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Abstract Incremental dynamic analysis (IDA) is a powerful method for the seismic

performance assessment of structures. IDA is also very efficient for handling uncertainty

due to the mechanical properties of the structure. In the latter case, IDA should be per-

formed within a Monte Carlo framework requiring the execution of a vast number of

nonlinear response history analyses. The increased computing effort renders the calculation

of performance statistics time-consuming and hence the method is not always practical.

We propose a scheme based on artificial neural networks (NN) in order to reduce the

computational effort. Within a Monte Carlo approach, trained NN can rapidly generate a

large sample of IDA curves and therefore allow us to easily calculate useful response

statistics and fragility curves. The implementation of the proposed approach is quick,

straightforward and quite accurate.

Keywords Epistemic uncertainty � Incremental dynamic analysis � Neural networks �
Monte Carlo simulation � Reliability analysis

1 Introduction

The reliability assessment of structures under seismic loads is a topic that has drawn

considerable attention over the last years. Reliability assessment in earthquake engineering

involves ground motion uncertainty (also known as aleatoric uncertainty, or randomness)
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and uncertainty owing to modeling assumptions, omissions and/or errors, otherwise known

as epistemic uncertainty, or just uncertainty. The difference between aleatory and epis-

temic uncertainty is that the latter can be reduced as we acquire more information, e.g.

more specimens. Although in practice the distinction is not clear, e.g. uncertainty on the

mechanical properties doesn’t vanish as the number of tests increases, in this work, the

term ‘epistemic’ refers only to the structural properties. In earthquake engineering appli-

cations, emphasis is usually given primarily on the evaluation of the seismic demand due to

the record-to-record variability. Recently, Vamvatsikos and Fragiadakis (2010) showed

that epistemic uncertainty is equally important, especially at late limit-states, as the

structure approaches collapse.

Several researchers have worked on the effect of modelling/parameter uncertainty on

structural capacity. For example Celik and Ellingwood (2010) studied the effect of epis-

temic uncertainties on a reinforced concrete building (RC) providing fragility curves and

the corresponding confidence intervals. Jalayer et al. (2010) assessed modelling uncer-

tainty on RC frames using a Bayesian updating framework in order to improve their

estimates using measured data. Furthermore, Celarec and Dolšek (2013) used either FOSM

or LHS-based MCS combined with the N2 method, in order to evaluate the effects of

modelling uncertainties on the seismic response of three RC buildings. Regarding steel

frames, the effect of epistemic uncertainty was studied by Kazantzi et al. (2014) using an

IDA-based MC approach. Empirical relationships derived from experimental data were

used in order to model the cyclic behaviour of steel sections including intra- and inter-

component correlation.

Incremental dynamic analysis (IDA) is a powerful method for seismic performance

assessment. The method has been successfully combined with reliability analysis methods,

e.g. Monte Carlo simulation (MCS), by several researchers (Vamvatsikos and Fragiadakis

2010; Kazantzi et al. 2014; Fragiadakis and Vamvatsikos 2010; Dolsek 2009; Liel et al.

2009). Although IDA-based methods are powerful, they necessitate the execution of a large

number of nonlinear response history analyses which renders them beyond the scope of

many practical applications. Vamvatsikos and Fragiadakis (2010) discussed the possibility

of reducing the computational effort using approximate, moment-estimating methods such

as the Rosenblueth’s point estimating method (PEM) or the first-order, second-moment

(FOSM) method. Using functional approximations or moment-matching, such schemes

manage to propagate uncertainty from the random parameters to the model using a few

IDA runs/simulations. However, they often become unstable and are sensitive to the

properties of the problem’s random variables. A different approach for the efficient seismic

performance assessment with a reduced number of simulations can be found in Lupoi et al.

(2006).

Surrogate models, such as response surface methods (RSM) and neural networks (NN)

have emerged as powerful tools able to replace time-consuming procedures in many sci-

entific, or engineering, applications. Such methods usually require a small number of

analyses in order to provide quick response estimates. RSM involve fitting a function to

given data and then using optimization techniques to determine the parameters of the

function. A successful application can be found in Liel et al. (2009) who used RSM within

a Monte Carlo procedure for the assessment of RC structures. However, often obtaining the

right model may not be possible, or can be quite time-consuming.

