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Interfacial shear strength (ISS) is known to significantly affect the mechanical performance of carbon-
nanotube (CNT) reinforced composites. To illustrate the combined effect of ISS and CNT weight fraction
on the behavior of CNT/polymer, a CNT/polymer cantilever beam was analyzed using a three-level
multiscale technique. (1) At the atomic level, a short CNT was modeled with a space-frame structure,
using modified molecular structural mechanics (mMSM); this structure was approximated by equivalent
beam finite elements at the next level. (2) At the microscopic level, a polymer matrix reinforced with a
single CNT was analyzed. (3) At the macroscopic level, a cantilever beam was analyzed concurrently at
the micro- and macroscopic level using a nested solution scheme and first-order homogenization. The
analyses’ results showed that increasing the CNT content can improve the damping properties of the
composite structure, if ISS is low enough to achieve an optimum extent of microstructural slippage.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The technological advances of the last decade have spawned a
new generation of composite materials, whose production is
controlled at the atomic level. One such material is carbon
nanotube-reinforced polymer, which consists of carbon nanotubes
embedded in a polymer matrix. Carbon nanotubes (CNTs) are
essentially a hexagonal grid of carbon atoms, rolled up to form a
tube; their molecular structure lends them extraordinary stiffness
and strength, ten to one hundred times higher than those of steel,
at a fraction of the weight [1].

The interaction between CNTs and the surrounding polymer
significantly affects the properties of CNT-reinforced polymer; in
general, higher values of shear strength of the CNT-polymer inter-
face result in stronger and stiffer composite material; on the other
hand, for lower values of interfacial shear strength (ISS), the
amount of energy dissipated due to slippage between the CNT
and the polymer is usually higher, improving the damping behav-
ior of the composite [2–7]. The value of ISS varies greatly with the
treatment of the surface of CNTs. Pristine CNTs, whose surface is
untreated, interact with polymer primarily via van der Waals
forces, resulting in low ISS values [8]. However, if functional chains
of polymer are introduced on the surface of a CNT via a procedure
called functionalization, they can form strong covalent bonds with
the surrounding polymer; in this case, ISS values ten times higher
than those corresponding to the noncovalent bonding have been
documented [8].

Despite extensive research conducted so far [3,8–29], there is
currently a paucity of reliable scientific data concerning the mech-
anisms of stress transfer at the carbon nanotube-polymer interface,
which raises questions regarding the constitutive relations of inter-
facial shear stress. Pullout experiments of multi-walled CNTs
(MWCNTs) [24,16] suggested that the pullout process was brittle,
rather than ductile for short embedment lengths, which indicated
that the CNT-matrix interface failed due to the propagation of a
crack along the interface. However, pullout experiments conducted
by Ganesan et al. [16] for larger embedment lengths showed the
existence of some frictional interaction between the CNT and the
matrix after the failure of the CNT-matrix interface. The hypothesis
of frictional CNT-polymer interaction is further corroborated by
experiments conducted by Kao and Young [11,10], which proved
the existence of a hysteresis loop for a single-walled CNT
(SWCNT)-reinforced polymer under a cyclic load. Li et al. [30]
and Wernik et al.[23] simulated the pullout of pristine MWCNTs
from a polymer matrix using a van der Waals potential to describe
the CNT-matrix interaction. According to their results, the pullout
was ductile and interfacial forces which opposed the pullout force
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ATOMIC LEVEL:
A short CNT is modeled 

using a space-frame 
structure

MICROSCOPIC LEVEL:
A RVE consisting of a polymer 
matrix reinforced with a single 

horizontal CNT described at the 
previous level is analyzed using 

the finite element method

MACROSCOPIC LEVEL:
A cantilever beam consisting of the 
material described by the RVE of 

the previous level is analyzed 
using the finite element method
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Fig. 1. Overview of the proposed solution.
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were applied to a small region at the edge of the CNTs. Chowdhury
and Okabe [20] simulated pullout experiments of functionalized
CNTs from a polymer matrix and showed, as expected, that
bonding between the studied CNTs and polymer was primarily
achieved through polymer chains covalently attached to certain
carbon atoms of the CNTs. In this case, the bonding forces acted
upon discrete points and varied greatly during the pullout, as poly-
mer chains detached from a point on the CNT and reattached to
another.

