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In the present paper the weighted integral method and the Monte Carlo simulation are used together with innovative solution 
strategies based on the Preconditioned Conjugate Gradient method (PCG) to produce robust and efficient solutions for the 
stochastic finile element analysis of space frames. The numerical tests presen'.ed demonstrate the superiority of the proposed 
computational strategies compared to the widely used Neumann expansion method both in terms of accuracy and computational 
efficiency. The superiority is more pronounced in cases where the analysis needs to be performed for large variations of the 
stochastic parameters. 

1. Introduction 

The theory and the methods of stochastic analysis have been developed significantly during the last 10 
years and have been documented in an increasing number  of publications. Considerable progress in 
applying stochastic process theory to the area of structural engineering has made it possible to achieve 
higher levels of reliability. This has led to safety measures that design engineers have to take into 
account due to the inherent  probabilistic nature of the design parameters such as material properties,  
geometry and /o r  loading conditions. Stochastic analysis involves the estimation of the response 
variability and /o r  reliability of a stochastic system defined as a structural system that  possesses 
uncertainties in its material and /o r  geometric properties. Although from a theoretical point of view the 
field has reached a stage where the developed methodologies are becoming widespread, from a 
computational  point of view serious obstacles have been encountered in practical implementations.  In 
large and realistic problems the developed methodologies are either cumbersome or computationally 
intensive, while most of them are incapable of dealing with non-linear structural response. 

Analytic solutions to the problem are restricted to simple linear elastic structures under  static loads 
while most of the current research work is focused on obtaining numerical solutions which are more 
appropriate for handling realistic problems [1-4]. Stochastic Finite Element Methods (SFEM) belong to 
this category. The most widely used SFEM approaches are based on the representation of stochastic 
fields as a series of random variables. Among them, the most important  methods are the midpoint  
method [5-9], the nodal point method [10], the interpolation method [5, 11, 12], the local averaging 
method [5, 13-16], the series expansion methods such as the Karhunen-Loeve  expansion method 
[17, 18], the homogeneous chaos expansion method [18], and the perturbation method [5, 7, 9, 18-21]. 
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These methods have, however, a limited range of applicability since they can only be accurate for small 
values of variabiiity of the stochastic properties, while they are not capable of dealing with problems 
involving non-linearities or dynamic loading [22]. In addition, these methods require, in order to be 
accurate, fine element meshes so that the element size is a fraction of the correlation distance of the 
stochastic field involved in the problem. The weighted integral method, developed by Deodatis and 
Shinozuka [22, 25], does not require discretization of the random field. Its accuracy is, therefore, 
independent of the chosen mesh, thus avoiding the severe shortcomings of the previously mentioned 
methods. 

The use of Monte Carlo Simulation tMCS) based ~n SFEM approaches has the major advantage that 
accurate solutions can be obtained for any problem whose deterministic solution is known either 
numerically or analytically, since it statistically converges to the correct solution provided that a large 
number of simulations is employed. In fact, it is the only method available to solve stochastic problems 
involving non-linearities, dynamic loading, stability effects, parametric excitations etc. The disadvan- 
tage of the standard MCS is that it is usually extremely computationally demanding due to the repeated 
analyses that have to take place, b~ is for this reason that a Neumann expansion of the inverse of the 
stiffness matrix [7, 25] has been proposed in order to enhance the computational efficiency of MCS. 

In the present paper the weighted integral method in conjunction with the Monte Carlo simulation is 
used together with innovative solution strategies based on the Preconditioned Conjugate Gradient 
method (PCG) to produce robust and efficient solutions for the stochastic finite element analysis of 
space frames. The numerical tests presented demonstrate the superiority of the prolapsed computational 
strategies, compared to the widely used Neumann expansion method, both in ternls of accuracy and 
computational efficiency. The superiority is more pronounced in cases where the analysis needs to be 
performed for large variations of the stochastic parameters. 