Artificial neural networks (NN) is a method based on a simplified model of a biological

neuron. The ability of NN to create a mapping between input and output data through

training lets them represent quite complex system responses. Compared to RSM, the

advantage of NN is that it does not require any prior specification of a suitable fitting
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function, and also that it can approximate almost all kinds of non-linear functions, while

RSM is limited to quadratic approximations. A review on the use of NN in structural

reliability analysis is presented in Chojaczyk et al. (2015), while recently NN were used in

the framework of stochastic mechanics in order to approximate the failure probability of a

structure (Papadopoulos et al. 2012; Giovanis and Papadopoulos 2015). For the seismic

assessment of structures, Lagaros and Fragiadakis (2007) used trained NNs to obtain

fragility curves of steel moment frames. They trained a NN in order to predict the con-

ditional interstorey drift demand as function of a vector of seismic intensity measures.

The major advantage when using a trained NN in the core of a Monte Carlo simulation

(MCS) is that approximate results can be obtained with orders of magnitude less com-

putational effort compared to the standard procedure. This is due to the associative

memory that is featured by these artificial intelligence algorithms which allows them to

become efficient surrogates of the finite element model. Once trained, a neural network can

rapidly sample the random variables and generate response statistics with minimal com-

puting effort. Therefore, the computing demand is focused on the training phase which is

orders of magnitude smaller than that of the actual simulations. For example, in terms of

computing cost, the difference between 102 and 106 simulations is practically negligible.

Neural networks are widely available to scientists and engineers through powerful

numerical libraries (i.e. Matlab, NAG, IMSL). Different types of NNs such as feed-for-

ward, multi-layer perceptron (MLP) and radial basis function networks are widely used.

These networks, provide a generic functional representation and have been shown to be

capable of approximating any continuous function with acceptable accuracy. Implementing

the proposed NN-based method is straightforward once the user/engineer becomes familiar

with the underline concepts.

2 Epistemic uncertainty assessment using incremental dynamic analysis

2.1 Incremental dynamic analysis (IDA)

Incremental dynamic analysis (IDA) (Vamvatsikos and Cornell 2002) offers thorough

seismic demand and capacity prediction capability for the complete range of the model’s

response, from elastic to yielding then to nonlinear inelastic and finally to global dynamic

instability. IDA involves subjecting a structural model to one (or more) ground motion

record(s), each scaled to multiple levels of intensity, thus producing curve(s) of demand

versus seismic intensity. Every dynamic analysis is characterized by two scalars, an

intensity measure (IM) and an engineering demand parameter (EDP). The former repre-

sents seismic intensity and the latter measures the demand, or the ‘damage’. For moderate-

period structures with no near-fault activity, an appropriate choice for the IM is the 5 %-

damped, first-mode spectral acceleration SaðT1; 5%Þ. The EDP chosen in our work is the

maximum interstorey drift hmax, a reasonable choice for deformation-sensitive structural

damage.

Multiple single-record IDAs are performed using the hunt-and-fill algorithm (Vam-

vatsikos and Cornell 2004). This method allows capturing every IDA curve with just 12 or

14 runs per ground motion record. The single-record IDAs are subsequently summarized to

produce the median and the 16, 84 % fractile IDA curves that sufficiently characterize

seismic demand and capacity. Figure 1a shows 30 single-record IDA curves for a nine-

storey steel frame. Each curve has been obtained from 12 nonlinear response history
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analyses. The EDP-IM pairs of every simulation are interpolated with appropriate splines

to obtain a continuous curve in the EDP-IM plane. The fractile capacities can be sum-

marized in terms of hmax given the spectral acceleration SaðT1; 5%Þ (hmaxjSaðT1; 5%), or

otherwise in terms of spectral acceleration SaðT1; 5%Þ given hmax (SaðT1; 5%Þjhmax). In the

remainder of the paper we concentrate on SaðT1; 5%Þ capacities conditional on hmax. In
either case, the median (50 % fractile) provides a ‘‘central’’ capacity curve, while the 16

and 84 % percentiles give a measure of the dispersion around the median (Fig. 1b).

2.2 IDA for epistemic uncertainty estimation

Monte Carlo simulation (MCS) is the most comprehensive method in structural reliability

analysis. MCS creates a population of N possible instances of the structure by sampling

N times from the parameter distributions and subsequently performing a ‘‘simulation’’ for

every realization of the structure. Assuming that a sufficiently large number of the

structure’s instances have been sampled, we can reliably estimate the full distribution of

every response statistic and also calculate limit-state exceedance probabilities. When IDA

is adopted for seismic performance assessment using natural ground motion records, a

‘‘simulation’’ refers to a median IDA curve obtained after R single-record IDAs. We

therefore, need R� N single-record IDAs to calculate unbiased estimates of the mean and

the variance of the median IDAs due to epistemic uncertainty. Thus, if ln S50%a;j , j ¼ 1; . . .N

are the median Sa-capacities for a given value of hmax and ln S50%a is the mean of their

natural logarithm, we obtain the overall median as:

DSa ¼ medjðS50%a;j Þ � ln S50%a;j
ð1Þ

where ‘‘medj’’ is the median operator over all indices j. We have chosen to simplify the

notation writing SaðT1; 5%Þ as Sa, while Sa and DSa are always conditional on the max-

imum interstorey drift hmax, thus denoting IDA curves.