The inconsistencies between the aforementioned physical
experiments and numerical simulations highlight the uncertainty
surrounding the nature of the interaction between CNTs and other
materials. The uncertainty is further exacerbated by the wide
inter- and intra- analyst scatter of the relevant experimental data.
This is caused in part from the current difficulty of controlling
experimental conditions and taking reliable measurements at the
atomic scale. The highest value of ISS recorded by Barber et al.
[24] measured at around 130 MPa, which is one order of magni-
tude higher than the values recorded by Ganesan et al. [16]
(13 MPa), but much lower than the highest value recorded from
numerical simulations [20] (300 MPa). Although the effect of the
interface on CNT-reinforced polymer has been studied before
(e.g.[2,4,31]), previous analyses were limited to describing the
material behavior at the microscopic level; the algorithm devel-
oped in this study uses a nested (FE2) multiscale solution scheme,
in order to alleviate the enormous computational effort involved in
the analysis of heterogeneous structures. This enables the investi-
gation of the aforementioned effect on virtually any large-scale
structure with minimum loss of accuracy.

The introduced multiscale approach is based on a combination
of sequential and semi-concurrent (FE2) methods and bridges mul-
tiple length scales, from nano to micro to macro. Due to the previ-
ously mentioned difficulty in establishing a rigorous quantification
of the interfacial constitutive law, a sensitivity analysis was consid-
ered with respect to various values of a so-called ISS parameter, in
order to simulate different bonding conditions between the CNTs
and the polymer and evaluate their relative influence on the over-
all structural behavior. More specifically, the analysis was per-
formed on the following three levels: (a) the atomic one, where a
lattice of carbon atoms representing a CNT was analyzed as a space
frame, (b) the microscopic one, where a representative volume ele-
ment (RVE) of the carbon-nanotube reinforced polymer was ana-
lyzed using finite elements and, finally, (c) the macroscopic one,
where a benchmark cantilever-type structure consisting of the
polymer was analyzed using again finite elements, as is shown in
Fig. 1. For the transition from the atomic to the microscopic level
the sequential multiscale technique was applied. On the other
hand, in order to minimize the loss of information when transition-
ing from the microscopic to the macroscopic level, the semi-
concurrent multiscale technique was preferred. For the CNT space
frame model at the atomic level, the modified molecular structural
mechanics approach (mMSM) [32] was used, as it was imple-
mented in Savvas and Papadopoulos [31] and Savvas et al. [2].
For the subsequent level, the behavior of the space frame was
approximated by equivalent beam elements (EBEs). At the micro-
scopic level, a single horizontal CNT modeled as an assembly of
EBEs was embedded in a poly-ether-ether-ketone (PEEK) matrix
and analyzed using the finite element method. A bond slip model
[33] was used to describe the CNT-matrix interaction. The micro-
scopic level was linked to the macroscopic one using a first-order
homogenization scheme in conjunction with a FE2 multiscale
technique. The numerical experiments conducted showcase the
applicability of the proposed multiscale strategy, while useful
conclusions have been extracted from a detailed sensitivity
analysis with respect to various scenarios of the ISS parameter.
2. Modeling of carbon nanotubes (atomic level)

2.1. Modified molecular structural mechanics

Carbon nanotubes were modeled using modified molecular
structural mechanics (mMSM), according to which the interaction
of every carbon atom of the CNT grid is limited to its three nearest
neighbors. The covalent bond between each pair of carbon atoms is
represented by a rectangular beam element, whose structural
properties are such that the change of the potential energy of the
beam for every possible displacement of the two atoms is roughly
equal to the change of the potential energy of the CAC bond. The
CAC bond potential energy is calculated as a function of the bond
stretching, bond angle (in-plane) bending, torsion (or dihedral
angle torsion) and out of plane bending (or out of plane torsion).
Van der Waals interactions are ignored. Analytical relations to cal-
culate the mechanical properties of the beam elements can be
found in Savvas et al. [2].