2. Stochastic  finite e lement analysis  of  space frames 

2.1. The weighted integral method 

The weighted integral method has been applied in [22-24] to formulate the stochastic element 
stiffness matrix for a 2-D beam element. In this section the corresponding stochastic stiffnes:, matrix of a 
3-D beam element is derived. 

For a 3-D beam element with 6 degrees of freedom per node the modulus of elasticity is assumed ',o 
vary randomly along the element length according to 

Era(x) = Eo[1 +f(')(x)] (1) 

where E o is the mean value of the modulus of elasticity and f{'}(x) is a one-dimensional univariate 
(1D-1V) zero-mean homogeneous stochastic field. 

In order to avoid the possibility of obtaining non-positive values of the elastic modulus, f{'}(x) is 
assumed to be bounded according to 

- 0.80 < f('~(x) < 0.80 (2) 

These bounds are implemented as follows: any generated sample function, that has at least one of its 
values out of the bounds, is automatically discarded. 

The stochastic element stiffness matrix is given by 

fL re) 
K m = ] BmTD(')B m dx (3) 

where 
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F A ~) 0 0 0 1 0 1 ~ 0 0 

D ~ = E(')(x) 0 0 I~ ~ 0 (4) 
j(e~ 

0 0 0 2(1 + v) 

B c~ is the matrix containing the derivatives of the shape functions and A (~), 1~ ~, 1(3 "~, J(") are the 
cross-sectional area, the cross-seoional moments of inertia for weak and major axes and the torsional 
modulus, respectively. L (~ and v are the length of the element and the Poisson ratio, respectively. 

Performing integration with respect to x, the stochastic stiffness matrix K (° may be expressed as 

x ~' = K~' + X'o" aKl, '  + x ' : '  aK'/'  + X;;' aK';' (5) 

or 

K ~'~ = K~7; + AK ¢'~ (6) 

K(o ") and AK (~) are used to denote the stationary part and the fluctuating part of the stochasfc clement 
stiffness matrix, respectively. X~ ), X{( ~ and X {'~ 2 are the so-called weighted integrals which are random 
variables defined as 

f0 L('I X~o "' = f ' " ( x )  dx (7) 

x':' = f~o "' xf'"(x) ~ (8)  

X le) _ fL{'~ 
z - J0 x2f('l(x) dx (9) 

K o is the mean value of K (~) since the weighted integrals have zero-mean and AK 0' AK~ and AK 2 are 
deterministic matrices, the definition of which can be found in Appendix A. 

2.2. Representation of  the stochastic field 

Since the MCS techniques are used to calculate the response variability of the stochastic structural 
system, it is necessary to digitally generate sample fimctions of the 1D-1V stationary Gaussian 
zero-mean homogeneous stochastic field f(x). This is done using tlae spectral representation method 
[26, 27], taking advantage of the Fast Fourier "l'ransform (FFT) technique in order to reduce the 
computational effort of the simula,ion. This is achieved using the formula 

f " ' ( p A x ) = R e t g T o B ' n ' e ' n p ' e " M ' ,  p = 0 , 1  . . . . .  M - l ;  ] = 1 , 2  . . . . .  NsAM, (10) 

where Re indicates the real part, M defines the number of points at which f (x)  is realised along the 
element length and Ns^Mp is the number of samples to be generated. B~ is given by 

B{n j ) = V ~ A n e  i*~', n = 0 , 1  . . . . .  M - 1  (11) 

where 0¢," represents the jth realisations of the independent random phase angles uniformly distributed 
in the range [0-2~r] and A n is defined as 

A n = (2SH(n Ak) Ak) t/:, n = 0,1 . . . . .  M - 1 (12) 

and 
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ku 
ak = W  03)  

k u is the upper cut-off wave number  and N is the number  of intervals in the discretization of the 
spectrum. S;; is the two-sided power spectral density tunction defined as 

1 ~, 3 -, sr~ ---:~ o.~b~k- e - ~  (14) 

where o" f denotes the standar0 deviation of the stochastic field, b I denotes the parameter  that influences 
the shape of the spectrum and hence the scale of the correlation and k = n Ak. 