Furthermore, Cornell et al. (2002) proposed that the dispersion caused by epistemic

uncertainty in the median capacity DSa can be characterized by its b-value, bU , where the
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Fig. 1 Incremental dynamic analysis (IDA) curves: a 30 single-record IDAs, and b summarization of the 30
IDA curves into their median, 16 and 84 % fractile curves
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subscript ‘U’ denotes (epistemic) uncertainty. bU is calculated directly as the standard

deviation of the natural logarithm of the median capacities:

bU ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
j¼1ð ln S50%a;j � ln S50%a Þ2

N � 1

s

ð2Þ

In Vamvatsikos and Fragiadakis (2010) and Fragiadakis and Vamvatsikos (2010) MCS is

performed using Latin Hypercube Sampling (LHS). LHS is efficient when response

statistics (e.g. mean and dispersion) are calculated and is used to improve the sampling and

to reduce the number of simulations. When NN predictions are used, it is costless to

perform a very large number of simulations and therefore simple, or ‘crude’, MCS is also

efficient. In the case study here examined, the two methods produced identical results.

A simpler alternative to MCS is the use of moment-estimating methods such as the

point estimate method (PEM) or the first-order-second-moment method (FOSM). These

methods are typically based on the use of only a handful of runs for appropriately perturbed

versions of the basecase structure, defined as the realization of the structure when all

design variables are set equal to their mean. As shown in Vamvatsikos and Fragiadakis

(2010), and here verified, both PEM and FOSM tend to introduce considerable error

compared to the results of MCS. Thus, the reduction of the computational effort comes

with a loss in accuracy, whilst the NN-based procedure retains the same small number of

simulations but offers increased accuracy. Furthermore, some researchers prefer to use

Eqs. (1) and (2) with a limited number of simulations (e.g. 20 runs). This approach may

offer a reasonable estimate of the mean, but the estimate of the dispersion will not be

acceptable. This was demonstrated in Fragiadakis and Vamvatsikos (2010), where 90 %

confidence intervals show that there is little confidence on the conditional dispersion unless

a sufficient number of MC simulations is available.

Once DSa and bU are known, risk assessment is straightforward. Fragility curves, i.e. the

conditional probability that a limit-state is exceed, Pðhmax � hlimmaxjSaðT1; 5%ÞÞ, can be

easily calculated assuming that the data follow the lognormal distribution. The same result

is obtained, bypassing the need to assume a distribution, through calculating the empirical

distribution function i.e. counting the number of samples that the limit-state threshold was

exceeded (hmax � hlimmax). Fragility curves can be convolved with the site hazard curve to

calculate limit-state mean annual frequencies.

3 Artificial neural networks

Artificial neural networks, or just neural networks (NN), are information-processing

models configured for a specific application through a training process. Trained NN

provide the rapid mapping between given input and output quantities to (similar to

curve fitting) and thereby can be used as meta-models enhancing the efficiency of

numerical simulation. Compared to the actual numerical simulation, the major

advantage of a trained NN is that it can produce results in a fraction of wall clock time,

requiring orders of magnitude less computational effort, provided that the network is

successfully trained.
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3.1 Basic structure of an artificial neuron

A neural network consists of a number of linked units (neurons) and attempts to create a

desired mapping between the input and the output data of a training set. Artificial neurons

(Fig. 2) process the information of a training set to predict the output vector. When

operating within a network, a neuron, j receives the vector of input parameters xi,

ði ¼ 1; . . .; nÞ from previous neurons. Every input xi is multiplied by the connection

weight, wij of neuron j. The connection weights correspond to the strength of the influence

of each of the preceding neurons. After the input parameters have been multiplied with the

weights, the sum of their products is calculated as: aj ¼
Pn

i¼1 wij � xj þ b. b is a bias which

acts as a level shifter, i.e increasing or decreasing by a constant the sum of the weighted

inputs within every neuron. This allows the neuron to cover a wider input range. Fur-

thermore, the activation function f is applied on the sum aj. The activation function is an

essential part of the artificial neuron structure which introduces the nonlinearity. Com-

monly used activation functions are the linear, the threshold and the sigmoid functions. The

concept of the neuron is schematically shown in Fig. 2.

