle swarm optimization [23,24] and Non-dominated
Sorting Genetic Algorithm II (NSGA-II) [25]. In the current work
the multi-objective optimization is conducted implementing the
NSGA-II which is established as a standard approach in identifying
the ‘Pareto front’. Multiobjective evolutionary algorithms are
preferred to classical optimization methods primarily due to their
ability to find multiple Pareto-optimal solutions in one single run.
Fig. 2. Plots of different spectral density functions of the Sp family for a
discretization of 128 steps in the frequency domain.
However, they have been mainly criticized for issues like high
computational complexity and non-elitistic approach.

NSGA-II which is adopted as an optimization method in this
study has dealt efficiently with these issues. It uses an elitist prin-
ciple and an explicit diversity preserving mechanism and it
emphasizes on non-dominated solutions. A simple flowchart of
the algorithm is shown in Fig. 3. At any generation t, utilizing the
standard genetic operators (selection, crossover, mutation), the
offspring population Qt is created from the parent population Pt.
Population Rt is formed combining the two populations. The new
population is now of total size 2N. Then, the population Rt is
classified into different non-domination classes. Thereafter, the
new population is filled by points of different non-domination
fronts, one at a time. The filling starts with the first non-
domination front (of class one) and continues with points of the
second non-domination front, and so on. Since the overall popula-
tion size of Rt is 2N, not all fronts can be accommodated in N slots
available for the new population. All fronts which could not be
accommodated are deleted. To deal with diversity-preservation
issues of the estimated Pareto front the NSGA-II utilizes the crowd-
ing distance di. This quantity di is the perimeter of the cuboid
formed by using the nearest neighbors in the objective space as
the vertices and it is a measure of the objective space around i
which is not occupied by any other solution in the population.
The optimal Pareto front points are selected as those individuals
of the population that demonstrate the non-domination property
and have the highest possible crowding distance di.

By means of the nature of this particular problem, objectives
and constraints are regarded as non-linear functions. The popula-
tion size is set equal to 50 for each generation. Migration and cross-
over fractions are set equal to 0.5. Maximum number of
generations was set equal to 150.
6. Numerical example

The three-story frame shown in Fig. 1 is selected in order to
showcase the potential of the VRF-RDO formulation. For this
structure, the inverse of (EI) is assumed to vary randomly along

its length according to Eq. (1) with F0 ¼ ð1:35� 108 kN m3Þ�1
.

Additionally, each story is 4 m long and 3 m high. For the analysis
of the frame structure we used 220 beam elements, 15 for each col-
umn and 20 for each beam resulting in 654 d.o.f.’s.

A concentrated moment is applied at the middle of each storey
equal to M ¼ 70 kN m and a distributed load q = 3.2 kN/m along all
beams (see Fig. 1). Assuming full statistical dependence, the
stochastic field f(x) in Eq. (6) is considered to vary across the length
of the columns and the beams of the frame as follows: x is assumed
to run first along the columns from left to right and from bottom to
top in the first story; then along the beams of the first floor from
left to right. Following the same pattern for stories 2 and 3 a
continuous field is formed. The SDF of the field is assumed to be
exponential and given as:

Sff ðjÞ ¼ 1
4
r2

ff b
3j2e�bjjj ð15Þ

Two different values of the correlation length parameter were
examined, b = 10, 70 with a standard deviation rff = 0.1. Plots of
the SDF with respect to the frequency j (rad/m) for the selected
values of b can be seen in Fig. 4.

The geometric properties of the columns and the beams at each
storey of the frame are considered to be the four distinct design
variables for the VRF-RDO formulation (see Fig. 1). The selection
of the geometric properties of the columns and the beams of the
frame has been defined within the set of the Eurocode-8 HEB
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Fig. 3. Schematic flowchart of the NSGA-II as implemented.

Fig. 4. Spectral density functions for stochastic field f(x) standard deviation rff = 0.1
for two different values of the correlation length parameter.
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sections from HEB100 to HEB1000. The formulation of the VRF-
RDO problem is as follows:

mins2F f ¼ ½VOLðsÞ;VRFðjmax;rff Þ�T

s ¼ ½X1;X2;X3;X4�T
Xi ¼ ½Ai; Ii�

ð16Þ

subjected to

Xi 2 X

maxðrÞ 6 ry=1:10; ry ¼ 235 Mpa
ð17Þ
where VRFðjmax;rff Þ is the maximum VRF value corresponding to
vertical displacement u in Fig. 1, X is the discrete set containing
the geometric properties of the EC-8 sections from HEB100 to
HEB1000, F#X4 is the feasible region for the design variable s
where all constraints are satisfied, Ai, Ii are the mean values of
cross-section and moment of inertia respectively of the structural
members, max (r) is the maximum deterministically derived effec-
tive stress for each design s appearing in the model and ry is the
material yield stress. It is mentioned here that this methodology
is fully extendable and able to facilitate multiple displacements of
the structure with no further implications and additional cost in a
straightforward manner.

An initial classical RD procedure was performed for the case
that a given stochastic field with a SDF with b = 10 in Eq. (7)
describes the inverse of the combined stiffness parameter in Eq.
(6).

Fig. 5 presents the calculated Pareto front where, as expected,
the heaviest designs exhibit the superior performance i.e. the min-
imum response variability. Likewise, lighter designs trade off less
cost, in terms of total material volume, with increased variability.
The same figure presents also a derivative plot which was pro-
duced by calculating the upper bound on the response variability
by means of Eq. (2) for each of the designs of the previously calcu-
lated Pareto front from the classical RD procedure. As shown in
Fig. 5 the derivative plot shifts clearly to the right which means
that at least one field can be found, namely a random sinusoid at
j = jmax of the VRF of each candidate design, in which the variance



Fig. 5. Pareto front for classical RDO for a given field with b = 10 and total weight as
objective functions and maximum possible variance for the selected designs.
Variance axis in logarithmic scale.

