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This paper explores the applicability of artificial neural networks (ANN) for predicting the spread of
structural response under the presence of uncertain parameters described as random fields. The use of
ANN is carried out in combination with Monte Carlo simulation (MCS) for calculating response statistics
in stochastic analysis of structural systems using finite elements. To this extent, the ANNs are trained
with a few samples, following a conventional MCS procedure and used henceforth to predict the stochas-
tic response for the rest of samples. The basic idea is to achieve a dimensionality reduction of the input
ANN training space by using as input vector the random phase angles of the spectral representation
method instead of the random variables describing the uncertain input parameters. A further improve-
ment of the efficiency of the proposed approach is achieved by exploiting the uniform distribution of
the random phase angles, in order to span efficiently the training space using a latin hypercube sampling
(LHS) technique. The advantage of this approach over conventional computation of stochastic response
via a standard stochastic finite element-based MCS is the fast and reliable prediction of the required
response sample space which can be accomplished at a fraction of computing time and is independent
of the size of the finite element model. Numerical results are presented, demonstrating the efficiency
and the applicability of the proposed methodology as well as its distinct advantages over existing
ANN-based stochastic finite element methodologies (SFEM).

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The impact of uncertainties in the design process of engineering
structures is an important field with growing interest. While most
of modern design codes rely on partial safety factors calibrated to
target structural reliability, stochastic modeling of the uncertain-
ties in the loading, geometrical, and material properties becomes
more and more attractive leading to more rational estimations of
structural safety and reliability. Several probabilistic structural
analysis methods have been proposed in the past, the simplest
being the description of the uncertainties by a set of correlated
random variables, where each variable represents a material
parameter, load factor, or geometrical property. In several
engineering applications however, the description of uncertain
parameters using random variables can be insufficient. This is
due to the fact that certain physical quantities are often expected
to vary randomly in space or time. The probabilistic description
of such quantities requires the consideration of random fields. This
approach is generally referred as stochastic structural analysis [1].
In principle, brute force MCS is the most suitable and easily
implemented method to solve the aforementioned problems.
Despite its generality, MCS has been used mostly as a means of ver-
ifying the accuracy of approximate and less costly procedures due
to its usually high computational cost even if structural analysis is
accelerated by advanced solution techniques and/or Neumann ser-
ies expansion methods [2–4]. To alleviate this drawback advanced
variance reduction-based simulation methods have been proposed
in the context of reliability analysis, in order to reduce the number
of MCS required for an accurate prediction of the probability of
failure, such as adaptive sampling, importance sampling, line
sampling and subset simulation [5–8]. In addition to the aforemen-
tioned methodologies, meta-models, such as artificial neural
networks (ANN) have been successfully implemented in the frame-
work of reliability analysis leading to cost-efficient yet acceptable
predictions of the probability of failure [9–11]. This is due to the
associative memory properties featured by these artificial intelli-
gence devices that allow them to become efficient surrogates to
the numerical solver of the mechanical model which is repeatedly
invoked in the MCS. Following these early approaches, ANN
approximations of the limit-state function were proposed in
[12,13] combined either with MC or with first and second order
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reliability methods (FORM, SORM) for handling the uncertainties.
Similar approaches were presented in [11,14–16] where ANN
based response surface methods were implemented in order to
estimate the reliability integral over the failure domain. Compara-
tive studies of ANN-based reliability analysis with corresponding
polynomial approximations of the response surface as well as
FORM and SORM methods are presented in [9,11,17,18]. In those
papers, the ability of ANN to predict efficiently and accurately
enough the reliability of large and complex structural systems is
demonstrated. Furthermore it is shown that the advantage of using
the ANN approaches is that they adapt efficiently the input/output
(I/O) relations allowing for more accurate mappings of the basic
random variables than in the corresponding response surface
polynomial approximations of the failure functions, especially in
complex failure domains [9].

Despite the fact that ANN have been successfully applied in
reliability analysis in an increasing number of publications in
which uncertainties are described as random variables, similar
applications for the cases where uncertainties are described as ran-
dom fields are very limited. The main difficulty associated with the
use of ANN in the context of stochastic finite element analysis
(SFEM) is the large number of random variables induced by sto-
chastic processes describing the uncertain system parameters. This
feature of SFEM is making ANN inefficient for treating realistic
problems due to the large dimensionality of the input vector. In
an effort to alleviate this drawback, ANN were used in [19,20] in
the context of Karhunen–Lo�eve (KL) expansion for modeling uncer-
tain material properties of one-dimensional random fields. This
way a reduced input vector size for the ANN architecture was
achieved by considering the random variables that define each
eigenvector of the KL decomposition as the training data set. This
ANN-based SFEM methodology was used for computing the
response statistics (moments and pdf) of simple statically determi-
nate stochastic beams by providing robust ANN estimates of the
structural response in the framework of MCS.

In the present study, an alternative to the aforementioned ANN-
based SFEM is proposed which is based on the spectral representa-
tion (SR) method [21,22] for the description of uncertain system
properties. The basic reason for choosing this alternative approach
is that it inherits some distinct advantages of SR method over the
KL [1,23], namely its optimal convergence in cases that involve rel-
atively short correlation lengths. An additional advantage of this
approach, with respect to the KL-based ANN method is that it
avoids the computationally expensive solution of the Fredholm
integral equation in cases that involve autocorrelation structures
for which analytical solutions of the integral equation are not avail-
able. In addition, the proposed methodology provides with a useful
extension of ANN-based SFEM methods to multi-dimensional
stochastic spaces and is formulated in the framework of the
multi-dimensional spectral representation method for the
modeling of the involved random quantities. A similar to [19]
dimensionality reduction of the stochastic variables is achieved
by considering directly the random phase angles of the truncated
series expansion as the input vector for the ANN training, instead
of the random variables describing the uncertain input parameters.
The proposed methodology is applied to Gaussian as well as to
non-Gaussian random fields in a straight forward manner. Since
ANN require a training phase for tuning their parameters, some
conventional Monte Carlo simulations are needed at the initial
phase of the procedure. For this purpose, the LHS technique [24]
is applied in order to effectively span the random space of the
phase angles which, according to the spectral representation, are
uniformly distributed in the range ½0;2p�. Thus, the effectiveness
of the proposed ANN methodology is further enhanced by the
aforementioned uniformly spanned training space. Numerical
results are provided demonstrating the efficiency as well as the
applicability of the proposed methodology in a stochastic beam
as well as a stochastic plane stress finite element system. In
addition, the distinct advantages of the proposed approach over
KL-based ANN method are showcased.