3.2 Architecture of an artificial neural network

A large number of different NN architectures have been developed over the recent years:

the multilayer feed-forward, the radial basis function, Bayesian regularized, networks with

self-organizing maps recurrent networks, among others (Hagan et al. 1996). In this work a

feed-forward neural network was used. Multilayer feed-forward neural networks are the

most commonly used and most appropriate for problems regarding non-linear modeling

and function approximation, such as those considered here. In Fig. 3 two simple feed-

forward NN architectures are shown. The input neurons are shown as squares because they

only act as input terminal points. The circular nodes represent basic processing neurons

which process information, that is, the inputs are summed and sent through an activation

function. With feed-forward networks, there is always an input layer of neurons and some

hidden layers leading to the output layer. Note that the input is forward propagated

w1j

w nj

w 2j

x1

xn

x2

..
.

..
.

summation activation
function f

yj = f(aj)

yj

neuron j

Fig. 2 Structure of an artificial neuron (x, y are the vectors of input and output variables, respectively, and
f is the activation function)
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meaning that data and calculations flow in a single direction, from the input data towards

the output.

3.3 Training of neural networks

The workflow for the neural network design process has six primary steps: (1) collect the

available data, (2) configure the network so that it is compatible with the problem under

consideration, as defined by sample data, (3) initialize the weights and biases, (4) Train the

network, (5) validate the network and, (6) use the network. The most important step is the

fourth, the training phase, during which the synaptic weights are tuned in order to obtain a

mapping that fits closely the training set. The training of a NN can be considered as a

general function optimization problem, where the adjustable parameters are the weights w
of the network (Fig. 2b). Several algorithms have been developed for this optimization

problem over the years. It is very difficult to know which training algorithm will be best for

the problem considered beforehand. It depends on many factors, including the complexity

of the problem, the number of data points in the training set, the number of weights and

biases in the network, the error goal.

One of the common problems occurring during the training of a neural network is the

overfitting. In such case the error of the NN prediction over the training data is small, but

when new data is presented to the network this error increases. Possible remedies for the

overfitting problem are: (1) stop the training early, (2) retrain several neural networks,each

starting with different initial weights (3) add some form of regularization term to the error

function to encourage smoother network mappings, (4) add noise to the training patterns to

smear out the data points.

In this work the Bayesian regularisation algorithm proposed by MacKay (1992) was

used. Different regularisation algorithms could have been also adopted, however, this was

preferred since based in our experience it minimises the possibility of overfitting. Regu-

larisation is a way of dealing with the negative effect of large weights, which can cause

excessively large variance of the output. The idea of regularisation is to make the network

response smoother through the modification in the objective function. This is achieved

adding a penalty term, which is equal to the sum of squares of the network weights. The

additional term favours small values of weights and minimises the tendency of the model

to overfit. MacKay introduced the Bayesian regularisation which sets the optimal perfor-

mance function to achieve the best generalisation based on Bayesian inference techniques.

input layer

output layer

input layer

hidden layer

output layer

(a) (b)

Fig. 3 a A single-layer network and b a multi-layer network
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The Bayesian optimisation of the regularisation parameters requires the computation of the

Hessian matrix at the minimum point which is obtained using the Levenberg–Marquardt

optimization algorithm.

4 Proposed methodology for neural network training

As discussed in Sect. 2.2, in MCS we sample N times the epistemic random variables of

the problem and we create N realizations of the structure. For each of the N realizations, a

series of nonlinear response history analyses is performed in order to obtain N median

(multi-record) IDAs. DSa and the dispersion bU are then estimated as function of hmax
according to Eqs. (1) and (2). The N realizations are performed using a properly trained

NN and the samples are chosen either with LHS or with crude Monte Carlo sampling.

Since there is no limitation on the size of N, both sampling methods will give identical

results. In the remainder of the paper crude MCS is preferred because of its simplicity.

It is evident that network training is the most important step. The training procedure is

schematically presented in Fig. 4 and consists of three phases:

Phase 1:

Check the generalization capability of the trained neural network with Ae

Non-linear
response history

analyses

Input
LHS epistemic

uncertainty sampling

Median IDA curves

Output
θmax|Sa,50%

Neural
Network

NO

YES

The network is accepted and used in MCS

Phase 2:

Phase 3:

Ae < 10%

Fig. 4 Schematic representation of the proposed NN training approach
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Phase 1 Generate Ntrain and Ntest samples from the epistemic random variables using

LHS.

