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In this study a methodology is presented for effective analysis of dynamic systems with stochastic mate-
rial properties. The concept of dynamic mean and variability response functions, recently established for
linear stochastic single degree of freedom oscillators, is extended to general finite element systems such
as statically indeterminate beam/frame structures and plane stress problems, leading to closed form
integral expressions for their dynamic mean and variability response. The integrand of these integral
expressions involves the spectral density function of the uncertain material properties and the so called
dynamic mean and variability response functions respectively, which are assumed to be deterministic, i.e.
independent of the power spectrum as well as the marginal pdf of the uncertain parameters. A finite
element method-based fast Monte Carlo simulation procedure is used for the accurate and efficient
numerical evaluation of these functions. In order to demonstrate the validity of the proposed procedure,
the results obtained using the aforementioned integral expressions are compared to brute-force Monte
Carlo simulation. As a further validation of the assumption of independence of the variability response
function to the stochastic parameters of the problem, the concept of the generalized variability response
function was applied and compared to the steady state dynamic variability response function. The meth-
odology is applied in a dynamically loaded statically indeterminate beam/frame structure and a plane
stress problem. The dynamic mean and variability response functions, once established, can be used to
perform sensitivity/parametric analyses with respect to various probabilistic characteristics involved in
the problem (i.e., correlation distance, standard deviation) and to establish realizable upper bounds on
the dynamic mean and variance of the response, at practically no additional computational cost.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, multiple methodologies based on perturbation/
expansion [1,2], spectral Galerkin approximations [3] or costly
Monte Carlo methods [1,4–6] have been developed to deal with
random/uncertain phenomena in steady state stochastic structural
analysis and extended to dynamic stochastic analysis in a straight-
forward manner [7,8], along with procedures to improve their effi-
ciency both in terms of accuracy [9–12] as well as computational
performance [13–15]. A probability density evolution method
was proposed in [16,17] in an effort to approximate the time vary-
ing probability distribution function (pdf) of the response of sto-
chastic systems using the principle of preservation of probability.
Along these lines, some other approaches implement approximate
Wiener path integral solution schemes [18]. However these
approaches have been mainly implemented in single degree of
freedom oscillators or small illustrative academic systems due to
increased computational cost. In all above cases, prior knowledge
of the correlation properties and the marginal pdf of the random
fields characterizing system uncertainties is essential for accurate
estimates of the system’s response. In the frequent case of insuffi-
cient experimental data, analysts are forced to resort to sensitivity/
parametric yet cost inefficient analyses. Furthermore, such analy-
ses do not provide any information on the mechanisms that affect
response variability, or bounds of the response. In addition to the
aforementioned approaches, a relatively small number of studies
have dealt with the dynamic propagation of system uncertainties,
most of them reducing the stochastic dynamic PDE’s to a linear
random eigenvalue problem [19,20].

In order to effectively resolve aforementioned issues, a proposi-
tion has been made through the concept of Dynamic Variability
Response Function (DVRF) in [21], which was a straightforward
generalization of the currently classical VRF proposed in the late
1980s [22] along with different aspects and extensions [23,24].
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Fig. 1. Geometry and loading of the fixed–fixed frame discretized with 60 beam
elements.
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DVRF involves information regarding deterministic variables of the
problem and the standard deviation of the field modeling the ran-
dom system parameters. In that work, closed form integral expres-
sions involving DVRF and the spectral density function of the
stochastic field, were suggested for the computation of the
dynamic variance of the response displacement as follows:

Var½uðtÞ� ¼
Z 1

�1
DVRFðt;j;rff ÞSff ðjÞdj ð1Þ

An additional expression involving a Dynamic Mean Response
Function (DMRF) for the system dynamic mean response was also
proposed in that work. This approach was formulated for linear
statically determinate single degree of freedom stochastic oscilla-
tors under dynamic excitations where it was demonstrated that
the integral form expressions for the dynamic mean and variance
can be used to effectively compute the first and second order statis-
tics of the transient system response with reasonable accuracy,
together with time dependent spectral-distribution-free upper
bounds. They also provide an insight into the mechanisms control-
ling the uncertainty propagation with respect to both space and
time and in particular the mean and variability time histories of
the stochastic system dynamic response. Furthermore, once the
DMRF and DVRF are established, sensitivity analyses with respect
to various probabilistic parameters such as correlation distances
and standard deviation were performed at a very small additional
computational cost.