2.2. Transition from the atomic to the microscopic level – the
equivalent beam element

The space frame structure by which the CNT is modeled at the
atomic level was then projected on an equivalent beam element
(EBE), a simplified model much more computationally efficient
than the space frame one. The structural properties of the EBEs
are calculated by subjecting a cantilever beam to an axial (Fx),
transverse (Fy) and a torsional (T) load, as is depicted in Fig. 2. Sub-
sequently the axial stiffness ðEAÞeq, the bending ðEIÞeq and torsional
rigidity ðGIÞeq are calculated by measuring the horizontal (ux), ver-
tical displacement ðuyÞ and the angle of rotation ðuÞ pertaining to
the aforementioned benchmark loads from the following load–
deflection relations:

ðEAÞeq ¼
FxL0
ux

; ðEIÞeq ¼
Fy

3uy
L30; ðGIÞeq ¼

T
/
L0 ð1Þ

where L0 denotes the beam’s length.
More information can be found in Savvas et al. [2], who

described the EBE approximation.



Fig. 2. FE mesh and boundary conditions for (a) Tension, (b) Bending and (c) Torsion loading on CNT model.

Fig. 4. Schematic representation of a discretized RVE.
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3. Modeling at the microscopic level – transition to the
macroscopic level (nested solution scheme)

3.1. Homogenization scheme

A homogenization scheme pertaining to linear displacements as
was formulated by Miehe and Koch [34] was implemented and
applied to the microscopic finite element model of a RVE of poly-
mer matrix and a linear EBE representing the CNT reinforcement
inside the matrix (see Fig. 1). According to it, for a given macro-

scopic strain �e ¼ ½�e11 �e22 2�e12�T a displacement field u is applied
to the boundary of the RVE according to the relation:

uðxÞ ¼ �ex at x 2 @V ð2Þ

where x denotes the position vector of a point on the boundary of
the RVE and @V denotes the boundary of the RVE. The aforemen-
tioned relation constitutes the localization rule, that is, the rule that
provides the boundary conditions that are applied on the RVE as a
function of a macroscopic variable; in other words, the localization
rule is used to transition from the macroscopic to the microscopic
level.

After the solution of the boundary value problem resulting from
the application of the localization rule, the macroscopic stress
�r ¼ ½ �r11 �r22 �s12 �T is calculated as the volume average of the
microscopic stress r according to the relation:

�r ¼ 1
jVj sym

Z
V
rdV

� �
ð3Þ

where V denotes the volume of the RVE. Eq. (3) is the homogeniza-
tion rule, that is, the rule that yields the macroscopic state variables
as a function of the microscopic stress state; in other words, the
homogenization rule is used to transition from the microscopic
level back to the macroscopic one. This transition from the micro-
scopic to the macroscopic and vice versa is schematically depicted
in Fig. 3.
Fig. 3. Overview of the ne
Finally, the macroscopic tangent modulus �C is calculated as the
sensitivity of the macroscopic stress �r with respect to variations of
the macroscopic strain �e according to the relation:

�C :¼ @�e�r ð4Þ
The above equations take a slightly different form if the finite

element method is used. In this case, the RVE is appropriately dis-
cretized, as shown in Fig. 4. From this point onward, quantities
having a as an index refer to internal nodes, whereas quantities
having b as an index refer to nodes on the boundary. If we denote
the nodal displacement vector with d, the localization rule (2) for
every node q of the boundary can be written in matrix form as:

dq ¼ DT
q�e ð5Þ

where Dq is a matrix that is defined using the nodal coordinates x1
and x2 of the node as:

Dq :¼ 1
2

2x1 0
0 2x2
x2 x1

2
64

3
75

q

ð6Þ

Eq. (5) can be recast in global form as:

db �DT�e ¼ 0 ð7Þ
sted solution scheme.



V. Papadopoulos, M. Tavlaki / Composite Structures 136 (2016) 582–592 585
where ½D :¼ D1 D2 . . . DM � is the global coordinate matrix for
all M nodes lying on the boundary.

The equilibrium of the RVE using Lagrange multipliers dictates
that:

QaðxÞ ¼ 0
QbðxÞ � k ¼ 0
db �DT�e ¼ 0

ð8Þ

The internal nodal force vector is symbolized with Q and the
Lagrange multiplier vector necessary for the enforcement of the
boundary conditions with k. The above set of equations takes the
following incremental form for a RVE:

QaðxÞ þ KaaDda þ KabDdb ¼ 0
QbðxÞ � kþ KbaDda þ KbbDdb � Dk ¼ 0

db �DT�eþ Ddb �DTD�e ¼ 0

ð9Þ

where K denotes the tangential stiffness matrix of the RVE.
The solution of the problem is obtained using an iterative New-

ton–Raphson procedure, as follows: For a given macroscopic stress
tensor �e (that is Ddb ¼ 0), the nodal displacements da are computed
iteratively from the first equation according to the relations:

da ( da þ Dda; Dda ¼ K�1
aa Qa ð10Þ

The iterations continue until convergence is achieved in the
sense that jjQajj < tol.