The remainder of this paper is organized as follows. In Section 2,
an overview of the spectral representation method is made. Section
3 contains a brief description of the basics of artificial neural
networks. The proposed method is over-viewed in Section 4.
Finally, in Section 5 numerical data is presented demonstrating
the computational merits of the proposed methodology in terms
of the computational performance.

2. Representation of the random fields

In nature, most of the uncertain quantities appearing in
engineering systems are non-Gaussian (e.g. material, geometric
properties, seismic loads), the Gaussian assumption is often used
due to the lack of relevant experimental data and for simple math-
ematical convenience. It must be noted that this assumption can be
problematic in many cases, for example in the case where the
Young’s modulus is assumed to be a random variable following a
Gaussian distribution. In this case negative values for the Young’s
modulus may occur which have no physical meaning. From the
wide variety of methods developed for the simulation of Gaussian
stochastic fields, two are most often used in applications: The spec-
tral representation method [22] and the Karhunen–Loève (KL)
expansion as a special case of orthogonal series expansion methods
[25]. A comparison between these two methods was made in [21].
The results showed that the KL expansion is particularly suitable
for the representation of strongly correlated stochastic fields with
smooth autocovariance function where only a few terms, corre-
sponding to the N larger eigenvalues, are required in order to cap-
ture most of the random fluctuation of the field. On the other hand
the spectral representation method, which was preferred in this
work, is mostly suitable for the representation of weakly correlated
random fields in which a large number of terms in the series
expansion is required in order to capture the random fluctuations.
In [23] it was presented that if the stochastic field is homogeneous
and the observation interval is infinite the KL expansion reduces to
spectral representation. Especially, for the case of a finite long field
defined in ½�a; a�where a is large, it was shown that the eigenvalue
is given by the spectral density function.

2.1. An overview of spectral representation method

Spectral representation method expands the stochastic field as
a series of trigonometric functions with random phase angles.
The simulation formula for a truncated after N1 terms, one-dimen-
sional homogeneous random field bf ðx1Þ reads

bf ðx1Þ ¼
ffiffiffi
2
p XN1

i¼1

Ai cosðj1ix1 þuiÞ ð1Þ

where uiði ¼ 1; . . . ;N1Þ are independent random phase angles
uniformly distributed in the range ½0;2p�; the frequencies are set to

j1i ¼ iDj1 ¼ i
j1u

N1
for i ¼ 1; . . . ;N1 ð2Þ

where j1u is the upper cut-off wave number. The coefficients Ai are
defined as follows:

A0 ¼ 0 Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sf 0
ðj1iÞDj1

q
for i ¼ 1; . . . ;N1 ð3Þ

where Sf 0
is the power spectral density function which is a real non-

negative function of j1. The coefficient A0 is chosen zero such that
the temporal mean value averaged over the whole simulation time
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T0 ¼ 2p=Dj1 of the generated stochastic field bf ðx1Þ remains zero.
The simulated stochastic process of Eq. (1) constitutes the spectral
representation of the random field. It is shown by Shinozuka and
Deodatis [21] that bf ðx1Þ is asymptotically Gaussian as N !1 and
ergodic in the mean and in correlation due to the central limit
theorem.

For the cases of two and three dimensional random fields,
Eq. (1) takes the form:

bf ðx1; x2Þ ¼
ffiffiffi
2
p XN1

i¼1

XN2

j¼1

Aij cos j1ix1 þ j2jx2 þuð1Þij

� �h

þ~Aij cosðj1ix1 � j2jx2 þuð2Þij Þ
i

ð4Þ

and

bf ðx1; x2;x3Þ ¼
ffiffiffi
2
p XN1

i¼1

XN2

j¼1

XN3

k¼1

Aijk cos j1ix1 þ j2jx2 þ j3kx3 þuð1Þijk

� �h

þ~Aijk cos j1ix1 þ j2jx2 � j3kx3 þuð2Þijk

� �
þbAijk cos j1ix1 � j2jx2 þ j3kx3 þuð3Þijk

� �
þ�Aijk cos j1ix1 � j2jx2 � j3kx3 þuð4Þijk

� �i
ð5Þ

respectively, with

Aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sf 0 f 0

ðj1i;j2jÞDj1Dj2

q
ð6Þ

~Aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sf 0 f 0

ðj1i;�j2jÞDj1Dj2

q
ð7Þ

Aijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sf 0 f 0 f 0

ðj1i;j2j;j3kÞDj1Dj2Dj3

q
ð8Þ

~Aijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sf 0 f 0 f 0

ðj1i;j2j;�j3kÞDj1Dj2Dj3

q
ð9Þ

bAijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sf 0 f 0 f 0

ðj1i;�j2j;j3kÞDj1Dj2Dj3

q
ð10Þ

�Aijk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sf 0 f 0 f 0

ðj1i;�j2j;�j3kÞDj1Dj2Dj3

q
ð11Þ

Dj1 ¼
j1u

N1
; Dj2 ¼

j2u

N2
; Dj3 ¼

j3u

N3
ð12Þ

j1i ¼ iDj1; j2j ¼ jDj2; j3k ¼ kDj3 ð13Þ

where Sf 0f 0
ðj1;j2Þ and Sf 0 f 0f 0

ðj1;j2;j3Þ are the power spectral
density functions for the two and three dimensional case, respec-
tively while j2u and j3u are the upper cut-off wave numbers. In
Eqs. (4) and (5) the independent phase angles u are generated
randomly in the range ½0;2p� and the superscripts (1), (2), (3) and
(4) are used to denoted the number of the term of the function
which is summed and in which the corresponding phase angle is
implemented. For the two and three-dimensional random fields
cases the total number of random phase angles required is

N2D ¼ 2� N1 � N2 ð14Þ

and

N3D ¼ 4� N1 � N2 � N3 ð15Þ

respectively.