Based on the aforementioned recent development, closed form
integral expressions in the form of Eq. (1) are proposed in the pres-
ent work for the mean and variance of the dynamic response of
statically indeterminate beam/frame structures and then extended
to more general stochastic finite element systems (i.e. plane stress
problems) under dynamic excitations. In this case DVRF and DMRF
are vectors comprised of a DMRF and DVRF for each degree of free-
dom of the FE system. A general so-called Dynamic FEM fast Monte
Carlo simulation (DFEM-FMCS) is provided for the accurate and
efficient evaluation of DVRF and DMRF for stochastic FE systems.
Numerical results are presented, demonstrating that, as in the case
of classical VRFs, as well as in the case of DMRF and DVRF for single
degree of freedom stochastic oscillators [21], the DVRF and DMRF
matrices appear to be independent of the functional form of the
power spectral density function Sff(j) and appear to be marginally
dependent on the pdf of the field modeling the uncertain system
parameter. It is reminded that the existence of VRF has been
proven only in the case of statically determinate structures under
static loading [22,25]. In all other cases this existence had to be
conjectured and the validity of this conjecture was demonstrated
through comparisons of the results obtained from Eq. (1) with
brute force MCS. The validity of this conjecture is further boosted
in this work by comparing steady state DVRF with respective
Generalized VRF [26] for a statically indeterminate frame structure.
GVRF involves the computation of different VRFs for corresponding
combinations of different marginal pdfs and power spectra nd was
developed in order to further test the validity of the existence of a
VRF which is almost independent of the stochastic parameters of
the problem. It should be mentioned here that the VRF concept
was recently extended in [29] for structures with non-linear mate-
rial properties where a closed form analytic expression of VRF
revealed the clear dependence of the integral form of Eq. (1) on
the standard deviation as well as higher order Power spectra of
f(x). Finally, realizable upper bounds of the mean and dynamic
system response are evaluated.

2. Time-history analysis of stochastic finite element systems

Without loss of generality consider the linear stochastic FE
system of Fig. 1 which is a fixed–fixed beam/frame structure. The
inverse of the elastic modulus is assumed to vary randomly along
its length according to the following expression:

1
EðxÞ ¼ F0ð1þ f ðxÞÞ; ð2Þ

where E is the elastic modulus, F0 is the mean value of the inverse of
E, and f(x) is a zero-mean homogeneous stochastic field modeling
the variation of 1/E around its mean value.

For the derivation of the deterministic system dynamic
response the trivial second-order differential equation for the dis-
cretized FE dynamic system equilibrium is as follows:

M€uðtÞ þ C _uðtÞ þ KuðtÞ ¼ PðtÞ ð3Þ

where M is the mass matrix of the discretized FE system, C is its
damping matrix, K is its stiffness matrix and P(t) is its loading vec-
tor. At last, u(t) is the time-history of the displacement vector of the
system, providing information about the response of each node of
the FE mesh, _uðtÞ is the first order time-derivative and €uðtÞ is the
second order time-derivative of u(t).

Direct integration of Eq. (3) can be performed using i.e. a New-
mark scheme of the following form:

tþDtR̂¼ tþDtRþMða0
tUþa1

t _Uþa2
t €UÞþCða1

tUþ a4
t _Uþa5

t €UÞ ð4Þ

where a0 ¼ 1
aDt2 ; a1 ¼ 1

aDt ; a2 ¼ 1
2a� 1; a4 ¼ Dtð1� dÞ; a5 ¼ dDt; a6 ¼

Dtð1� dÞ; a7 ¼ Dt. After choosing a time step Dt parameters a and
d are selected under the limitations d P 0.50 and a P
0.25(0.5 + d)2. After initialization of 0U; 0 _U; and 0 €U, the displace-
ments at time t + Dt are calculated solving the following linear sys-
tem of equations

K̂tþDtU ¼ tþDtR̂ ð5Þ

where K̂ is the effective stiffness matrix given by

K̂ ¼ Kþ a0Mþ a1C ð6Þ

Finally accelerations and velocities at time t + Dt accrue from the
following equations:

tþDt €U ¼ a0ðtþDtU� tUÞ � at
1

_U� at
2

€U ð7Þ
tþDt _U ¼ t _Uþ a6

t €Uþ atþDt
7

€U ð8Þ

Matrices R̂ and K̂ in Eqs. (5) and (6) and consequently vectors U; _U
and €U are random due to the variation of E(x) in Eq. (2). Thus, the
solution of Eq. (5) requires the implementation of some stochastic
methodology in order to invert the stochastic operator K̂ in at each
time step and predict the stochastic dynamic response of the FE
system.
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3. Analysis of mean and variance of dynamic system response
using DMRF and DVRF