The homogenized macroscopic stress vector is then calculated
as:

�r ¼ 1
jVjDQb ð11Þ

And the macroscopic tangent modulus as:

�C ¼ 1
jVjD

~KbbD
T ; ð12Þ

where the condensed stiffness matrix ~Kbb is equal to:

~Kbb :¼ Kbb � KbaK
�1
aa Kab ð13Þ
3.1.1. Polymer-CNT interaction
3.1.1.1. Bond–slip model. The interaction between the polymer
matrix and the CNT, which make up the RVE described above,
was modeled using a bond–slip mathematical description, as the
one proposed by Lykidis and Spiliopoulos [33]. We consider the
configuration of Fig. 5, of a fiber embedded in a matrix ‘‘parent”
element. Assuming that the fiber is only stressed axially, the total
displacement of the embedded fiber uf can be calculated by the
superposition of the displacement of the ‘‘parent” matrix element
Fig. 5. Schematic representation of a fiber (blue) embedded in a matrix (grey).
um along the fiber and the slippage between the two materials s,
that is:

uf ¼ um þ s ð14Þ
The matrix displacement along the fiber can be calculated as:

um ¼ f l1 m1 n1 g �
um;x

um;y

um;z

8><
>:

9>=
>; ð15Þ

where l1;m1;n1 are the directional cosines of the fiber.
Consequently, the strain of the fiber ef can be decomposed into

a component due to the deformation of the matrix ðem;f Þ and a
component due to slippage ds

dl

� �
:

ef ¼ duf

dl
¼ dum

dl
þ ds

dl
¼ em;f þ ds

dl
ð16Þ

The strain of the fiber due to the deformation of the matrix can
be calculated as:

em;f ¼ T� � em ¼ T� � Bm � dm ð17Þ
Where T� is calculated from the relation:

T� ¼ f l21 m2
1 n2

1 l1 �m1 m1 � n1 l1 � n1 g ð18Þ
We denote with em the strain, with Bm the shape function

derivatives and with dm the nodal displacements of the matrix.
The displacement field of the slip is described using shape func-

tions Nf (assumed to be linear for the current application), and the
nodal slippage uslip. Consequently, the strain of the fiber due to
slippage is calculated as:

ds
dl

¼ Bf � uslip ð19Þ

where Bf denotes the shape function derivative of the slip.
Thus, the total strain of the fiber can be expressed in compact

form as:

ef ¼ ½T� � Bm Bf � �
dm

uslip

� �
¼ B� � d� ð20Þ

The material tangential constitutive relations are assumed to
take the form:

Drm ¼ Cm � Dem; Drf ¼ Ef � Def ; Dsi ¼ k � Ds ð21Þ
where rm denotes the stresses of the matrix, rf the axial stress of
the fiber and si the interfacial shear stress.

Application of the virtual work theorem yields the following
relations for a typical Newton–Raphson iteration between steps t
and t + Dt:

Kmm þ Kff ;m Kmf

Kfm Kff þ Kii

� 	
� Ddm

Duslip

� �
þ Qm;f

Q i

� �� �
¼ RtþDt

PtþDt

� �

ð22Þ
The external nodal force vector ½RtþDt PtþDt �T is made up of the

external forces RtþDt , acting upon the matrix nodes and the forces
PtþDt , acting upon the slippage nodes (assumed to be zero in this
case).