2.2. An overview of Karhunen–Loève expansion

In terms of discretization error, an efficient decomposition of a
zero-mean Gaussian random field is the Karhunen–Loève (KL)
expansion which approximates it by a linear combination of
orthogonal deterministic functions with independent standard
Gaussian random variables, where the orthogonal deterministic
functions and their magnitude are the eigenfunctions and
eigenvalues of the covariance function, respectively. The truncated
after M terms KL expansion of a one-dimensional random field
f ðx1Þ is written as:

bf ðx1Þ ¼ lðx1Þ þ
XM

i¼1

ffiffiffi
k
p

ini/iðx1Þ ð16Þ

x1 being a position variable. In Eq. (16) lðx1Þ is the mean value of
the random field, ki and /iðx1Þ are the eigenvalues and
eigenfunctions of its covariance function Cða1;a2Þ, where a1;a2 are
two locations of the random field x1. By definition, Cða1; a2Þ is
bounded, symmetric and positive definite with the following
spectral or eigen-decomposition:

bCða1;a2Þ ¼
XM

i¼1

ki/iða1Þ/iða2Þ ð17Þ

The eigenvalues and eigenfunctions of bCða1;a2Þ may be calculated,
in the range D of the random field bf ðx1Þ, from the solution of the
homogeneous Fredholm integral equation of the second kind given
by:Z

D

bCða1; a2Þ/iða1Þ ¼ ki/iða2Þ ð18Þ

The parameter niðhÞ in Eq. (16) is a set of uncorrelated Gaussian
random variables which can be expressed as

niðhÞ ¼
1ffiffiffi
k
p

i

Z
D
½bf ðx1; hÞ � lðx1Þ�/iðx1Þdx1 ð19Þ

with mean and covariance function given by:

E½ni� ¼ 0
E½ninj� ¼ dij ð20Þ
3. Artificial neural networks

Artificial neural networks (ANN) are information processing
models configured for a specific application through a training
process. Trained ANN provide with rapid mapping of a given input
into the desired output quantities (similar to curve fitting proce-
dure) and thereby can be used as meta-models and enhance the
computational efficiency of a numerical analysis process. This
major advantage of a trained ANN over a conventional numerical
analysis procedures, under the provision that the predicted results
fall within acceptable tolerances, is that results can be produced in
a fraction of wall clock time, requiring orders of magnitude less
computational effort than the conventional procedure [26–28].

The most crucial matter in the use of an ANN is the learning
procedure which is necessary in order for the network to operate.
There are two kinds of learning procedures, the supervised learn-
ing and the unsupervised learning. In the case of supervised learn-
ing the ANN is trained with pairs of input/output data, referred to
as the training patterns P ¼ fðxðpÞ; tðpÞjp ¼ 1; . . . ; PÞg, while in the
second case the ANN learns automatically from its environment.
Neural network consists of a number of units (neurons) linked
together and in the case of supervised learning attempts to create
a desired mapping between the input and the output data of the
training set. The artificial neuron (Fig. 1) processes the information
from one training set (xðkÞ ¼ ½x1; x2; . . . ; xN]) and predicts an output
vector yðkÞ, which depends on a vector of connections
w ¼ w1;w2; . . . ;wN , known as synaptic weights.

Basically, the learning procedure tries to adjust the synaptic
weights in order to have a mapping that fits well the training set.



Fig. 1. Schematic plot of an artificial neuron.
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The training procedure of an ANN can be considered as a general
function optimization problem, with the adjustable parameters
being the weights w of the network. The quality of this mapping,
with respect to the training set, is measured with the aid of an
error function. Without loss of generality let us assume that the
network maps a given input vector x 2 RN into the output vector
y 2 RL. The error function is given by the formula

ED ¼
1
2

XL

i¼1

ðti � yiÞ
2 ð21Þ

where ti and yi are the target and computed values of the ith output,
respectively. A learning algorithm tries to determine the values of
the synaptic weights w in order to achieve the correct response
for the input vector applied to the network by minimizing the value
of ED. The numerical minimization algorithm used for the training,
generates a sequence of weight parameters w through an iterative
procedure where the update formula can be written as follows:

wðtþ1Þ ¼ wðtÞ þ D wðtÞ ð22Þ

The increment of the weight parameter DwðtÞ is further decomposed
into

DwðtÞ ¼ atd
ðtÞ ð23Þ

where dt is a search direction vector and at is the step size along this
direction.

The algorithms most frequently used in the ANN training are
the steepest descent, the conjugate gradient and the Newton’s
methods with the following direction vectors:

� Steepest descent method: dðtÞ ¼ �rEðwðtÞÞ
� Conjugate gradient method: dðtÞ ¼ �rEðwðtÞÞ þ bðt�1Þdðt�1Þ where

bðt�1Þ is defined: bðt�1Þ ¼ rEðwðtÞÞ � rEðwðtÞÞrEðwðt�1ÞÞ � rEðwðt�1ÞÞ
� Newton’s method: dðtÞ ¼ �½HðwðtÞÞ��1rEðwðtÞÞ

The learning algorithm used in this work is based on an adap-
tive version of the Manhattan-learning rule and developed by
Riedmiller and Braun is the Resilient backpropagation abbreviated
as Rprop [28]. The ANN learning process progresses iteratively,
through a number of epochs. On each epoch the training patterns
are submitted in turn to the network and the error is calculated
by comparing the actual outputs with the corresponding target
values. The weight updates can be written

DwðtÞij ¼ �gðtÞij sign
@Eðwðt�1ÞÞ
@wij

� �
ð24Þ

where

gij ¼

min a � gðt�1Þ
ij ;gmax

� �
; if @Et

@wij
� @Et�1
@wij

> 0

max b � gðt�1Þ
ij ;gmin

� �
; if @Et

@wij
� @Et�1
@wij

< 0

gðt�1Þ
ij otherwise

8>>>><
>>>>:

ð25Þ
where a ¼ 1:2; b ¼ 0:5, and g are step parameters in the formula for
the increment of the design vector w which are called ‘‘locally
adaptive’’ learning rates because they are based on weight specific
information only such as the temporal behavior of the partial deriv-
ative of this weight. The learning rates are bounded by upper and
lower limits in order to avoid oscillations and arithmetic underflow.
In this work these bounds are set gmax ¼ 50 and gmin ¼ 0:1 [28].

One of the problems that occur during neural network training
is the over-fitting. The error on the training set is driven to a very
small value, but when new data is presented to the network the
error is large. In order to prevent over-fitting we must improve
network’s generalization. This can be achieved by:

1. Stop the training early – before it has had time to learn the
training data too well.

2. Retrain several neural networks.
3. Add some form of regularization term to the error function to

encourage smoother network mappings.
4. Add noise to the training patterns to smear out the data points.