Following a procedure similar to the one presented in [21] for
linear stochastic oscillators under dynamic loading, it is possible
to express the variance of the dynamic response of a stochastic
finite element system in the following integral form expression:

Var½uðtÞ� ¼
Z 1

�1
DVRFðt;j;rff ÞSff ðjÞdj ð9aÞ

where DVRF is the vectorized dynamic version of DVRF, assumed to
be a function of deterministic parameters of the problem related to
geometry, loading, (mean) material properties and the standard
deviation rff of the stochastic field modeling the system’s flexibility.
A similar integral expression can provide an estimate for the mean
value of the dynamic response of the system [28]:

e½uðtÞ� ¼
Z 1

�1
DMRFðt;j;rff ÞSff ðjÞdj ð9bÞ

where again DMRF is the vectorized dynamic version of DMRF of
dimension equal to the dof’s of the problem, which is a function
similar to the DVRF in the sense that it also depends on determin-
istic parameters of the problem as well as rff.

It is reminded here that the existence of Eqs. (9a) and (9b) has
only been proved for statically determinate beams in which the
resulting displacement field is a linear transformation of the sto-
chastic field of the compliance 1/E(x) [25]. In all other cases this
transformation is non linear. As demonstrated in [27], for such
non linear transformations the integral expressions for the
variance involve higher order spectra. Thus the nature of the
approximation induced in Eqs. (9a) and (9b) is the omittance of
these higher order spectra.

3.1. Numerical estimation of the DVRF and the DMRF using fast Monte
Carlo simulation

The numerical estimation of DVRF and DMRF involves a
dynamic FEM-based fast Monte Carlo simulation (DFEM-FMCS)
whose idea is to consider the random field f(x) in Eq. (2) as a ran-
dom sinusoid [28,29] and plug its monochromatic power spectrum
into Eqs. (9a) and (9b), in order to compute the respective mean
and variance response at various wave numbers as a function of
time t. The steps of the FEM-FMCS approach are the following:

(i) Generate N (5–10) sample functions of the below random
sinusoid with standard deviation rff and wave number �j
modeling the variation of the inverse of the elastic modulus
1/E around its mean F0:
f jðxÞ ¼
ffiffiffi
2
p

rff cosð�jxþujÞ ð10Þ

where j = 1,2, . . . ,N and uj varies randomly under uniform
distribution in the range [0, 2p]. These samples are generated
by dividing the range [0, 2p] at 5–10 equally spaced distances
and selecting the centres of these distances as values of ran-
dom phase angles uj’s.
(ii) Using these N generated sample functions it is straightfor-
ward to compute their respective dynamic mean and
response variance, e½uðtÞ��j and Var½uðtÞ��j, by solving the cor-
responding FEM system under the applied dynamic loading
using Eqs. (5), (7) and (8). Random matrix K̂ is constructed
by assigning a different value of E at each FE, using i.e. the
mid-point method.

(iii) The value of the DMRF at wave number �j can then be com-
puted as follows:
DMRFðt; �j;rff Þ ¼
e½uðtÞ��j

r2
ff

ð11aÞ

and likewise the value of the DVRF at wave number �j

DVRFðt; �j;rff Þ ¼
Var½uðtÞ��j

r2
ff

ð11bÞ

Both previous equations are direct consequences of the inte-
gral expressions in Eqs. (9a) and (9b) in the case that the sto-
chastic field becomes a random sinusoid.
(iv) Get DMRF and DVRF as a function of both time t and wave
number j by repeating previous steps for various wave
numbers and different time steps. The entire procedure
can be repeated for different values of the standard devia-
tion rff of the random sinusoid.