Phase 2 Perform Ntrain þ Ntest IDAs and calculate their median S50%a capacities as

function of the EDP, which here is the maximum interstorey drift (hmax).
Phase 3 Use the Ntrain samples to train the network and the Ntest samples to test its

generalization capability, i.e. its ability to give accurate predictions with a new,

unknown, sample.

In Phase 1 we perform a series of IDA analyses in order to obtain Ntrain and Ntest training

and testing patterns, respectively, in the form of hmax–S50%a pairs. Every training and testing

pattern has been obtained using a sample of the K random parameters which describe the

uncertainty. The sample size Ntrain that is required for a ‘‘good’’ NN training depends on

the problem at hand. Different sample sizes should be attempted on a trial-and-error basis.

This is performed only once, at the beginning of the training phase. Ntest simulations are

also performed in order to test the prediction capability of the trained network. Usually,

Ntest is fraction of Ntrain, while, in general, there is no restriction on the ratio of Ntest over

Ntrain; a ratio as high as possible is always desirable. Typically Ntest is equal to 10–20 % of

Ntrain.

The appropriate selection of the training data is important for successfully training the

network. Attention should be paid on choosing input/output data that cover the entire range

of possible response estimates for the random variables assumed. Although the number of

learning patterns plays its own role in the accuracy of the predictions, the distribution of

the samples is of greater importance. We therefore use latin hypercube sampling (LHS) in

order to obtain training data that cover as uniformly as possible the range of values that the

random variables may take. This should not be confused with the use of LHS within a

Monte Carlo simulation for calculating mean and dispersion estimates. Therefore the

network is trained with an input vector that contains LHS samples of the K random

variables and the output vector contains the corresponding IDA curves.

In order to avoid overfiting during the training phase, several NNs, each with different

initial weights, were trained in a Bayesian regularization framework in order to ensure that

a network with good generalization is found. In every NN training, an early stopping

criterion was used in order to further improve the network’s generalization performance,

assessed with the following error function:

eri ¼
X

m

j¼1

jyj � tjj
yj

� 100 i ¼ 1; . . .;Ntest ð3Þ

where m is the size of hmax values equal to the number of points that the IDA curve is

discretized, yj is the exact hmaxjSaðT1; 5%Þ value and tj is the NN prediction. The average

of this error, Ae, is obtained as:

Ae ¼
PNtest

k¼1 er
ðkÞ

Ntest

ð4Þ

The trained NN adopted should have an Ae value smaller than a user-specified threshold

value. If this criterion is not specified, the number of training patterns Ntrain should be

increased and/or different NN architectures and learning algorithms should be examined.
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5 Latin hypercube sampling

Latin hypercube sampling (LHS) is adopted so that each of the random variables is

sampled from equal-sized bins. According to LHS, a single point (or sample) is randomly

chosen from every bin. Figure 5 shows conceptually the stratified sampling of two random

variables, X1 and X2. More specifically, Fig. 5a shows NLHS ¼ 5 samples of X1 with respect

to its cumulative distribution function and Fig. 5b shows that a single-value of X1 and X2 is

sampled from each of the five equal-sized bins in order to generate NLHS ¼ 5 samples.

The advantage of LHS over crude sampling is that it reduces the variance of statistical

estimates, while the random variables are sampled from the complete range of their pos-

sible values, thus ensuring that no sub-domain is over-sampled. Moreover, during LHS

sampling random correlation can be introduced between the random variables, especially

in the case of very small NLHS number where the number of interval combinations is rather

limited. In order to ensure zero correlation among the variables describing epistemic

uncertainty the approach discussed by Iman and Conover (1982) was adopted.

6 Numerical example

6.1 Structural model considered

The structure considered is a nine-story steel moment-resisting frame (Fig. 6a) with a

single-story basement. The building was designed for a Los Angeles site, following the

1997 NEHRP provisions. A centerline model with nonlinear beam-column connections

was formed allowing for plastic hinge formation at the beam ends while the columns are

assumed to remain elastic. The problem random variables are the properties of the plastic

hinges, as discussed in the next subsection. The structural model includes P� D effects

while the internal gravity frames have been directly incorporated with a gravity-carrying

frame, as shown at the right of the building in Fig. 6a. The fundamental period of the
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Fig. 5 The latin hypercube sampling (LHS) method: a cumulative distribution function of variable X1 in
order to obtain five equally probable bins, b the samples are randomly generated sampling once from each
bin
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reference frame (when all random variables are set equal to their mean) is T1 ¼ 2:35 s and
accounts for approximately 84 % of the total mass. A suite of thirty ordinary ground

motion records representing a scenario earthquake was used. These records belong to a bin

of relatively large magnitudes of 6.5–6.9 and moderate distances, all recorded on firm soil

and bearing no marks of directivity. More details about the structure and the ground motion

records can be found in Vamvatsikos and Fragiadakis (2010), Fragiadakis and Vamvat-

sikos (2010).