Using Eq. (10), a large number  of sample functions, NSAMP, is produced for each element of the 
structure generating a set of stochastic stiffness matrices. The associated structural problem is solved 
NSAMP times, while the response variability can finally be calculated by taking the response statistics of 
the NSAMP simulations [27]. 

3. Solution procedures 

3 .1 .  T h e  N e u m a n n  ser ies  e x p a n s i o n  

The expansion of the inverse of the stochastic global stiffness matrix in a Neumann series within the 
framework of the Monte Carlo Simulation method has been treated by several researchers [5, 7, 9, 17, 
18, 25]. The solution of the stochastic problem 

(K o + aK)u  - - F  (15) 

yields 

n = ( I  + K o  I A K ) - ~ K o t F  (16) 

The term in the parentheses can be expressed in a Neumann series expansion giving 

u = ( !  - P + p 2  _ p 3  + . . . ) K o t F  (17) 

with P = K o  ~ A K .  The response vector can now be represented by the following series 

u = u o - P u  o + P 2 u  o - p 3 u  o + . . .  (18) 

or 

u = u 0 - u  I + u 2 - u  3 + - . -  ( 1 9 )  

The series solution can also be expressed by the following recursive equation 

K o ~  , = AKui_ I, i = 1, 2 . . . .  (20) 

This formula has the advantage that only the non-fluctuating part of the stiffness matrix has to be 
factorized once, while the additive terms u i to the solution can be computed by successive backward 
and forward substitutions. The series may be truncated after a fixed number  of terms, or according to 
an error  norm given by 

I 

or 

II,ill/llr II ~< ~ (22) 
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where r, = b -  (Ko + AK)ui. Thus, the final solution is reached when the termination criterion is satisfied. 
This check is performed after the computation of each additive term ui. The first criterion is most 
frequently used since it is more computationally efficient. The second criterion requires the evaluaticn 
of the residual vector which involves an additional matrix vector multiplication for each Neumann term. 

The most interesting feature of this approach, in connection with the stochastic finite element method 
and the Monte Carlo simulation, is that the matrix factorization is required only once for all samples, 
while the approximate nature of the solutior ,.~ay be sufficient due to the inherent approximations 
involved in the Monte Carlo simulation approach. The convergence requirement of the Neumann 
expansion method, that the absolute values of all eigenvalues of P should be less than 1, can always be 
satisfied, even for large components of the deviation matrix compared to the corresponding components 
of Ko, after a modification proposed in [7]. According to this modification, a scalar parameter m is 
introduced satisfying the inequality m < (A, + 1)/2. where A~ is the largest positive eigenvalue of P. 
Then the series expansion of Eq. (20) is replaced by 

K,,u*, = 1 At:*u*,_, (23) 

with 

1 
u * = - ~ u ,  and A K * = ( K - m K , , ) .  

3.2. The preconditioned conjugate gradient method 

The inherent features of the stochastic finite element analysis in conjunction with Monte Carlo 
simulation makes the Preconditioned Conjugate Gradient method (PCG) very attractive for the 
solution of the system of linear equations for each Monte Carlo simulation. The PCG is established as 
the more attractive iterative procedure for solving linear problems resulting from the finite element 
discretization. An important factor in the success of this method in solving large-scale finite element 
equations is the preconditioned technique used to improve the ellipticity of the coefficient matrix. This 
typically consists of replacing the original system Ku = F by the equivalent system 

R - nKu = R -  ' F  (24) 

where the transformation or preconditioning matrix R is an approximation to K and it is non-singular. 
The PCG algorithm, based on the most efficient conjugate gradient version in respect to computational 
labour, storage requirements and accuracy, is defined as follows for the untransformed variables: 

a,. = (d(,.~ ' Kd¢,,o ) 

~(m+l) = Is(m) ~ otmd(m) 

rim+ ;) = r {,.) + amKd {m~ 

if IIr"+ '  ql/llF II ~< E then stop 

z~,. + i~ = R-  Ir~" + l~ (25) 