3.2. Bounds of the mean and variance of the dynamic response

Upper bounds on the mean and variance of the dynamic
response of the stochastic system can be established directly from
Eqs. (9a) and (9b), as follows:

e½uðtÞ� ¼
Z 1

�1
DMRFðt;j;rff ÞSff ðjÞdj�DMRFðt;jmaxðtÞ;rff Þr2

ff ð12aÞ

Var½uðtÞ� ¼
Z 1

�1
DVRFðt;j;rff ÞSff ðjÞdj�DVRFðt;jmaxðtÞ;rff Þr2

ff ð12bÞ

where jmax(t) is the wave number at which DMRF and DVRF, cor-
responding to a given time step t and value of rff, reach their max-
imum value. For the minimum, jmax(t) is substituted with jmin(t)
and inequality signs switch direction. An envelope of time evolving
upper and lower bounds on the mean and variance of the dynamic
system response can be extracted from Eqs. (12a) and (12b). As in
the case of linear stochastic systems under static loads [27–29], this
envelope is physically realizable since the form of the stochastic
field that produces it is the random sinusoid of Eq. (10) with
�j ¼ jmaxðtÞ.

4. 2D formulation

In the case of a problem where the inverse elastic modulus is
considered to vary randomly over a 2D domain, the following
equation is adopted:

1
Eðx; yÞ ¼ F0ð1þ f ðx; yÞÞ; ð13Þ

where E is the elastic modulus, F0 is the mean value of the inverse of
E, and f(x,y) is now a two-dimensional, zero-mean homogeneous
stochastic field modeling the variation of 1/E around its mean value
F0. Accordingly, the integral expressions for the variance and mean
response displacement u(t) become:

Var½uðtÞ� ¼
Z 1

�1

Z 1

�1
DVRFðt;jx;jy;rff ÞSff ðjx;jyÞdjxdjy ð14aÞ

e½uðtÞ� ¼
Z 1

�1

Z 1

�1
DMRFðt;jx;jy;rff ÞSff ðjx;jyÞdjxdjy ð14bÞ

where DVRF(t,jx,jy,rff) and DMRF(t,jx,jy,rff) are in this case two-
dimensional, possessing the following bi-quadrant symmetries:

DMRFðjx;jyÞ ¼ DMRFð�jx;�jyÞ ð15Þ
DVRFðjx;jyÞ ¼ DVRFð�jx;�jyÞ ð16Þ

Sff(jx, jy) is the spectral density function of the stochastic field f(x,y)
possessing the same symmetries as DMRF and DVRF . The 1D ran-
dom sinusoid in Eq. (10) now becomes a 2D one with the following
form that is the same for all possible stochastic fields:



Fig. 2. Spectral density functions for stochastic field f(x) standard deviation rff = 0.2
for three different values of the correlation length parameter.
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f jðxÞ ¼
ffiffiffi
2
p

rff cosð�jxxþ �jyyþujÞ; j ¼ 1;2; . . . ;N: ð17Þ

Upper bounds on the mean and variance of the response displace-
ment for a given time instance t can be established for the 2D case
as follows:

Var½uðtÞ� � DVRFðt;jmax
x ;jmax

y ;rff Þr2
ff ð18aÞ

e½uðtÞ� � DMRFðt;jmax
x ;jmax

y ;rff Þr2
ff ð18bÞ

where ðjmax
x ;jmax

y Þ is the wave number pair at which the DMRF or
the DVRF take their maximum value (for a given value of rff and
a given location (x,y)), and r2

ff is the variance of the stochastic field
f(x,y) modeling the inverse of the elastic modulus. Again, for the
minimum, jmax

x;y ðtÞ is substituted with jmin
x;y ðtÞ and inequality signs

switch direction. It should be emphasized that ðjmax
x ;jmax

y Þ are not
necessarily the same for the DMRF and the DVRF.

5. GVRF formulation for static loading case

As mentioned previously, DMRF and DVRF conceptually are
based on the assumption that they are deterministic, i.e. they are
independent of the power spectral density type as well as of the
marginal pdf used to describe the uncertain parameter of the
problem. The validity of this conjecture is numerically demon-
strated in the numerical examples by direct comparisons of the
variance time history of the system response, computed with the
proposed DVRF-based approach, with corresponding brute-force
Monte Carlo simulations. As a further step of this validation, the
recently established concept of GVRF [26] was utilized. For this
purpose a GVRF for corresponding static loading cases was
calculated for a family of moving SDFs and under a lognormal
assumption for the modulus of elasticity and then compared to
the DVRF computed via DFEM-FMCS.