Fig. 6. Graphs of VRF for different total weight and structur
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is significantly higher that the on computed for the given stochas-
tic field with b = 10.

In order to determine the upper bound on the variability
response for each design we evaluate their corresponding VRFs.
Fig. 6 depict some typical VRFs for the respective designs of this
system. Specifically, in Fig. 6(a) the graphs of three conveniently
selected designs are depicted; while the first design s1 is the heav-
iest one, it demonstrates almost identical performance, as far as
VRF values are concerned, with the last design s3 which generates
considerably lower structural weight. On the other hand for the
design s2 with yet identical resulting weight as design s3, VRF is
substantially augmented thus establishing it as an inferior design
with respect to design s3. In Fig. 6(b) two similar VRF graphs are
depicted for two designs of unequal total accruing weight while
in Fig. 6(c) two designs with equal total weight produce two dis-
parate VRF graphs. In Fig. 6(d) two designs of equal total weight
0.74 m3, namely s2 and s3, result in totally different VRFs while s1
with lower total weight exhibits similar performance to s3. Lastly
in Fig. 6(e) two designs of substantially different total weights
exhibit similar performance making it clear that there is plenty
al members’ cross sections included in design vector s.



Fig. 7. Pareto front for classical RDO for a given field with b = 70 and total weight as
objective functions and maximum possible variance for the selected designs.
Variance axis in logarithmic scale.

Fig. 9. Comparison of GVRF and VRF graphs for a specific design vector s with
respective moments of inertia.
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of room for optimization with respect to VRF maximum value
depending on alterations on the design vector even for equal struc-
tural weights. From these VRF graphs it is evident that the wave
number domains that are mostly contributing to the VRF and
consequently to the response variance demonstrate a significant
variation and strongly depend on the deterministic parameters of
the problem. Therefore, if a classical RDO results in optimum sys-
tem response variability for a given SDF this doesn’t necessarily
mean that this design is also optimumwith respect to the response
variability for a different SDF.

The same conclusion can be derived from the Pareto front of the
classical RDO in Fig. 7 but for a correlation length parameter b = 70.
From Figs. 5 and 7 it can be observed that in the case of b = 10,
average ‘shift’ in variance is equal to 74% ranging from 44% to
140% while in the case of b = 70 the respective percentages are
86%, 42% and 226%. Fig. 8 presents the two previous results in com-
parison to the Pareto front produced by the VRF-RDO formulation.
What is important to bear in mind in the VRF-RDO procedure is
that optimal designs in the Pareto front of Fig. 8 exhibit the glob-
ally optimal performance when focusing on different possible
stochastic fields of the uncertain system parameter. Specifically,
comparing the VRF-RDO Pareto front with the maximum possible
variance front for b = 10 case we notice that for a similar weight,
i.e. the last point of each front (VRF-RDO point weight equal to
Fig. 8. Pareto fronts for classical RDO with variability response for a given field with b =
variances for the selected designs and Pareto front with VRF and total weight as objecti
0.181 m3 and b = 10 case point weight equal to 0.197 m3) there is
a 45% reduction in variance achieved. In another case for the
weight class around 0.27 m3 the reduction is almost 60%. When
comparing VRF-RDO Pareto front with the maximum possible vari-
ance front for b = 70, reduction in variance can be even more dra-
matic reaching up to 80% (VRF-RDO point weight equal to 0.430 m3

and b = 70 case point weight equal to 0.444 m3). This can be
explained by the following observation; in the specific static model
it seems to be a standard feature of VRF (see Fig. 6) to attain max-
imum value far from the neighborhood of j = 0 rad/m while the
SDF that is used in our example, when the correlation length
parameter b is equal to 70, concentrates 99% of its power at the
proximity of 0 rad/m wavenumber i.e. for j 6 0.13 rad/m (see
Fig. 4). Thus, the integral expression of Eq. (1) produces a deceiv-
ingly low variance for the case when b = 70 not taking into account
the evolution of VRF for higher rad/m where practically SDF is zero
and consequently the classical RDO procedure effectively focuses
its selection process on designs that give low VRF values at low
wave-numbers neglecting what the variance might be for an alter-
native stochastic field.

Finally, in Fig. 9(a) comparison of VRF with the respective GVRF
generated with the methodology described in Section 3.1 is
presented for a randomly selected design of the structural model.
The agreement of the two curves validates the conjecture of
10, 70 and total weight as objective functions with respective maximum possible
ve functions. Variance axis in logarithmic scale.
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independence of the VRF from the stochastic parameters of the
problem.
7. Conclusions

In the present work, an alternative Robust Design Optimization
is proposed based on the concept of Variability Response Function.
Taking advantage of the VRF’s invariance to the stochastic field’s
correlation structure and probability distribution, an alternative
Robust Design Optimization formulation is achieved that is
dependent only upon deterministic parameters of the problem.
The VRF-RDO derived Pareto front provides design candidates,
through an essentially deterministic procedure, that have an opti-
mal performance taking into account the worst possible stochastic
field for the system response. The advantages of using the pro-
posed methodology over traditional Robust Design Optimization
are illustrated through an application to a frame-type structure
where it is demonstrated that the designs achieved through classi-
cal RDO for a given stochastic field description are not optimal for a
variation on the spectral properties of the random field modeling
the system uncertainty, while designs obtained with the VRF-
RDO achieve optimal performance for the worst case scenario
stochastic fields.
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