(r(m+l) z(m+l)) 

a,,, ( r ( ~ ,  ZCm~ ) 

d(m + I ) = _ z(m + l ) + otmd(m) 

with 

r {°> = K u  {°~ - F ,  z(0) = R - ~ r  w~. d ~°~ = z  °)~ 
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At the heart of the PCG iterative procedure for solving K u = F  is the determination of the residual 
vector and the selection of the preconditioning matrix. The accuracy achieved and the computational 
labour of the method is largely determined by how these two parameters are selected. A study 
performed in [28] revealed that the computation of the residual vector from its defining formula 
r ~m~ = K u  tin) - F offers no improvement in the accuracy of the computed results. In fact, it was found 
that, contrary to previous recommendations, the calculation of the residuals by the recursive expression 
of algorithm in Eq. (25) produces a more stable and well-behaved iterative procedure. Based on this 
observation, a mixed precision PCG implementation is proposed in which all computations are 
performed in single precision, except for double precision computation of the matrix vector multiplica- 
tion occurring during the recursive evaluation of the residual vector. This implementation is a robust 
and reliable solution procedure, even for handling large and ill-conditioned problems, while it is also 
computer storage-effective. It was also proved to be more cost-effective, for the same storage demands, 
than double precision calculations [28, 29]. 

The preconditioned matrix R has to be selected appropriately so that the eigenvalues of R - ' K  are 
spread over a much narrower range than those of K. For the types of problems considered in this study, 
the non-fluctuating part of the stiffness matrix is taken as the preconditioning matrix. The diagonal 
factor and the triangular factor of the LDL "r factorization of Ko are stored in double or in single 
precision arithmetic. Thus, the complete factorization of K o is performed only once for all Monte Carlo 
simulations, while the preconditioned vector z of the PCG algorithm is obtained by forward and 
backward substitutions at each PCG iteration. 

3.3.  T h e  N e u m a n n - C G  m e t h o d  ( N C G )  

In order to improve the quality of the preconditioning matrix used in the PCG method, a Neumann 
series expansion is implemented for the calculation of the preconditioned vector z. The preconditioning 
matrix is now defined as the complete stochastic global stiffness matrix K = K o + AK, but the solution 
for z is performed approximately using a truncated Neumann series expansion. Thus, the pre- 
conditioned vector z of the PCG algorithm is obtained at each iteration by 

z = z o - z ,  + z 2 - z ~ + " "  (26) 

zo is given by 

zo = Kc~lr (27) 

and z~ is obtained by 

Koz, = Agz . . . .  i = 1,2 . . . .  (28) 

while the superscript (m+ 1) has been dropped for clarity. The solution of Eq. (28) is performed in 
double or in single precision arithmetic. 

The incorporation of the Neumann series expansion in the preconditioned step of the PCG method 
can be seen from two different perspectives. From the PCG point of view an improvement on the 
quality of the preconditioning matrix is achieved by computing a better approximation to the solution of 
u = ( K  o + AK)- tF  than the one provided by the preconditioning matrix K 0. From the Neumann series 
expansion point of view, the inaccuracy entailed by the truncated series is alleviated by the conjugate 
gradient iterative procedure. It remains to be seen, however, whether the anticipated improvement on 
the convergence properties of the PCG method or on the accuracy of the Neumann series expansion 
implies also a reduction of the overall computational effort by counteracting the additional cost 
involved at each iteration. 
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4. Numer ica l  tests 

The test example used to validate the performance of the previously described methods is the 20 
storey space frame shown in Fig. I. The loads considered here are deterministic and they consist of 
vertical forces equivalent to a uniform load of 100 psf (4.788 kN/m 2) and a basic horizontal pressure of 
20 psf (0.956 kN/m-'). The modulus of elasticity is considered to be a ID-1V zero-mean homogeneous 
stochastic field. Two sets of sample functions were prepared: the first with a standard deviation of 0.15 
and the second with a standard deviation of 0.25. The performance of the PCG and the NCG methods 
compared to the MCS with a direct skyline solver and the truncated Neumann expansion method 
without correction is examined in terms of both accuracy and computational efficiency. The test were 
performed on a Silicon Graphics Indigo R4000 workstation. 