5.1. GVRF estimation methodology

For a certain linear statically indeterminate structure with
uncertain material properties, system variance response can be
estimated by the following formula [22]

Var½uðxÞ� ¼
Z 1

�1
VRFðx;jÞSff ðjÞdj ð19Þ

where Var[u(x)] can be readily computed by a brute-force Monte
Carlo simulation. Eq. (19) can be rewritten in the following discret-
ized form

Var½uðxÞ� ¼2 Sf ðj1Þ Sf ðj2Þ � � � Sf ðjNÞ½ ��

VRFðx;j1Þ
VRFðx;j2Þ

..

.

VRFðx;jNÞ

2
66664

3
77775Dj ð20Þ
Having assumed that VRF is independent of the power spectral den-
sity and the marginal pdf, it is natural to assume that the same VRF
values can be used to estimate system variance for various SDFs.
Therefore the following relation should also be true, only now that
VRF is named Generalized Variability Response Function (GVRF)

Var½uðxÞ1�
Var½uðxÞ2�

..

.

Var½uðxÞN �

2
66664

3
77775¼2

Sf 1
ðj1Þ Sf 1

ðj2Þ � � � Sf 1
ðjNÞ

Sf 2
ðj1Þ Sf 2

ðj2Þ � � � Sf 2ðjNÞ

..

. ..
. . .

. ..
.

Sf N
ðj1Þ Sf N

ðj2Þ � � � Sf N
ðjNÞ

2
666664

3
777775
�

GVRFðx;j1Þ
GVRFðx;j2Þ

..

.

GVRFðx;jNÞ

2
66664

3
77775Dj

ð21Þ

The left hand side vector is the vector of different system variances,
calculated by respective brute-force Monte Carlo simulations, and
the matrix on the right hand side is the matrix of SDF values for var-
ious corresponding spectral density types Sf i

ðjÞ;i ¼ 1;2; :::;N. Effec-
tively, Eq. (21) describes a system of N linear equations with N
unknowns, thus providing a unique solution for the GVRF vector.

6. Numerical examples

Example 1 For the fixed–fixed frame shown in Fig. 1 with
length and height equal to L = 4 m, the inverse of the modulus of
elasticity is assumed to vary randomly along its length according
to Eq. (2) with F0 = (1.35 � 108 kN/m)�1, I = 0.1 m4 and damping
ratio n = 5%. The total mass of the beam is assumed to be
mtot = 6000 kg, distributed evenly among the finite element nodes
of the model. For the analysis of the frame structure we used 60
beam elements, 20 for each column and the plateau, of equal
length, resulting in 177 d.o.f.’s.

Two load cases are considered: LC1 consisting of a concentrated
dynamic periodic load P(t) = 100sin(2t) at the right top corner of
the frame (see Fig. 1) and LC2 consisting of a dynamic load
pnðtÞ ¼ �mn

€UgðtÞ acting on each node n of the beam with mn being
the corresponding nodal mass and €UgðtÞ the acceleration time his-
tory of the 1940 El Centro earthquake. The stochastic field f(x) in
Eq. (2) is considered to vary across the length of the two columns
and the plateau of the frame running continuously from the left
fixed edge to the right. The spectral density function (SDF) of
Fig. 2 was used for the modeling of the inverse of the elastic mod-
ulus stochastic field, given by:

Sff ðjÞ ¼
1
4
r2

ff b3j2e�bjjj ð22Þ

with b = 1, 2, 10 being three different values of the correlation
length parameter examined.

For standard deviations rff of the stochastic field f(x) higher
than 0.2 a truncated Gaussian and a lognormal pdf is used to model
f(x). For this purpose, an underlying Gaussian stochastic field
denoted by g(x) is generated using the spectral representation
method [30] and the power spectrum of Eq. (22). The truncated
Gaussian field fTG(x) is obtained by simply truncating g(x) in the
following way: �0.9 6 g(x) 6 0.9, while the lognormal fL(x) is
obtained from the following transformation as a translation field
[31]:

f LðxÞ ¼ F�1
L G½gðxÞ�f g ð23Þ

The SDF of the underlying Gaussian field in Eq. (23) and the corre-
sponding spectral densities of the truncated Gaussian and the Log-
normal fields denoted Sf TG f TG

ðjÞ and Sf Lf L
ðjÞ, respectively, are

different from the one in Eq. (22) and are computed from the fol-
lowing formula

Sf if i
ðjÞ ¼ 1

2pLx

Z Lx

0
f iðxÞe�ijxdx

����
����
2

; i ¼ TG; L ð24Þ



Fig. 3. 3D plots of (a) DMRF and (b) DVRF of the horizontal displacement uA, as a function of frequency j (rad/m) and time t(s) for LC1 and rff = 0.2.