6.2 Random variables

The epistemic random variables are the properties of the beam-hinges. The beam-hinges

are modelled as rotational springs with a quadrilinear moment-rotation backbone as shown

in Fig. 6b. The behaviour of the springs is symmetric for both positive and negative

rotations. Six parameters are necessary to fully describe the backbone of the monotonic

envelope of the hinge moment-rotation relationship. More specifically, the backbone

hardens after a normalized yield moment aMy
, having a non-negative slope of ah up to a

normalized rotation (or rotational ductility) lc where the negative stiffness segment starts.

The drop, at a slope ac, is arrested by the residual plateau appearing at normalized height r

that abruptly ends at the ultimate rotational ductility lu. All quantities are normalized

either with the elastic slope ae, the yield moment My or the yield rotation hy.
The variability of the properties of the quadrilinear backbone is the only source of

epistemic uncertainty and the six normalized parameters (aMy
, ah, lc, ac, r, lu) are the

problem random variables. The random variables are independently normally distributed

with the mean and coefficient of variation (c.o.v.) shown in Table 1. The mean values

(a) (b)

Fig. 6 a The nine-storey steel moment-resisting frame case study, b moment-rotation relationship of a
beam point-hinge in normalized coordinates and definition of the problem random variables

Table 1 Random variables and
their probabilistic description

Distribution
Nðl; r2Þ

c.o.v Lower
bound

Upper
bound

aMy
Nð1:0; 0:04Þ 0.2 0.70 1.30

ah Nð0:1; 0:016Þ 0.4 0.04 0.16

lc Nð3:0; 1:44Þ 0.4 1.20 4.80

ac Nð�0:5; 0:04Þ 0.4 -0.80 -0.20

r Nð0:5; 0:04Þ 0.4 0.20 0.80

lu Nð6:0; 5:76Þ 0.4 2.40 9.60
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represent the best estimates of the backbone parameters. We, therefore, used c.o.v values

equal to 40 % for all the parameters, except for the yield moment where 20 % COV was

assumed. These c.o.v values practically cover the whole range of possible values that an

engineer may chose. To avoid assigning values of no physical meaning, e.g. ah [ 1 or

r\ 0, the distributions are appropriately truncated within 1.5 standard deviations and the

resulting boundaries are as shown in the last two columns of Table 1.

The plastic hinge properties are assumed to be varying simultaneously for every frame

connection, hence being fully correlated. This is expected to have a more pronounced

effect on the global capacity. Moreover, from the designer’s standpoint, there is very little

information regarding the values she/he should assign to the building’s inelastic model,

with My being perhaps the only exception. Hence our assumption reasonably captures the

response variation due to different modeling assumptions, since any designer would most

likely assume the same values throughout the structure and perform some sort of sensitivity

analysis to check the sensitivity of the model. A methodology considering spatial corre-

lation can be found in Kazantzi et al. (2014).

6.3 Neural network training

We generate three samples of size Ntrain equal to 20, 30 and 40 using latin hypercube

sampling (LHS), as discussed in Sect. 5. For every sample we obtain a new realisation of

the structure and we perform an incremental dynamic analysis with thirty ground motion

records. Therefore, the network is trained using Ntrain samples of the six random variables

(NN input) and the corresponding median IDA curves (NN output). Figure 7a, b show the

median IDA curves for learning patterns of 20 and 40 samples, respectively. When sam-

pling to obtain the NN input, care is taken so that there is no spurious correlation among

the samples, as discussed in Iman and Conover (1982). Increasing the number of samples

(i.e 20 instead of 40) results to a better representation of the probability space and thus to

better network training at the expense of more IDA simulations.

According to Hagan et al. (1996), the number of training samples should be larger than

the number of adjustable parameters:
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Fig. 7 Ntrain median IDA curves used for NN training: a Ntrain ¼ 20 samples, and b Ntrain ¼ 40 samples
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ðnþ 2ÞK þ 1\Ntrain ð5Þ

where n is the number of neurons of the single hidden layer of a network. The ‘‘optimum’’

number of samples depends on the type of the problem and on the number of random

variables. For the nine-storey steel frame, twenty IDA simulations give quite accurate

results, while larger samples were also investigated and were found to further improve the

prediction capability of the network. Once the input and the output vectors are obtained, we

choose the appropriate architecture for the Neural Network. The network architecture also

depends on the size of each input vector and on the number of learning patterns Ntrain. The

generalization capability of each Ntrain size is tested using Ntest ¼ 15 testing samples. Often

the trained network with the smallest mean prediction error Ae of Eq. (4) or with a mean

prediction error less than a threshold value (e.g. 10 %) is adopted.