The current internal nodal force vector ½Qm;f Q i �T is calculated
as:

Qm;f ¼
Z
Vm

BT
m � rmdVm þ

Z
l
BT
mT

�Trf Af dl

Qi ¼
Z
l
BT
f rf Af dlþ Qs; Qs ¼

Z
l
NT

f siOf dl
ð23Þ

We denote with Vm the volume of the matrix, with Of the fiber
section perimeter, with Af the fiber section area and with l its
length.
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The elements of the tangential stiffness matrix are calculated as:

Kmm ¼
Z
Vm

BmT � Cm � BmdVm

Kmm;f ¼
Z
l
BmTT

�TEf Af � T�TBmdl

Kmf ¼ KT
fm ¼

Z
l
BmTT

�TEf AfBfdl

Kf f ¼
Z
l
BfTEf AfBfdl

Kii ¼
Z
l
Nf TkOfNfdl

ð24Þ

3.1.1.2. Constitutive relation of the interfacial shear stress. As men-
tioned in the introduction, the uncertainty associated with the
interfacial constitutive law is large and attributed to multiple
sources, both aleatoric and epistemic. This has led the authors to
choose a simple ductile model in order to efficiently quantify the
uncertainty’s impact on the behavior of macroscopic structures
and, based on this simplified model, to assess the effect of the
interface on the overall structural response. More specifically, CNTs
were assumed to interact with the matrix via frictional forces act-
ing upon the whole CNT-matrix interface, which accounted for
both covalent and non-covalent bonding. Consequently, a bilinear
stick–slip type relation with kinematic hardening was used to
describe interfacial shear stress as a function of slippage (see
Fig. 8). Values of ISS ranging from zero to infinity were considered,
aiming to represent bonding conditions for both pristine and func-
tionalized CNTs. It should be noted at this point that this treatise
does not aim to provide an accurate model describing the inter-
face; it merely aims to provide a rough estimate of the upper limit
of the damping properties of CNT-reinforced composites (CNT-
RCs). This tentative phenomenological model of the CNT-matrix
interaction needs to be adjusted as new relevant experimental
and analytical data emerge.

3.2. FE2. solution scheme

To analyze the macroscopic cantilever beam, the aforemen-
tioned homogenization scheme was used within the framework
of a semi-concurrent multiscale approach; this particular analysis
scheme is also known as a nested or FE2 solution scheme, a term
coined by Feyel [35]. According to it, themacroscopic model (which
consists of a microscopically heterogeneous material) is analyzed
concurrently on two separate levels, the macroscopic and the
microscopic one. On the macroscopic level, the model is analyzed
as if it consisted of a homogeneous material with nonlinear behav-
ior, using a standard Newton–Raphson iterative procedure. The
nested solution scheme dictates that material properties at the
macroscopic level are not calculated using a constitutive law, but
by solving an appropriate boundary value problem at the micro-
scopic level, using a homogenization technique. The steps of the
method can be summarized as follows: The macroscopic structure
is discretized and an appropriate RVE is chosen to represent the
microstructure, which is subsequently discretized as well. For the
first step of the Newton–Raphson algorithm, zero displacements
are assigned to all the nodes of the macrostructure. The macro-
scopic nodal displacements are used to calculate the macroscopic
strain �e at every Gauss Point, using the macroscopic shape function
derivatives �B. Next, the macroscopic strain is used to apply appro-
priate boundary displacements to every RVE, according to the local-
ization rule of the homogenization scheme. After the solution of the
resulting boundary value problem, themacroscopic stress �r and the
macroscopic tangent modulus �C at every macroscopic Gauss Point
are calculated according to the homogenization rule of the homog-
enization scheme. These are then used to calculate the internal
nodal force vector �Q and tangential stiffness matrix �K of themacro-
scopic structure. If the internal nodal force vector is in equilibrium
with the external one, the procedure is terminated. Else, themacro-
scopic nodal displacements are updated according to the Newton–
Raphson algorithm and the procedure is repeated, until conver-
gence is achieved. A typical Newton–Raphson iteration step is illus-
trated in the flowchart of Fig. 6.

4. Numerical applications

4.1. Model configuration and solution strategy overview

The material analyzed was a polymer matrix reinforced with
straight, unidirectional CNTs. Both the matrix and the CNTs were
considered linearly elastic. The matrix was composed of poly-
ether-ether-ketone (PEEK), whose elastic modulus and Poisson’s
ratio were calculated from physical experiments as
Em ¼ 2:79 GPa, and vm ¼ 0:4 respectively [2]. The nanotubes were
single-walled, with a nominal outer diameter of 14 nm, and their
chirality was type armchair (100,100).