Fig. 4. Upper and lower bounds on the (a) mean and (b) variance of the response displacement for LC1 and rff = 0.2.
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where Lx is the length of the sample functions of the non-Gaussian
fields modeling flexibility. As the sample functions of the non-
Gaussian fields are non-ergodic, the estimation of power spectra
in Eq. (24) is performed in an ensemble average sense [31].

Fig. 3 presents 3D plots of DMRF(uA) and DVRF(uA) for the hori-
zontal displacement uA of point A of the frame as a function of time
t and frequency j for rff = 0.2. In this figure it can be observed that
DMRF(uA) remains almost constant with respect to j, while evolv-
ing substantially as a function of t. On the contrary DVRF(uA) dem-
onstrates a substantial volatility with respect to both j and t.
Therefore, in contrast to DMRF(uA), DVRF(uA) accommodates the
possibility of considerable variation of the variability response
for different statistical parameters of the stochastic field. This is
further demonstrated in Fig. 4 in which the upper and lower
bounds of the dynamic mean and variability response are depicted
containing minima and maxima respectively, in comparison to the



Fig. 5. Time histories of the (a), (c), (e) mean and (b), (d), (f) variance response displacement of the frame structure for a Gaussian field with rff = 0.2 for LC1 and for three
different correlation length parameter values b = 1,2 and 10. Comparison of results obtained from Eqs. (9a) and (9b) and MCS.
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estimated mean and variability responses for the case of an under-
lying Gaussian stochastic field with the power spectrum of Eq. (22)
and rff = 0.2. The aforementioned bounds are derived directly from
Eq. (12) having previously computed DMRF(uA) and DVRF(uA) with
the computationally efficient DFEM-FMCS in Eq. (11), while in the
case of the Gaussian field with rff = 0.2, the mean and variance
were obtained with the integral expression in Eq. (9). From this fig-
ure it can be seen that the upper mean dynamic response and the
one estimated for the Gaussian field, are almost identical, while
they differ significantly in the case of the response variability,
reaching a maximum difference of more than 70% at t = 0.8 s. It
should be pointed out here that bounds of each response do not
necessarily need to coincide in the frequency number that they
occur.
In order to demonstrate the validity of the proposed approach,
the results obtained from the DFEM-FMCS procedure and Eq. (9)
were compared with Brute Force Monte Carlo Simulation. In
Fig. 5a–f the results of this comparison are presented for the
dynamic mean and response variability of uA (Fig. 2) and LC1, using
a Gaussian stochastic field and rff = 0.2. for three different values of
correlation length parameter b. In this manner the independence of
DMRF and DVRF from the spectral density function is also show-
cased. Figs. 6 and 7 present the same comparison but for a trun-
cated Gaussian field with rff = 0.3912 and 0.5286, respectively,
while Fig. 8 examines a lognormal field case with rff = 0.399.
Finally, Fig. 9 presents the same comparison but for the El Centro
earthquake load case (LC2) and a Gaussian field with rff = 0.2. From
all these figures it can be observed that the results of the



Fig. 7. Time histories of the (a) mean and (b) variance response displacement of the frame structure for a truncated Gaussian field with rff = 0.528649 for LC1. Comparison of
results obtained from Eq. (9a) and (9b) and MCS.

Fig. 6. Time histories of the (a) mean and (b) variance response displacement of the frame structure for a truncated Gaussian field with rff = 0.391238 for LC1. Comparison of
results obtained from Eqs. (9a) and (9b) and MCS.
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DFEM-FMCS are in close agreement with the corresponding results
of MCS. The prediction of the mean value is almost identical for the
two methods in all cases considered, while the maximum error in
the variance does not exceed 20% and is attributed to a slight
dependence of the DVRF on the pdf of the random field modeling
1/E(x). This error becomes negligible in the case of small standard
deviations of the order of rff = 0.2.
Fig. 8. Time histories of the (a) mean and (b) variance response displacement of the fram
obtained from Eq. (9a) and (9b) and MCS.
6.1. Further validation using GVRF

In Fig. 10 we demonstrate the convergence of the steady state
DVRF(uA) of the fixed–fixed frame to the GVRF(uA) derived for the
respective static solution for a truncated Gaussian and a
Log-normal field of standard deviation rff = 0.1. For this procedure
a parent SDF SP of exponential form has been used given by
e structure for a lognormal field with rff = 0.399398 for LC1. Comparison of results



Fig. 9. Time histories of the (a) mean and (b) variance response displacement of the frame structure for a Gaussian field with rff = 0.2 for LC2. Comparison of results obtained
from Eqs. (9a) and (9b) and MCS.