Figure 8 shows four NN-generated median IDA curves obtained with the best NN

trained with learning patterns of size equal to 20, 30 and 40. The four samples shown, were

randomly chosen and have parameters equal to: {aMy; ah; lc; ac; r; lu} = {0.77, 0.09, 3.10,

-0.55, 0.42, 5.17}, {0.86, 0.15, 4.19, -0.51, 0.40, 8.81}, {1.04, 0.14, 4.02, -0.32, 0.60,

4.99} and {0.73, 0.08, 2.77, -0.50, 0.46, 9.13}. In all four cases, Ntrain = 40 gives esti-

mates very close to the exact median IDA curves, while the smaller samples give also good
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Fig. 8 Single-record IDA curves obtained with the proposed NN-based algorithm. The plots compare the
actual IDA curve to those obtained with training sets of size Ntrain= 20, 30 and 40
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estimates up to a hmax value in the early inelastic range. Error is introduced as the structure

approaches collapse, where the Ntrain = 20 case sometimes may lead to large errors.

Figure 9 summarizes the results of NN testing for the three sample sizes compared. The

testing patterns are compared with respect to the overall error of Eq. (3). In most cases the

error is\10 %, while the error for Ntrain = 40 is below 5 %, practically for all samples.

This plot should be seen together with Fig. 8, which indicates that some, small, error exists

mostly at limit-states beyond yielding. Cases a, b, c and d of Fig. 8, correspond to Ntest= 3,

8, 1 and 4, according to their numbering in Fig. 9. One should bare in mind that 20 % error,

close to that of the Ntrain = 20 case, is often acceptable in earthquake engineering appli-

cations. Finally, the mean error of the 15 testing samples for Ntrain = 20, 30 and 40 were

found equal to 8.92, 6.1 and 2.2 %, respectively.

6.4 Response statistics

Once the network is trained and tested, we perform Monte Carlo simulation sampling the

six epistemic random variables. Figure 10a shows 1000 median IDA curves obtained with

the trained NN for the case of Ntrain ¼ 20 and Ntrain ¼ 40. The median IDAs produced by

the trained NNs are close, while the Ntrain ¼ 40 curves become wider for large Sa-ca-

pacities. Furthermore, in order to have a reference solution Monte Carlo simulation was

performed without the aid of the neural network, running a vast number of nonlinear

response history analyses. As discussed in Vamvatsikos and Fragiadakis (2010) a sample

size of Ntrain ¼ 150� 200 Monte Carlo simulations with LHS sampling is expected to

provide a close estimate of the response statistics of the problem considered here. Hence,

Fig. 11 shows 150 median IDA curves obtained creating 150 instances of the structure and

using thirty records. In order to obtain the reference solution, 30� 150 ¼ 4500 single-

record IDAs were carried out, performing in total 12� 4500 ¼ 54;000 nonlinear response

history analyses.

The IDA curves of the Monte Carlo simulation are post-processed to produce the overall

median DSa conditional on hmax and also the conditional bU-dispersion according to

Eqs. (1) and (2), respectively. As we can see in Fig. 12a, the conditional median, DSa , is

very close to that of the actual IDA for the every limit-state, until hmax ¼ 0:1, while for

testing sample id number
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Fig. 9 Generalization
performance of NN in term of the
error of Eq. (3) for learning
patterns of size Ntrain = 20, 30
and 40
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Fig. 10 1000 hmax-capacities given Sa;50% (median IDA curves), generated with a NN: a Ntrain ¼ 20

samples, and b Ntrain ¼ 40 samples

maximum interstory drift, max

0 0.05 0.1 0.15

"fi
rs

t-m
od

e"
 s

pe
ct

ra
l a

cc
el

er
at

io
n 

S
a(T

1,5
%

) (
g)

0

0.5

1

1.5

Fig. 11 N ¼ 150 median
response curves obtained through
IDA. These curves are here used
as our reference solution as they
were obtained performing
nonlinear response history
analysis

maximum interstory drift, max

0 0.05 0.1 0.15

m
ed

ia
n 

S
a(T

1,5
%

), 
S

a (g
)

0

0.2

0.4

0.6

0.8

1

Exact
Ntrain=20
Ntrain=30
Ntrain= 40

maximum interstory drift, max

0 0.05 0.1 0.15

di
sp

er
si

on
, 

U

0

0.05

0.1

0.15

0.2

0.25(a) (b)