In the present work, several neural network were trained in
order to ensure that a network with good generalization is found.
In each neural network an early stopping method was used in
order to further improve generalization. In this technique the avail-
able data is divided into three subsets. The first subset is the train-
ing set, which is used for computing the gradient and updating the
network weights and biases. The second subset is the validation
set. The error on the validation set is monitored during the training
process. The validation error normally decreases during the initial
phase of training, as does the training set error. However, when the
network begins to over-fit the data, the error on the validation set
typically begins to rise. When the validation error increases for a
specified number of iterations the training is stopped, and the
weights and biases at the minimum of the validation error are
returned. The third subset is the testing data set which is used only
for testing the final solution in order to confirm the actual
predictive power of the network. This set of data is never used in
the training process. Once a neural network is selected based on
the validation set, the test set data is applied on the network and
the error for this set is computed. This error is representative of
the error which we can be expected from absolutely new data
for the same problem. However, by partitioning the available data
into three sets, we drastically reduce the number of samples which
can be used for learning the model, and the results can depend on a
particular random choice for the pair of (train, validation, test) sets.
In most cases the input data are randomly divided so that 70% of
the samples are assigned to the training set, 15% to the validation
set and 15% to the testing set.

4. Neural network-based SFEM

As mentioned in the introduction, the use of ANN model as sur-
rogates to the FEM model in the context of SFEM analysis is prohib-
itive due to the large dimensionality of the required input vector in
the ANN training process. For example, in the case of a FEM model
with 106 finite elements which utilizes the midpoint method for
the random field mapping, an input vector of up to 106 random
variables would be required in the ANN architecture. This number
is impossible to be handled by any ANN. The basic idea of the pro-
posed approximation is to achieve a dimensionality reduction of
the aforementioned training space, by using as input vector
directly the random phase angles u ¼ fu1; . . . ;ung; n ¼ 1; . . . ;N
of Eq. (1), where N is the number of intervals of the power spec-
trum discretization, while the structural response is used as the
output vector. Since the number of the random phase angles
depend on the discretization of the power spectrum in the wave
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number domain the resulting input vector will be independent of
the finite element discretization and the number of random vari-
ables used for the stochastic description of the uncertain parame-
ter(s). This independence of the proposed method is not to be
confused with the well-known dependence of the FE mesh to the
SRM which is always present (dx 6 2p=ð2NdjÞ). Thus, it is
expected that the dimensionality of input vector will be reduced
by orders of magnitude, especially in cases where a large scale
detailed FEM model is required to describe the structural behavior.
A further improvement in the efficiency of the proposed method
may be achieved by performing sampling of the random phase
angles in the range ½0;2p� with a LHS design, as described below.

It must be made clear however that a sufficiently discretized
FEM mesh, both in terms of providing a ‘‘converged’’ solution as
well as of having a mesh size of a fraction of the correlation length
in order to accurately represent the fluctuations of the random
input parameter, remains a prerequisite for an accurate SFEM anal-
ysis. However, this prerequisite is not yet correlated to the size of
the input training vector of the ANN since the input consists of the
random phase angles, which are mesh independent.

In order to demonstrate the proposed methodology the classical
midpoint SFEM approach is considered where, a different random
variable f ðxiÞ must be assigned at the centroid of each element
using the spectral representation method (Eq. (1)). Hence, the
structure nodal displacements u are computed as:

u ¼ K�1ðf ðxiÞÞF: ð26Þ

where the stiffness matrix of the structure K is clearly a function of
the random variables f ðxiÞ;F being the nodal force vector. Conven-
tional implementation of a ANN model as a surrogate to the FE
model would use f ðxiÞ; i ¼ 1; . . . Ne as the ANN input, where Ne is
the number of elements. However, Eq. (1) indicates that f ðxiÞ
depend on the random phase angles u. Therefore, Eq. (26) may be
rewritten as:

u ¼ K�1ðuÞF: ð27Þ

Thus, the ANN may be designed having the reduced space of ran-
dom phase angles u as input vector instead of f ðxiÞ replacing the
dependence of K on f ðxiÞ with a dependence on u.

4.1. Selection of training input data

The appropriate selection of the input training data is also an
important factor for a successful training since the training set
must include data over the entire range of the output space.
Although the number of training patterns plays its own role in
the accuracy of the predictions, the distribution of samples is of
greater importance. The selection of the input training data is
based on the requirement that the full range of possible results
should be represented in the training procedure. In the present
study the selection of the random phase angles of the truncated
spectral representation as the input allows for an efficient imple-
mentation of LHS technique [24] due to the fact that LHS is proven
to reduce the variance of statistical estimates in a Monte Carlo
analysis [29].

A LHS design is constructed in such a way that each one of the
random phase angles (dimensions) is divided into equal levels
(bins) and that there is only one point (or sample) at each level.
Thus, for our case the range ½0;2p� is divided into equally spaced
distances for the selection of suitable ANN training pairs covering
efficiently the total random variables space. In Fig. 2 we see a
schematic representation of the LHS for N ¼ 5 realizations of 2
random variables. More specific, in Fig. 2(a) a stratified sampling
is performed on the two random variables from each cumulative
distribution function while in Fig. 2(b) the samples are randomly
put together in order to generate the parameters to be entered in
to the model for each simulation. The advantage of the LHS is that
the random samples are generated from all ranges of possible val-
ues, in a way that no sub-domain is over-sampled.

4.2. Steps of proposed methodology

The basic steps of the proposed methodology are summarized
below for the simplest case of one dimensional random fields.
The generalization however to 2D and 3D fields is straightforward.

1. Choose the number of terms N for the truncated series of Eq. (1)
which correspond to the number of independent phase angles
ui used as input vector for the ANN training.

2. Choose an appropriate architecture of the ANN. The input layer
consists of N neurons.

3. Use LHS technique in order to generate random phase angles
uniformly distributed over ½0;2p�, as defined previously.

4. Generate a number of sample functions of the stochastic prop-
erties from Eq. (1) using the phase angles generated in the pre-
vious step.

5. Compute the response of the system for the generated sample
functions with the finite element method, using the midpoint
method, i.e by assigning a corresponding random variable at
the centroid of each finite element of the discretized structure.

6. Use the computed response in order to obtain the input/output
pair for the ANN training.

7. Train the neural network using the I/O pairs.
If the error in the prediction of the ANN is smaller than a target
value then go to the next step otherwise go to step 2 using a
more refined LHS design [30,31] and/or refine the number of
nodes in the ANN.

8. Proceed in the MCS using ANN.

A schematic description of the aforementioned methodology is
presented in Fig. 3

The advantage of the proposed methodology is that the size of
the input vector for the ANN training depends only on the num-
ber of terms of the truncated series expansion of the power spec-
trum. This number is orders of magnitude smaller than the
number of random variables, describing the random process as
the input vector, which makes feasible the ANN implementation
in the context of SFEM. Two numerical examples are presented
in the next section in order to demonstrate the efficiency of the
proposed methodology. It must be mentioned that the computer
platform used for the computational task was a Intel(R) Core(TM)
i5-2430M CPU @ 2.40 GHz, with 6 GB RAM memory while the
software used for the generation of the home-made code of the
SFEM is MATLAB R2013b. For the neural networks the matlab
toolbox was used in order to implement ANN in the framework
of SFEM.