Fig. 11. Plots of DVRF(uA, t = 20 s) for a constant load, GVRF1 and GVRF2 for truncated Gaussian and Log-normal stochastic fields respectively and static VRF as a function of
frequency j (rad/m) for rff = 0.1 for the fixed–fixed frame in Fig. 1.

Fig. 10. Plots of different spectral density functions of the Sp family for a discretization of 128 steps in the frequency domain.
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SPðjÞ ¼ r2
ff expð�2jjjÞ ð25Þ

In each row of Eq. (21) corresponds a different SDF of the SP family.
After computing respective SDFs for the truncated Gaussian and
Log-normal fields as in previous from Eq. (24) the ith SDF in the
ith row of Eq. (21) is defined as follows

SPi
ðjÞ ¼

SPðjþ ju � iDjþ DjÞ; 0 � j � ði� 1ÞDj
SPðj� iDjÞ; iDj � j � ju

�
ð26Þ

Four different SDFs of the SP family are depicted in Fig. 11. It is
expected a priori that the dynamic response displacement of the
system, when the applied load is constant through time, P(t) = P0,
and as soon as the system reaches a stationary state (theoretically
as time t tends to infinity), will match the response of the system
for the static case u(t) = P0/k. Respectively, DVRF(uA) should also fol-
low the GVRF(uA) curve as it is deduced by Eq. (9a) and [26]. Observ-
ing Fig. 10, it can be seen that the trend of both GVRF1 for the
Gaussian and GVRF2 for the Log-normal field is captured efficiently
from the DVRF(uA) curve at time t = 20 s. All three curves also match
the respective static VRF(uA) curve. Noted be that VRF, as well as
DVRF curves, are essentially computed following the same method-
ology as in GVRF where Sp is the delta function with concentrated
power equal to rff

2 at each wavenumber j and the u-beta function
being the respective marginal pdf. Also the Gaussian and Log-nor-
mal GVRF curves are, as expected, practically identical.

Finally, the GDVRF was computed for the fixed–fixed frame of
Fig. 1 and LC1 for a time window [0–0.2 s] and a relatively large
coefficient of variation rff = 0.5. Fig. 12a and b present plots of this
GDVRF and the corresponding DVRF computed with Eq. (9a). In
addition Fig. 13 presents a snapshot of GDVRF and DVRF at
t = 0.2 s. From all Figures it can be observed that GDVRF and DVRF
almost coincide.

Example 2 Consider now the shear wall in Fig. 14 with length
and height equal to L = 4 m, the inverse of the modulus of elasticity
assumed to vary randomly within its surface according to Eq. (13)
with F0 = (1.35 � 108 kN/m)�1, v = 0.2, t = 1.0 and damping ratio
n = 5%. The total mass of the beam is assumed to be mtot = 4000 kg,
distributed evenly among the finite element nodes of the model.
The wall is discretized into a total of 100 plain stress elements,
121 nodes and 242 d.o.f.’s. In this example the 2D version DFEM-



Fig. 13. Plots of GDVRF(uA,t = 0.2 s) for LC1and DVRF as a function of frequency j (rad/m) for rff = 0.5 for the fixed–fixed frame in Fig. 1.

Fig. 12. 3D plots of (a) DVRF and (b) G DVRF of the horizontal displacement uA, until t = 0.2 s as a function of frequency j (rad/m) and time t (s) for LC1 and rff = 0.5 for the
fixed–fixed frame in Fig. 1.
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FMCS procedure has been implemented, using Eq. (14) for the
estimation of the dynamic mean and variability.