First, a small portion of a nanotube was modeled as a space
frame, using mMSM. The resulting model was then projected on
an EBE with a pipe profile section whose wall thickness was chosen
as tf ¼ 0:34 nm: The EBE’s mean equivalent diameter and Young’s
modulus were then calculated from the axial and transverse load-
ing’s load–deflection relations of Eq. (1) as deq;f ¼ 13:453 nm and
Ef ¼ 1:051 TPa respectively [2].

Next, a RVE was modeled, which consisted of a single CNT
embedded in a rectangular PEEK matrix. The RVE finite element
model is depicted in Fig. 7; the matrix was discretized with plane
stress finite elements and the CNT with truss elements, having the
properties of the previously derived EBE. Several CNT weight frac-
tions were considered, ranging from 0.1 to 2 per cent, which were
obtained by varying the matrix thickness. The CNT-PEEK interac-
tion was modeled using the bond–slip model of Section 3.1.1.1.
The constitutive relation of interfacial shear stress was a bilinear
one, representing a stick–slip behavior. As shown in Fig. 8, the
slope of the first branch of the bilinear curve was equal to
kE ¼ 10 GPa=nm, and that of the second branch was equal to
kT ¼ 1e� 5 GPa=nm. Various values of ISS, ranging from zero (neat
CNT) to infinity (full bond) were considered.

4.2. Microscopic testing

For the microscopic testing, a homogenization scheme pertain-
ing to linear boundary displacements was applied to the previously
described RVE finite element model. More specifically, a macro-

scopic strain in the form �e ¼ ½ �e11 �e22 2�e12 �T ¼ ½ e1 �0:4e1 0 �T
was applied to the RVE, simulating uniaxial stress loading. The
RVE was subjected to strains corresponding to one full cycle of
e1, ranging between ��emax and �emax (�emax > 0), and homogenized
stress–strain curves were obtained for a strain amplitude (�emax)
range between one and 15 percent and CNT weight fractions equal
to 0.1, 0.5, 1, 1.5 and 2 per cent.

Τhe damping ratio n of the homogenized material was then cal-
culated for each stress–strain curve as:

n ¼ Amicro

2p�rmax�emax
ð25Þ

where Amicro denotes the area of the homogenized stress–strain
loop, �emax denotes the amplitude of the applied homogenized strain
�e11 and �rmax denotes the homogenized stress �r11 corresponding to
�emax:

Fig. 9 displays the homogenized stress �r11 as a function of the
applied homogenized strain �e11 for CNT weight fraction equal to



Fig. 6. The algorithm for a typical Newton–Raphson step of the nested solution scheme.
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Fig. 7. The microscopic discretized model. The CNT is indicated with purple.
Dimensions are in nm.
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Fig. 8. Variation of interfacial shear stress with respect to slippage.

Fig. 9. Variation of the homogenized stress �r11 with respect to the applied strain �e11
for weight fraction equal to wf ¼ 1% and strain amplitude equal to �emax ¼ 5%.
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wf ¼ 1%, various values of ISS and strain amplitude equal to
�emax ¼ 5%. Observing Fig. 9, two extreme cases can be discerned:
(1) ISS = 0: There is no stress transfer mechanism between the
CNT and the polymer. In this case, the properties of the homoge-
nized RVE coincide with those of the polymer. (2) ISS =1: In this
case full bond exists between the CNT and the polymer. In both
cases, the homogenized RVE displays linearly elastic behavior.
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Between those extremes, the RVE displays hysteretic behavior. This
behavior is better captured in Fig. 10a–c, which depict the variation
of the damping ratio n with respect to ISS for various weight frac-
tions and strain amplitude equal to 3%, 5% and 10% respectively.
Observing this figure, it is obvious that larger weight fractions yield
larger damping ratio coefficients for smaller ISS values. This obser-
vation however does not hold for larger ISS values. Each curve dis-
plays a peak ðnmaxÞ, which is shifted to lower ISS values for larger
(a)

(b)

(c)

Fig. 10. Variation of the damping ratio n with respect to ISS for various weight
fractions and strain amplitude equal to (a) �emax ¼ 3%, (b) �emax ¼ 5% and (c)
�emax ¼ 10%.
weight fractions. The peak of each curve corresponds to ISS values
for which the CNT has fully slipped when the applied strain is equal
to the strain amplitude; if the CNT has slipped earlier or if it hasn’t
slipped in its entirety at the RVE’s most strained state, the damping
ratio is lower than the peak value ðnmaxÞ.