5. Numerical examples

5.1. 1D cantilever with Gaussian random field

Consider the statically determinate cantilever of length L ¼ 8 m
and section 0.25 m � 0.5 m shown in Fig. 4 with the nodes at the
left edge of the cantilever fixed against translations and rotations.
The cantilever is subjected to a uniformly distributed load
p ¼ 50 kN/m. and discretized with 200 beam elements.

The compliance (inverse of the elastic modulus) is assumed to
vary randomly along its length according to the following
expression:

1
EðxÞ ¼ F0ð1þ f ðxÞÞ ð28Þ
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Fig. 2. The latin hypercube approach for sampling from probability distributions: (a) stratified sampling on each random variable from its cumulative distribution (b) samples
are put together randomly in order to generate the parameters to be entered into the model for each simulation.
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Fig. 3. A flow chart of the proposed methodology.
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Fig. 4. Example 1: a cantilever beam fixed against translations and rotations in its left edge.
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F0 is the mean value of the compliance, and f ðxÞ is a zero-mean
homogeneous stochastic field modeling the variation of the compli-
ance around its mean value. In this example F0 ¼
ð2:1� 107 kN=m2Þ

�1
. Its covariance structure is assumed to be of

exponential type:

Cðx1;x2Þ ¼ r2
f e�

jDxj
b ð29Þ

where Dx ¼ x2 � x1; b is the correlation length and rf is the stan-
dard deviation of the random field describing the compliance. In
this example, rf ¼ 0:15 and the value of b ¼ 0:4 m is selected as a
relatively short correlation length parameter representing the ran-
dom field. The corresponding spectral density function is given by
equation

Sf ðjÞ ¼ r2
f �

b

p � ð1þ b2j2Þ
ð30Þ

Initially, brute force MCS with NMCS ¼ 50;000 samples was applied
in order to obtain a reference solution. This number of MCS was
selected in order to accurately estimate a failure probability in the
order of 10�2—10�3. The mean value and the variance of the tip dis-
placement for different number of terms in the SR method of Eq. (1)
are gathered in Table 1. This Table also depicts the probability of the
tip displacement to be larger (in absolute value) than a critical value
dcr ¼ �0:5236 m. This probability was estimated to be PF ¼ 5:2% for
N ¼ 10; PF ¼ 3:7% for N ¼ 20; PF ¼ 1:98% for N ¼ 50 and PF ¼ 2:0%

N ¼ 120. As we can see from this Table an accurate enough descrip-
tion of the random field is achieved with only N ¼ 50 terms in the
SR. The value of dcr used is located 2:5� rU far from the mean dis-
placement response, where rU is the standard deviation of the
response.

Next, the proposed methodology was implemented in order cal-
culate the same response statistics together with the probability of
failure as discussed previously.
5.1.1. Training and testing the neural networks
In a preliminary phase, the ANN architecture is selected; the

topology includes N neurons for the input layer (same as the num-
ber of terms of the spectral representation), one hidden layer (the
maximum number of neurons Hmax of the hidden layer depends on
the number of training samples and the size of the output vector)
and 1 neuron for the output layer. The Rprop algorithm was
selected for the updating of the weights. In order to further
improve the efficiency of the ANN training the inputs/outputs pairs
were scaled so the fall in the range ½�1;1�. For estimating the
optimum number of neuron in the hidden layer different ANNs
were trained for increasing number of neurons ð1 : HmaxÞ, each
re-initialized 10 times in order to check different starting values
of the weights and thus avoiding phenomena of over-fitting the
data. The best neural network (‘‘optimum’’) in terms of the mean
square error of the prediction (according to a criterion selected,
e.g mse 6 10�2) is stored.

After the ‘‘optimum’’ ANN is found and stored, its generalization
performance towards a set of test data is assessed (the test data
Table 1
Example 1: estimates of the mean value end variance of Uy with 50,000 MCS samples f
corresponding probabilities of failure.

FE analyses dcr SR terms (N)

50,000 �0.5236 10

20

50

120
contain 50 input/output pairs). The ANN’s performance is
calculated based on a Test Error Function (TEF) given by

TEF ¼ 1
N

XN

i¼1

jTi � Oij
Ti

�% ð31Þ

where N is the total number of test patterns, Ti is the actual
response value for the ith test pattern, and Oi is the ANN’s estima-
tion of the response for the ith test pattern.If the TEF is lower than a
target value (e.g 0.1%) then the trained ANN can be used in the
framework of MCS otherwise the procedure is repeated by changing
the training parameters.

5.1.2. Results for N ¼ 50
The results of the proposed methodology for the case of N ¼ 50

and 100, 500 and 1000 training samples are presented next. Fig. 5
depicts the results of testing the trained ANN which, is an indicator
of their quality evaluation. In this figure the actual response value
is plotted over the three trained ANN’s estimation for 50 testing
patterns. A quantification of these results is given in Table 2. In this
Table it can be seen that very close predictions of the response sta-
tistics are obtained with the proposed methodology with respect to
MCS method. The number of training samples used for training the
ANN plays a critical role. Specifically, for the case where 100 LHS
samples were used for the training, the relative error of the ANN-
SFEM procedure, denoted with ‘‘errUy %’’, with respect to MCS, in
the prediction of the mean value of the vertical displacement of
the tip of the cantilever is 5.14% while, by increasing the number
to 500 and 1000 LHS samples this error reduces to 1.66% and
0.2136%, respectively. The same behavior is observed for the error
in the prediction of the corresponding variance (also denoted as
‘‘errVar%’’) where, for 100, 500 and 1000 training points, the error
was found to be 36.27%, 27.86% and 0.8276%, respectively. This
Table also depicts the number of neurons in the hidden layer
required for an optimum ANN performance together with the
or N ¼ 20;N ¼ 50 and N ¼ 120 number of terms in the SR method, along with the

Mean UyðmÞ Variance PF ¼ PðUy 6 dcrÞ (%)

�0.5102 10:89� 10�4 5.2

�0.4855 8:02� 10�4 3.7

�0.4683 7:29� 10�4 1.98

�0.4682 7:25� 10�4 2.0



Table 2
Example 1: ANN-SFEM predictions of the mean value and variance of Uy for 100, 500 and 10,000 LHS training points of three different ANNs with 3, 10 and 21 neurons in the
hidden layer.