A compact storage scheme is used for the PCG and the NCG methods to store the stiffness matrix. 
Non-zero terms are stored in a real vector, while the corresponding column members are stored in an 
integer vector of equal length. An additional integer vector with length equal to the number of 
equations is used to record the start of each row inside the compact scheme. The extra storage for the 

o 

;I 
;I :7 

16WF36 

i i  : 

Fig. I. Twenty-storey space frame. 
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conjugate gradient method is 5n real positions. The direct MCS procedure with the complete Cholesky 
LDL factorization is handled with a skyline storage for L in double precision arithmetic. In estimating 
the computer storage it is assumed that integers are stored as INTEGER *2 or INTE(3ER *4 according 
to their maximum possible values, and the floating point variables as REAL *4 or REAL *8 according 
to the accuracy of computation, single or double precision, respectively. 

Figs. 2 and 3 show the convergence bchaviour and the attained accuracy of the methods for 
predicting the mean value and the standard deviation of the tip deflection of the frame for a standard 
deviation of the modulus of elasticity of 0.15. The PC(3 and the NC(3 methods are implemented with 
mixed precision arithmetic in which all computations are performed in single precision except for the 
double precision computation of the matrix-vector multiplication for the calculation of the residual 
vector. Numbers in parentheses correspond to the value of the termination criterion (~ or ~2), while the 
number following the abbreviated name of the Neumann-type method gives the order of expansion of 
the Neumann series. 

Figs. 4 and 5 show the comparisons corresponding to Figs. 2 and 3 for a standard deviation of the 
modulus of elasticity of 0.25. Fig. 6 depicts the storage requirement~ for each of the above methods 
where the abbreviation DP stands for Double Precision arithmetic. Figs. 7 and 8 show the performance 
of the methods after 100 simulations in terms of computing time, for standard deviations of the modulus 
of elasticity of 0.15 and 0.25, respectively. Finally, Fig. 9 shows the number of conjugate gradient 
iterations required for the PC(:; and the NC(3 methods in a typical MC simulation. 
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Fig. 2. Mean value of deflection at top store)' for o,rO.lS. 
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Fig. 3. Standard deviation of deflection at top storey for %=0.15.  
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Fig. 4. Mean value of deflection at top storey for o~1=0.25. 
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Fig. 5. Standard deviation of deflection at top storey for ¢1 =0'25" 
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Fig. 7. Total CPU time for err=0.15 after I(X) simulations. 
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Fig. 8. Total CPU time for o~/=0.25 after 100 simulations. 
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Fig. 9. Number of conjugate gradient iterations for %=0.25 in a typical MC simulation. 

5. Conclusions 

This paper presents a methodology for accurately and efficiently estimating the response variability of 
stochastic finite element systems with application to space frames. Accurate solutions are obtained using 
the preconditioned conjugate gradient method and the Neumann conjugate gradient method in the 
context of Monte Carlo simulation, while significant reduction in computing time and storage 
requirements is achieved compared to the conventional direct solution and the truncated Neumann 
expansion method without correction. This improvement is even more pronounced for large variations 
of the modulus of elasticity where the results obtained from the Neumann expansion method without 
correction are often erroneous. 

For the case of a 0.15 variation of the modulus of elasticity, the results obtained from the first order 
NCG method (NCG-1) and the termination criterion e =0.1 coincide with those of the direct MCS, 
while all other methods are in good agreement within an error of 7% and 12% for e=0.1 and ~=0.25, 
respectively. The second order Neumann expansion methoa (NEUMANN-2), produces an error of 
25% and represents the most computationally efficient case in the context of the Neumann expansion 
method. The results given by the Neumann expansion method with termination criterion e2 =0.1 are in 
good agreement with those of the direct MCS. A reduction of 40% and 30% in CPU time is achieved, 
using the NCG-1 method compared to the Neumann expansion method, for e=e2=0.1 and E=ez= 
0.25, respectively. NCG and PCG methods are more computationally efficient even if compared to the 
most efficient second order Neumann expansion (NEUMANN-2). 