Observing Fig. 10, it is also worth noting that for different strain
amplitudes, the peak value of the damping ratio for a certain
weight fraction does not change; it is simply shifted to a different
ISS value. In other words, for a certain weight fraction and ISS
value, there exists a strain amplitude for which the damping ratio
reaches its maximum value, which, for the weight fraction in ques-
tion is constant and independent of the value of ISS. This is shown
clearly in Fig. 11, which depicts the damping ratio n as a function of
�emax for various ISS values. That is, the ‘‘damping potential” of the
Fig. 11. Variation of the damping ratio n with respect to the strain amplitude �emax

for various values of ISS and weight fraction equal to 1%.
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Fig. 12. Variation of the maximum damping ratio (for all strain amplitudes and ISS
values) with respect to the weight fraction.
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material is independent of the value of ISS and of the strain ampli-
tude, and increases for higher weight fractions. This result is sum-
marized in Fig. 12, which displays the increase of nmax as a function
of wf . This behavior can be attributed to the adopted interfacial
constitutive law of Fig. 8. The slope of both lines of this bilinear
B

1

25.0

5.0

Fig. 13. The macroscopic model configuration. The thickness of the structure is
equal to 1. The units are GN, m.

(a)

(b)

Fig. 14. Force–displacement curves of the macroscopic model for two weight
fractions ((a):0.5% and (b):1%) and various values of ISS.
curve which describes the interfacial shear stress as a function of
slippage does not change for different ISS values. Hence, the
stress–strain loops which correspond to the maximum damping
ratio for a certain weight fraction are similar, and their size is pro-
portional to the value of ISS; therefore, the maximum damping
ratio is exactly the same for all values of ISS. Moreover, the strain
amplitude for which the damping ratio is maximized is propor-
tional to the value of ISS.

4.3. Macroscopic testing

In order to investigate the impact of ISS and CNT weight fraction
on the overall behavior of macroscopic structures consisting of
CNT-reinforced polymer, the cantilever beam of Fig. 13 was
selected and loaded with a vertical load of a unit magnitude (in
GN), scaled by a loading factor k. The beam was modeled using
plane stress elements, and was analyzed using the nested (FE2)
solution scheme, as described in Section 3.2. Various CNT weight
fractions, equal to 0.1, 0.5, 1, 1.5 and 2 per cent were considered,
while ISS was taken equal to 10;40;80 and 160 MPa. One full cycle
Fig. 15. Variation of the damping ratio n of the macroscopic model with respect to
ISS for weight fraction equal to 0:1;0:5;1 and 2 percent.

Fig. 16. Force–displacement curves of the macroscopic model for ISS equal to
40 MPa and weight fraction equal to 1 and 2 percent.



(a)

(b)

Fig. 17. Spatial distribution of the �C11 coefficient for two weight fractions ((a):2% and (b):1%) and ISS = 40 MPa, k ¼ 0:028532. �C11 is a good measure of microstructural
slippage, as lower values (which are indicated with cooler tones in the diagram) correspond to a higher amount of microstructural slippage.
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of the load was applied, for values of the loading factor k between
0.03 and�0.03. In order to obtain force–displacement curves of the
structure, the vertical displacement d at point B was monitored.
Subsequently, the damping ratio of the structure for the loading
in question was calculated from the k� d curve as:

n ¼ Amacro

2pkmaxdmax
ð26Þ

where Amacro denotes again the area of the force–displacement loop,
kmax denotes the amplitude of the applied force, which is equal to
0.03, and dmax denotes the vertical displacement of point B corre-
sponding to kmax.