ANN samples Training sample size (FE analyses) Number of neurons H TEF (%) Mean UyðmÞ errðUyÞð%Þ Variance errðVarÞ (%)

50,000 100 8 3.4752 �0.4923 5.14 9:88� 10�4 36.27

500 15 1.241 �0.4760 1.66 5:23� 10�4 27.86

1000 29 0.6853 �0.4692 0.21 7:19� 10�4 0.82
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Fig. 6. Example 1 (a) histograms of the displacement of the cantilever tip obtained
with MCS and ANN-based MCS with 50,000 simulations (b) cumulative distribution
function (CDF) for the MCS and the ANN-MCS approach for 100, 500 and 1000 LHS
points.
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TEF. These are found to be H ¼ 8;H ¼ 15 and H ¼ 29 for 100, 500
and 1000 training points with corresponding TEF errors 3.475%,
1.241% and 0.6853%, respectively.

Histograms of the displacements Uy for both brute force MCS
and the proposed ANN-SFEM approach, are shown in Fig. 6(a) for
the 100, 500 and 1000 training points, respectively, while
Fig. 6(b) depicts the corresponding cumulative distribution func-
tions (CDFs). As can be observed from this figure, for the case of
Table 3
Example 1: estimation of the probability of failure PF (probability the displacement of the ti
ANN-based MCS and 50,000 ANN samples.

ANN samples MCS PF Training sample size (

50,000 2 100
500

1000
100 and 500 training points the histograms and CDFs of the tip dis-
placement obtained with the proposed methodology deviate from
the one obtained by the conventional MCS, while for the case of
1000 training samples the results are almost identical to the one
obtained with MCS. Table 3 presents the probability of failure esti-
mated with ANN-SFEM with 100, 500 and 1000 training points. For
the first case (100 points) was computed at 16% while for the other
two cases (500 and 1000 points) it was found 2.5% and 1.99%. The
corresponding errors were 700%, 25% and 0.5%, respectively.

A more clear view of the advantage of the proposed methodol-
ogy over the standard MCS is presented through a comparison of
the required computing time. For MCS and for the proposed
methodology, the CPU times required are presented in Table 4. In
this Table it can be seen that the CPU time required for MCS with
50,000 samples is 111.5 s, while for the same number of simula-
tions with ANN-SFEM and 100 training samples is 0.23 s. For 500
and 1000 samples this time is 1.115 s and 2.23 s, respectively,
which, again is 50 times less with respect to standard MCS, within
acceptable tolerance (error of less than 0.5%). In this time we must
add the time required for the estimation of the 50 training patterns
(0.1115 s) plus the time required for the ANN training procedure
(depending on the number of patterns used and the architecture
of the ANN) which, in cases of realistic problems is significantly
less compared to the time required for one MCS plus the time
required for the simulation of the ANN samples after properly
trained (less than 1 s). In this Table the reduction of the CPU time
(%) of the ANN-SFEM method compared to the MCS is also
presented.
p of the cantilever exceeds a critical value PðUy 6 dcrÞ and its corresponding error with

FE analyses) ANN-MCS PF (%) Error (%)

16 700
2.5 25
1.99 0.5



Table 4
Example 1: CPU time for MCS and ANN-SFEM – ANN training and testing.

Method FE analyses CPU time (s) % reduction

MCS 50,000 111.5 –

FE analyses (LHS: Train + test) CPU time (s) % reduction
ANN-SFEM 100 + 50 0.341 966.6
ANN-SFEM 500 + 50 1.23 958.86
ANN-SFEM 1000 + 50 2.34 949.21
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Fig. 8. Example 1: histograms of the displacement of the cantilever tip obtained
with MCS and ANN-based MCS with 5000 and 10,000 training samples for 50,000
simulations.
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5.1.3. Results for N ¼ 120
Although, as shown previously, a number of N ¼ 50 is sufficient

for the discretization of the power spectrum for this problem, the
results of the proposed methodology for the case of N ¼ 120 are
also presented in order to demonstrate the efficiency of the meth-
odology in cases in which a more dense discretization is required.
For this case, 5000 and 10,000 training samples are depicted next.
In Fig. 7 we can see a schematic representation of the generaliza-
tion performance of the ANN while Table 5 shows the results
obtained with each trained ANN. For the case were 5000 LHS sam-
ples are used for the training the relative error of the ANN-SFEM
procedure with respect to MCS, in the prediction of the mean value
of the vertical displacement of the tip of the cantilever is 4.698%
while, by increasing the number to 10,000 LHS samples this error
reduces to 1.069%. The error in the prediction of the corresponding
variance for 5000 and 10,000 training points, is found to be 9.241%
and 1.931%, respectively. The number of neurons in the hidden
layer is also presented in this Table together with the correspond-
ing TEF errors.

Fig. 8 shows the histograms obtained with the proposed
methodology together with the ones obtained with brute force
MCS for 50,000 simulations while Fig. 9 depicts the corresponding
CDFs. As can be observed from these figures, for the case of 5000
Table 5
Example 1: ANN-SFEM predictions of the mean value and variance of Uy for 5000 and 10,
layer.

ANN samples Training sample size (FE analyses) Number of neurons H

50,000 5000 39

10,000 71
training points the histogram and CDF of the tip displacement
obtained with the ANN-MCS significantly deviates from the ones
obtained by the conventional MCS, while for the case of 10,000
training points the results obtained with the proposed methodol-
ogy almost coincide with the one obtained with MCS. Table 6 pre-
sents the probability of failure estimated with ANN-SFEM with
5000 and 10,000 training points. For the first case (5000 points)
was computed at 6% while for the other case (10,000 points) it
was found 1.93% . The corresponding errors were 200% and 3.5%,
respectively.

Table 7 shows the CPU time required with MCS and ANN-MCS
method. Again, we see that a significant reduction in the computa-
tional effort required for the estimation of the first two moments of
the response and for the probability of failure with the proposed
methodology compared to brute force MCS. This reduction is of
order 89.9% for 5000 training points and of order 79.9% for
10,000 training points.