Fig. 12 Response estimations of the proposed NN-based method for Ntrain ¼ 20, 30 and 40 against the
exact results: a DSa, and b dispersion bU

Bull Earthquake Eng (2016) 14:529–547 543

123



higher hmax values the agreement is still remarkable. Figure 12b shows the dispersion bU of

the SaðT1; 5%Þ-capacities conditioned on hmax. All trained networks provide excellent

predictions of the the overall median DSa , while the results of the Ntrain ¼ 40 case prac-

tically cannot be discerned from the exact solution. The Ntrain ¼ 20 and 30 cases provide

also good results but with a small bias, underestimating the actual bU values. Hence as

Ntrainincreases, the bias quickly vanishes, converging to the exact dispersion values.

To demonstrate the importance of the proposed NN-based method, we also examine the

performance of other approximating IDA-based methods. Figure 13 shows the perfor-

mance of FOSM and PEM, which in references Vamvatsikos and Fragiadakis (2010),

Fragiadakis and Vamvatsikos (2010) are reported as efficient alternatives. These methods

require 2K þ 1 ¼ 13 simulations, where K is the number of random variables. As shown in

Fig. 13, these methods were outperformed by the 20-sample, proposed NN-based method,

which using only 20 samples/simulations gave improved results.

Figure 14 shows the limit-state fragility curves for the steel frame considered. As

already discussed the proposed approach allows to directly calculate the probability

through the empirical distribution function. The curves have been obtained for hmax values
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Fig. 13 Post-processing of the MCS IDA curves: a median DSa, and b dispersion bU
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equal to 1, 2, 5 and 10 %. For the frame considered, the limit-states that indicate the

yielding of the structure (hmax � 1 % and hmax � 2 %), curves are very steep, indicating

the sudden exceedance of the limit-state threshold at Sa values close to 0.1 and 0.2 g,

respectively. Limit-states hmax � 5 % and hmax � 10 %, indicate severe damage and

collapse, respectively, and have a milder slope and thus more dispersion around them.

These vulnerability curves can be convolved with the site’s hazard curve to calculate the

limit-state mean annual frequencies.

7 Conclusions

A neural network-based procedure is proposed for obtaining seismic response estimates

considering epistemic uncertainty. The use of neural networks is motivated by the need for

an accurate reliability analysis procedure with reduced computing effort. The proposed

method was demonstrated on a nine-storey steel frame considering six epistemic random

variables that describe the monotonic backbone of the beam connections. The success of

the method relies on the training of the network, and on the number of samples used. The

Bayesian regularisation algorithm was used for this purpose along with a proper NN

architecture. Since each ‘sample’ corresponds to a median IDA curve, the selection of the

sample size controls the computing effort. Twenty samples were found adequate for case

study examined, while the selection of the samples was based on a LHS scheme. More

samples, e.g. 40, were shown to completely remove any error in the NN predictions. Once

the NN is trained either crude or LHS-based Monte Carlo can be used to calculate the

median and the dispersion, or directly estimate the vulnerability thus bypassing the log-

normality assumption. The proposed method was also compared to PEM and FOSM,

which are also approximating methods that require, roughly a similar number of simula-

tions. The comparison showed the NN-based method is stable for the whole range of limit-

states and more accurate than other methods in the literature.
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Appendix: Matlab code

Below we provide two basic scripts that in a few lines of Matlab code show how a NN can

be trained and then called (Demuth et al. 2008). These are basic scripts and have been kept

as simple as possible. Therefore, no guidance on selecting the training samples and

avoiding the problem of overfitting is given.

The first script loads the input–output training samples (TrainingSamples.mat,
SaT1.mat, maxTheta.mat) and calls the newff command to create a feed-forward

backpropagation network. The network is trained with the train command and stored as

net. Lines starting with ‘%’ are comments which are provided to make the code self-

explanatory.
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% Input (Ntrain samples of the K random variables)
input = load(‘TrainingSamples.mat’);

% Output (Ntrain IDA curves - Sa(T1,5%) values of the median IDAs)
SaT1 = load(‘SaT1.mat’);
theta_max = load(‘maxTheta.mat’);
output = SaT1;

% number of neurons of the hidden layer (H)
H = 2;

% Create a feed-forward backpropagation network
net = newff(input,output,H);

% Train the network
net = train(net,input,output);

sim command is used to obtain the NN’s prediction for a given input. Note that the sim,

newff and train are commands available provided that the Matlab Neural Network Toolbox

is installed.

TestingSample = load(‘TestingSamples.mat’);
SaT1_NN = sim(net,TestingSample);
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