Fig. 14a and b display the force–displacement curves of the
structure for various ISS values and weight fractions equal to 0.5
and 1 percent respectively. As was the case for the microscopic
experiment, higher ISS values lead to a stiffer structure for a certain
weight fraction. Moreover, as ISS increases, the hysteresis loops of
the structure increase in size until a critical ISS value (ISScrit). The
hysteretic behavior of the structure is better described in Fig. 15,
which shows the damping ratio n with respect to the variation of
ISS for several weight fractions. Comparing Fig. 15 with Fig. 10, it
is obvious that the results of the macroscopic experiment are sim-
ilar to those obtained from the microscopic experiment. For every
weight fraction there exists a critical ISS value (ISScrit) for which the
damping ratio n reaches its maximum value nmax. For ISS ¼ ISScrit, a
fairly large area of the macroscopic structure has experienced full
microsctructural slippage at its most deformed state. For a certain
weight fraction, slipped areas larger (for ISS < ISScrit) or smaller (for
ISS > ISScrit) than the critical one lead to n values lower than nmax.
Moreover, for larger weight fractions the peak of the damping ratio
is shifted to smaller ISS values, as was the case for the microscopic
experiment as well. It should also be noted that larger weight
fractions do not necessarily lead to higher damping ratios. More
specifically, for small values of ISS (less than ISScrit) larger weight
fractions result in higher damping ratios; this does not hold, how-
ever, for values of ISS larger than ISScrit. Inspection of Fig. 15 reveals
that for the larger weight fraction (wf ¼ 2%), the value of n drops
steeply for ISS values larger than ISScrit . In Fig. 16 it is demonstrated
that for ISS ¼ 40 MPa, the damping ratio corresponding to wf ¼ 2%
is almost half of the one corresponding to wf ¼ 1%, which is
reflected on the large difference in size of the hysteresis loops for
both cases. This result is further demonstrated in the overall damp-
ing behavior of the macrostructure, which is displayed in
Fig. 17a and b, which plot the spatial distribution of the C11 term
of the macroscopic tangent modulus �C of Eq. (12) for weight frac-
tions equal to 2% and 1% respectively. From these figures it is obvi-
ous that for the higher weight fraction, the areas for which full
microstructural slippage has occurred (indicated with blue) are
much smaller than those corresponding to the lower weight frac-
tion. Consequently, the cumulative amount of energy dissipated
in the case of the lower weight fraction is much larger, which leads
to a higher damping ratio. Finally, it is worth noting that the max-
imum damping ratio achieved for the uniaxial stress conditions of
the microscopic experiment (approximately 16%) is higher than
the one achieved for the bending loading of the macroscopic exper-
iment (12%).

5. Conclusions

In this work, a CNT-reinforced polymer was studied and a can-
tilever beam consisting of this material was analyzed using a mul-
tiscale strategy based on a combination of a sequential and a semi-
concurrent (FE2) approach; for the FE2, a homogenization scheme
pertaining to linear displacement boundary conditions was used.
The polymer examined was PEEK, reinforced with straight unidi-
rectional SWCNTs; both materials were considered to be linearly
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elastic. For the microstructural description at the RVE level, CNT-
polymer interaction was modeled using a bond–slip model in
which the interfacial slippage was described with a stick–slip
model. A cantilever beam consisting of the SWCNT-reinforced
PEEK was considered as the macroscopic example, which was sub-
jected to cyclic load at the free edge.

The results of the sensitivity analysis regarding the effect of ISS
and CNT weight fraction on the stiffness of CNT-reinforced com-
posites revealed that higher values of CNT weight fraction and
ISS increase the stiffness of the end product significantly. On the
other hand, in order to improve the damping properties of a struc-
ture, an optimum extent of microstructural slippage has to be
achieved. Higher weight fractions can yield larger damping ratios
if ISS is low enough to achieve an optimum extent of microstruc-
tural slippage. It should be noted that the value of ISS which
maximizes the damping ratio for a certain weight fraction is
loading-specific. In general, increasing the amplitude of the applied
load increases the ISS for which the damping ratio is maximized.
Moreover, the value of damping ratio that can be achieved for a
certain structure depends on the way the structure is loaded. For
the cantilever beam which was studied under a bending load, the
values of damping ratio that were achieved were significantly
lower than those of the uniaxial strain test.

Clearly, the effect of the interface on the behavior of macro-
scopic structures is critical and is worth further examination.
Moreover, CNTs have been shown to be particularly susceptible
to P-D effects, owing to their very large length in relation to their
diameter; consequently, it would be of interest to investigate how
the damping mechanism due to slippage is influenced by second
order phenomena regarding the behavior of CNTs. All these aspects
will be incorporated in future research by the authors.
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