For the case of a 0.25 variation of the modulus of elasticity, the Ne,mann expansion method can not 
achieve satisfactory results, producing an error of 70%, while the I eumann expansion method with 
E 2 =0.1 diverges as shown in Figs. 4 and 5. Results obtained by the NCG-1 method with e=O.1 coincide 
with those obtained by the direct MCS. All other versions of PCG and NCG methods produce errors of 
less than 5%. For this case, the NCG-1 method requires less computing time compared to the PCG 
method e = 0.1, while a reduction of 85% in computing time is achieved compared to the direct MCS. 
For the case of ~=0.25 NCG and PCG methods require the same computing time. Additionally, Fig. 9 
shows the number of iterations of the methods for a typical simulation, while the average number of 
iterations for NCG-1 and PCG is 2.45 and 4.70, respectively. 

Finally, a reduction of about 50% in storage requirements is achieved using PCG or NCG methods 
compared to the direct MCS and the Neumann expansion method, as well as to PCG and NCG 
methods with double precision arithmetic. Double precision arithmetic versions require 20% more CPU 
time compared to the corresponding mixed precision ones. 

It may therefore be concluded that PCG and bICG methods are superior compared to the 
conventional direct solution and the truncated Neumann expansion method without correction for the 
stochastic finite element analysis using the Monte Carlo simulation approach, while NCG proved to be 
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superior compared to the PCG method. In all cases studied, a considerable improvement in both 
accuracy and computational efficiency is achieved regardless of the amount of the variation of the 
stochastic parameters. 
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functions for the 3-D beam element is given by 

N~' 0 0 o o o 

N% ) 0 0 0 N~' 2 
N (e) = 

0 N ~  ) 0 N(')3s 0 

0 0 N ~  ) 0 0 

Appendix A 

A.  1. Stochastic element stiffness matrix o f  a 3-D beam element 

Using the standard displacement-based finite element analysis, the matrix containing the shape 

N',~) 0 o o o 0 

0 N ~  ) 0 0 0 (e) N2,12 

(e) 0 0 N ~  ) 0 N3.11 0 

(e) 0 0 0 N4.1o 0 0 

where 

The 

N(I~ , x x = I -'~-=~, N(I~ ) - L(,) 

N~2) = 1 - 3(L---~) 2 + 2(-~-~) 3, N~ ) = x ( 1 -  L---~-) 2 

N~'=3 ~(e )  2 2 I x  "~3 = x [ - ' ~  ( ' ~ ) ]  (L e ) _  ~--~]" N ~e.. )12 X + X 2 

N~' = 1 -  3('~-'~) + 2 ( ' ~ )  , N~'= x 2 

N(e) = x N ~  ) = 1 - - T ~ ,  4,10 L(e) L , ' "  

matrix containing the derivatives of the shape functions is given by 

[ s ~ '  o o o o o B~' o o o o o 

o a~' o o o a~' o B~' 0 o o a2.12"' 
B (e) = 

o o a';31 o a~' o o o B~' o a'~1 o 

0 0 0 B ~  ) 0 0 0 0 0 n(e) 0 0 ~4,10 

where 

1 1 
B~'  = - " ~ ,  B~7 - L (e, 
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6 12x 4 6x  
B ~ )  = - ~ + - ~ ,  B~6 ' = - - 7 T ; 7 +  L (~): 

6 1 2 x  (,) _ 2 6 x  

B ~  ) L (~,.. L ( , P '  B2 . ,2  - - - - ~  + L ,,),- 

6 1 2 x  4 6 x  

B~3 ' L (e)z L (e)~' B ~  ) = L (e) L (,)'- 

B(~) 6 1 2 x  (~) 2 6 x  

39 L(,)2 L(e)~, B3,H L( ,  ) L t , F  

B ( e )  _ _ R ( e )  R ( e )  R ( e )  
4 4 - - U l l  ~ u4.10--Ul7 

T h e  d e t e r m i n i s t i c  m a t r i c e s  K(o "), Ak'(e~--o, AK(() ,  AK(,'). i n v o l v e d  in  E q .  (5 )  a r e  d e f i n e d  as  fo l l ows :  