5.1.4. Demonstration of distinct advantages of the proposed SR-based
approach with respect to KL-based ANN methods

In order to demonstrate the advantage of this approach over KL-
based relative methodologies, an exact analytic solution was
utilized as reference solution for comparison purposes. This
solution is based on the concept of variability response function
(VRF), initially introduced by Shinozuka [32] for statically determi-
nate beams and further developed by many researchers [33–38].
According to [34] an exact closed form expression for the response
variance for the beam of Fig. 4 is given as

Var½uðxÞ� ¼
Z 1

�1
VRFðx;jÞSf ðjÞdj ð32Þ

where VRF is the variability response function which can be
estimated numerically using a fast Monte Carlo simulation (FMCS)
approach whose basic idea is to consider the stochastic field as a
random sinusoid. The numerical estimation of the VRF through
FMCS is extremely important as the closed-form analytic
000 LHS training points of two different ANNs with 39 and 71 neurons in the hidden

TEF ð%Þ Mean Uy ðmÞ errðUyÞ ð%Þ Variance errðVarÞ ð%Þ

3.025 �0.491 4.698 7:92� 10�4 9.241

0.124 �0.473 1.069 7:39� 10�4 1.935



Table 6
Example 1: estimation of the probability of failure PF (probability the displacement of
the tip of the cantilever exceeds a critical value PðUy 6 dcrÞ and its corresponding
error with ANN-based MCS and 50,000 ANN samples.

ANN
samples

MCS
PF (%)

Training sample size
(FE analyses)

ANN-MCS PF (%) Error
(%)

50,000 2 5000 6 200
10,000 1.93 3.5

Table 7
Example 1: CPU time for MCS and ANN-SFEM – ANN training and testing.

Method FE analyses CPU time (s) % reduction

MCS 50,000 1115 –

FE analyses (LHS: Train + test) CPU time (s) % reduction
ANN-SFEM 5000 + 50 112.615 89.9
ANN-SFEM 10,000 + 50 224.115 79.9
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Fig. 10. Error in the estimation of the cantilever’s tip displacement variance as a
function of the number of terms M and N in the truncated KL and SR methods,
respectively.

Table 8
Example 1: comparison of the computational costs for the ANN training.

Method CPU time (s)

SR-ANN 224.115
KL-ANN 302.55

Fig. 11. Example 2: 2D plane stress plate.
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expressions involve modulating functions that are very difficult to
establish. For statically determinant beams, an exact analytical
expression for the VRF is

VRFðx;jÞ ¼ F0

I

Z x

0
hðx; nÞMðnÞeijndn

����
����2 ð33Þ

In this formula Sf is the power spectral density function of the
random field f ðxÞ and hðx; nÞ and MðnÞ are the beam’s Green [34]
and bending moment functions, respectively.

Fig. 10 depicts the error (%) convergence of the response
variance at the tip of the beam (L ¼ 8 m), as a function of the
number of terms used in both the proposed SR-ANN methodology
and the KL-ANN approach as this is described in [20]. The error is
computed with respect to the reference solution of Eq. (32). From
this figure it can be seen that the error is decaying for increasing
number of terms in both SR-ANN and KL-ANN methods but the
rate of the decay in the case of SR-ANN is faster than the KL-ANN
method. For example, 100 terms are required for the proposed
SR-ANN methodology to reach a target error of 10%, while the same
error is reached with the KL-ANN approach with a 35% increased
number of terms (150 terms). The same behavior is observed for
lower orders of the error, where for example an error lower than
5% is achieved with 135 terms in the SR-ANN method and 200
terms in the KL-ANN. This difference between the number of terms
required in the SR-ANN and the KL-ANN method in order to
achieve a target error in the estimation of the response variance
is of crucial importance in the performance of the neural network,
due to the fact that the higher the number of terms is, the higher
the dimension of the input training vector and thus higher number
of training samples are required in order to obtain the same quality
in the training of the ANN. In fact, a 35% increase in the size of the
input vector will result in an analog increase of the training sam-
ples (�35%) in order to maintain the same performance level of
the ANN. This linear dependence between input size and training
size has been evidenced in [39], together with a thorough explana-
tion of this phenomenon. The advantage in computational effi-
ciency of the proposed SR-ANN methodology over KL-ANN for
the aforementioned distinct case of a relatively short correlation
length (b ¼ 0:4 m), is demonstrated in Table 8, which depicts the
CPU time required for both approaches to reach the same target
error of 10%. From this Table it can be seen that, following the
increase in the training points required for the KL-ANN (15,000
points instead of 10,000), a 35% less computing time is required
for the SR-ANN method, to achieve the same performance with
the KL-ANN approach.

Finally, as mentioned previously, the eigen-solution of the
covariance function in the KL-ANN method involves the solution
of an integral equation, for which only a limited number of analyt-
ical eigen-solutions are available, only for simple geometries. For
most covariance functions, the analytical solution of the integral
equation for KL expansion is not tractable and needs to be
evaluated numerically. In [23] it was shown that analytical KL
gives significantly better results than numerical KL and thus more
terms are needed for the numerical KL to represent the random
process for a given accuracy. Consequently, the computational cost
of the KL and consequently the KL-ANN method is further
increased in cases where numerical methods are used for the solu-
tion of the Fredholm integral equation. For this example the addi-
tional CPU time required for the numerical solution of the
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Fredholm equation and 150 terms is 79 s which is almost three
times the total SR-ANN CPU time. However, it must be mentioned
here that the influence of this additional cost might not be so
pronounced in large-scale problems for which the cost of a single
analysis is orders of magnitude higher than for the simple beam
of this example.

5.2. Non-Gaussian random field

The proposed methodology can be applied also in cases involv-
ing strongly non-Gaussian stochastic fields. The two-dimensional
perforated plate of Fig. 11 is considered for this case. The domain
is a rectangle of length Lx ¼ 1 m and width Ly ¼ 1 m, with holes
in the center of the domain of radius R ¼ 0:1 m and two symmetric
cut-offs at the middle, with dimensions a ¼ b ¼ 0:33 m. The
domain is discretized with 400 plane stress quadrilateral elements.
The model is subjected to a constant uniform tension load
p ¼ 50 kN=m along its boundary at its upper side.

The modulus of elasticity is considered to vary randomly along
the x-direction according to the expression EðxÞ ¼ E0 � ð1þ hðxÞÞ,
with mean value equal to E0 ¼ 2:1� 107 kN=m2. hðxÞ is a zero-
mean random field with standard deviation equal to 0.4
ðrh ¼ 0:4Þ, defined as

hðxÞ ¼ F�1U½f ðxÞ� ð34Þ

where U is the standard Gaussian cumulative distribution function
and F is non-Gaussian ‘‘U-shaped’’ beta marginal cumulative distri-
bution function given by:

F ¼ CðC þ DÞ
CðCÞCðDÞðB� AÞCþD�1 ðx� AÞC�1ðB� xÞD�1 ð35Þ

The values of parameters are selected as follows: A ¼ �1:1;
B ¼ 1:7; C ¼ 0:5;D ¼ 0:5. The transformation F�1 �U is a memory-
less translation since the value of the non-Gaussian random field
hðxÞ at an arbitrary point x depends only on the value of underlying
Gaussian random field f ðxÞ at the same point. The resulting non-
Gaussian field is called translation field [40]. It must be mentioned
Table 9
Example 2: MCS estimates of the first two moments of Uy .