The same two load cases as in previous example are considered.
The concentrated load is applied as shown in Fig. 3. In this example
the following 2D spectrum has been implemented:

Sf 0 f 0
ðjx;jxÞ ¼

r2
ff

4p
bxby exp �1

4
b2

xj
2
y þ b2

yj
2
y

� �� �
ð27Þ

where bx ¼ 2:0; by ¼ 4:0.
Fig. 15 presents 3D plots of the DMRF(uA) and DVRF(uA) for the

horizontal uA displacement of point A of the shear wall as a func-
tion of frequency jv and jy for rff = 0.2 at the fixed time of
t = 0.5 s. It is observed that both DMRF(uA) and DVRF(uA) vary sub-
stantially with respect to both directions and as usual maximum
values are located at the vicinity of (0,0). Such plots can be drawn
for all time steps of the analysis for the specific response displace-
ment. Would one care to deduce realizable upper and lower
bounds for this case, the extremes for DMRF(uA) (DVRF(uA)) at each
time step, accruing from the appropriate (jv, jy) pairs, should be
selected and, after using Eq. (18), the bounds could be readily cal-
culated. An application of the aforementioned procedure is shown
in Fig. 16 for rff = 0.1.

In following Figs. 17–21, results of mean and variability
response are presented obtained from the DFEM-FMCS procedure
and Eq. (14) in comparison with results obtained from Brute Force
Monte Carlo Simulation. In Fig. 17, charts depict the comparison
for the dynamic mean and variability response of the shear wall
horizontal displacement at point A and LC1 for a Gaussian stochas-
tic field with rff = 0.1. In Fig. 18 respective results are presented for



Fig. 14. Geometry, loading and finite element mesh of the shear wall.
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a Gaussian stochastic field of rff = 0.2. In Figs. 19 and 20 the results
are respectively for a truncated Gaussian field with rgg = 0.4 and
rgg = 0.6, respectively. The predictions of Eq. (14) in these cases
Fig. 15. 3D plots of (a) DMRF and (b) DVRF of the horizontal displacement uA, at time inst
and rff = 0.2.
are very satisfactory with errors ranging up to 5–8%. At last, in
Fig. 21 results of the mean and variability response for the shear
wall and for LC2 are displayed for a lognormal stochastic field with
rff = 0.2. Again, the trend of the response is very well captured by
Eq. (14) with errors ranging up to 15–20% in comparison to MCS.
7. Concluding remarks

In the present work, Dynamic Variability Response Functions
and Dynamic Mean Response Functions are obtained for general
stochastic FE systems such as a statically indeterminate frame
structure and a plane stress shear wall problem with random
material properties under dynamic excitation. The inverse of the
modulus of elasticity was considered as the uncertain system
parameter.

The DVRF and DMRF provide with an insight of the dynamic sys-
tem sensitivity to the stochastic parameters and the mechanisms
controlling the response mean and variability and their evolution
in time. The recently established GVRF concept has been utilized
and effectively validated the independence of DVRF of the spectral
properties and the marginal pdf of the uncertain system parameter
for the steady state loading case. Thus an easily implemented
methodology is introduced for computationally efficient sensitivity
analysis of general finite element systems.
ance t = 0.5 s as a function of frequency jx (rad/m) and frequency jy (rad/m) for LC1



Fig. 18. Time histories of the (a) mean and (b) variance response displacement of the shear wall for a Gaussian field with rff = 0.2 for LC1. Comparison of results obtained from
Eqs. (14a) and (14b) and MCS.

Fig. 17. Time histories of the (a) mean and (b) variance response displacement of the shear wall for a Gaussian field with rff = 0.1 for LC1. Comparison of results obtained from
Eqs. (14a) and (14b) and MCS.

Fig. 16. Time histories of the (a) mean and (b) variance response displacement upper bounds of the shear wall for a Gaussian field with rff = 0.1 for LC1. Results obtained from
Eqs. (12a) and (12b).
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Fig. 19. Time histories of the (a) mean and (b) variance response displacement of the shear wall for an underlying Gaussian field with rgg = 0.4 for LC1. Comparison of results
obtained from Eqs. (14a) and (14b) and MCS.

Fig. 20. Time histories of the (a) mean and (b) variance response displacement of the shear wall for an underlying Gaussian field with rgg = 0.6 for LC1. Comparison of results
obtained from Eqs. (14a) and (14b) and MCS.

Fig. 21. Time histories of the (a) mean and (b) variance response displacement of the shear wall for a lognormal field with rff = 0.2 for LC2. Comparison of results obtained
from Eqs. (14a) and (14b) and MCS.
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