"A 0 0 0 0 0 - A 0 0 0 0 0 

1213 0 0 0 6 1 J L  0 - 1213 0 0 0 61~!L 

1212 0 -6121L 0 0 0 - 1212 0 - 6 1 z l L  0 

G 0 0 0 0 0 - G  0 0 

41:IL 2 0 0 0 b/2, ~ 0 21,1L " 0 

KI~ ) = 41~IL 2 0 - 61~IL 0 0 0 21~lL ~" 

A 0 0 0 0 0 

Symm. 121~ 0 0 0 - 61~/L 

1212 0 61~IL 0 

G 0 0 

41,1L " 0 

4131L " 

- -  i ~ ( e ) l ( e ) / l ( e )3  (c) (e) (e) 3 
w h e r e  A = A ( ' ) E ( o ' ) / L  ( ° ,  12 - ~ o  -2 - ~  , ! 3 = E o 13 I L  , G = E ( o ' ) J ( ' ) / ( 2 ( 1  + v ) L  (~)) a n d  L = L  (~) 

"A 0 0 0 0 0 - A 0 0 0 0 0 

3613L 2 0 0 0 2413L ~ 0 - 361~L ~" 0 0 0 1213L ~ 

3612L : 0 - 2412L ~ 0 0 0 - 361:L 2 0 - 121,1, 3 0 

G 0 0 0 0 0 - G  0 0 

1612L 4 0 0 0 2412L ~ 0 812 L4 0 

M¢ I') _ 1613L * 0 - 241~L ~ 0 0 0 813L 4 
o - 

A 0 0 0 0 0 

Symm. 361~L 2 0 0 0 - 121~L ~ 

3612L 2 0 61:/L 0 

G 0 0 

412L * 0 

413L 4 

w h e r e  A = Ate)E(bC)IL (')2, 12 = E(of) l(2")/L(e)  6, 13 = ~o~:(')u(')tt(')6-3 - ~  , G = E ( o ° J ( ° / ( 2 ( 1  + v ) L  (~)z) a n d  L = 
L ( e )  
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'0 0 0 0 0 0 0 0 0 0 0 

1441~L 0 0 0 

1441:L (I 841:L: 

0 0 

- 481,L 

_ )r '°(e)l(e)l l(e)" w h e r e  I , = ~ o  - :  - ~  • 

Symm 

- 841~L: 0 1441~L 0 0 0 

0 l) 0 1441,L 0 601,L: 

0 0 0 0 0 0 

0 0 0 - 8 4 1 : L  2 0 -3612L  3 

- 481~L ~ 0 841~L: 0 0 0 

0 0 o 0 0 

- 1441,L 0 0 0 

- 1441:L 0 - 6 0 1 : L :  

0 0 

- 2412L 3 

I _ ~ . (e ) l (e ) / l (e )~ '  L ( e )  3 - ~ o  -3 - ~  a n d  L =  

Ag~'  = 

0 0 0 0 

1441~ 0 0 0 

1441,. 0 - 721,/.. 

0 0 

361: L : 

o o o 

721~L 0 - 1441 s 

o 0 o 

o o o 

o o o 

361~L z 0 - 721~L 

0 0 

1441~ Symm. 

w h e r e  12 = E ~ ) I ~ " / L  (e)~, 13 = Co"(')'(')l~/"("~. a n d  L -- L '~' .  

o 

- 601~L 2 

o 

o 

o 

- 3617 L 3 

0 

601~ L 2 

0 

0 

0 

- 241~L ~ 

0 0 0 0 

0 0 0 7213L 

- 1441, 0 -721~L 0 

0 :.1 0 0 

721:L 0 3612L 2 0 

0 0 0 3613L 2 

0 0 0 0 

0 0 0 - 721~L 

1441, 0 721zL 0 

0 0 0 

3012L 2 0 

3613L ~ 
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