FE analyses Mean Uy ðmÞ Variance

10,000 0.0033 2:26� 10�6

Fig. 12. Example 2: histogram of the displacement of the upper right node of the
plate along the y-axis, obtained with 50,000 MCS.
here that when simulating a translation field from its underlying
Gaussian field, the resulting non-Gaussian field will not possess
the specified correlation/power spectral density (a phenomenon
referred to as correlation distortion). In order to generate
realizations according to a prescribed non-Gaussian power spec-
trum, iterative approaches are typically used such as that proposed
in [41]. In this work the underlying Gaussian field f ðxÞ is simulated
according to the spectral density function of Eq. (30) using the spec-
tral representation method with standard deviation equal to one
(rf ¼ 1) and correlation length equal to five (b ¼ 5Þ. For the gener-
ation of the Gaussian random field, N ¼ 128 terms in the truncated
spectral representation are selected in a way similar to the first
example. For each realization,the y-displacement of the upper right
node is monitored. Response statistics are used to estimate the
mean value and the variance as well as histograms of Uy. First, a
brute force MCS is performed with NMCS ¼ 50;000. The results are
gathered in Table 9 and the histogram of the response is presented
in Fig. 12.

Next, the proposed methodology is applied in order estimate
the mean value and the variance of the response. Regarding the
ANN topology in this case N ¼ 128 neurons for the input layer
(same as the number of terms of the spectral representation) are
selected, one hidden layer and 1 neuron for the output layer. The
results of the proposed methodology for different training sample
sizes for the ANN are depicted in Table 10. Finally, the histograms
computed using the proposed approach for various training sample
sizes are plotted in Figs. 13, 14 and 15.

From Table 10 it can be seen that again very close predictions of
the response statistics are obtained with the proposed methodol-
ogy with respect to MCS method. As discussed before, the number
of the training samples affects the performance of the ANN train-
ing. For example in the case where 1500 LHS points were used,
the error in the prediction of the mean value of the displacement
is almost 20% while the error in its variance is of order 19%. By
increasing the number of training samples to 4000 the results
obtained with the ANN are significantly improved and the errors
of in the prediction of the mean value of the response and its
variance are reduced to 9% and 7%, respectively. Finally, by using
10,000 training points the results we obtain are similar to the
results obtained with brute force MCS; the errors of in the predic-
tion of the mean value of the response and its variance are 0.0% and
2%, respectively. Observing Figs. 13,14 and 15 we can see that, for
the case of 1500 training points the histogram of the displacement
obtained with the proposed methodology deviates from the one
Fig. 13. Example 2: histogram of 50,000 predictions of the displacement of the
upper right node of the plate along the y-axis, obtained with the ANN with 1500
training points.



Table 10
Example 2: ANN-SFEM predictions of the first two moments of Uy .

ANN samples Training sample size
(FE analyses)

Number of neurons in
the hidden layer

Mean Uy ðmÞ errðUyÞ ð%Þ Variance errðVarÞ ð%Þ

50,000 1500 29 0.0039 19.78 2:68� 10�6 18.58

4000 42 0.0035 9.73 2:48� 10�6 7.21

10,000 55 0.0033 0.0 2:32� 10�6 2.1

Fig. 14. Example 2: histogram of 50,000 predictions of the displacement of the
upper right node of the plate along the y-axis, obtained with the ANN with 4000
training points.

Fig. 15. Example 2: histogram of 50,000 predictions of the displacement of the
upper right node of the plate along the y-axis, obtained with the ANN with 10,000
training points.

Table 11
Example 2: CPU time for MCS and ANN-SFEM – ANN training and testing.

Method FE analyses CPU time (s) % reduction

MCS 50,000 51,595 –

FE analyses (LHS: Train + test) CPU time (s) % reduction
ANN-SFEM 1500 + 50 1625.21 96.6
ANN-SFEM 4000 + 50 4201.32 91
ANN-SFEM 10,000 + 50 10,390 79.86
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obtained by the conventional MC, while for the case of 10,000
training points the histogram is almost identical to the one
obtained with MC. From these figures it is concluded that also in
this strongly non-Gaussian case the proposed methodology con-
verges to the results of the brute force MCS in a robust and efficient
manner at a fraction of computational time. The CPU time required
for the above calculations is depicted in Table 11. From this Table it
can be seen that the CPU time required for MCS with 50,000 sam-
ples is 51,595 s while the CPU time required for the same number
of simulations with ANN-SFEM with 1500, 4000 and 10,000 train-
ing samples is 1547.8, 4127.6 and 10,319 s, respectively. Again, in
this time we must add the time required for the ANN testing
(around 50 s) and the duration of the training procedure plus the
time needed for the trained ANN to simulate the samples. Thus, a
reduction around 80% was achieved for the more accurate ANN-
SFEM case of 10,000 training points.

6. Conclusions

In this paper a neural network assisted stochastic finite element
analysis of static linear models is proposed in the context of Monte
Carlo simulation for assessing the spread of stochastic response
under the presence of uncertain parameters described as random
fields. The basic idea is to achieve a dimensionality reduction of
the I/O ANN training space by using as input vector the random
phase angles of the spectral representation method. A further
improvement of the efficiency of the proposed approach is
achieved by efficiently sampling the random phase angles in the
range ½0;2p� using a LHS technique. The presented test examples
demonstrated the efficiency of the proposed SR-based ANN
stochastic FEM and its distinct advantages with respect to other
existing ANN-SFEM methods. Acceptable results were achieved at
a fraction of computing time compared to the standard Monte
Carlo simulation with finite element analysis. The method can be
applied also in a straightforward manner to two and three-
dimensional stochastic fields. Consequently, this method seems
to be an efficient tool towards the direction of accurately assessing
the effect of a random spread of design quantities in real world
structures at an affordable computational cost. We can thus
summarize that neural networks offer an alternative way of per-
forming stochastic analysis of structural systems especially for
problems where conventional methods cannot be efficiently
applied. An extension of this method to non-linear and/or dynamic
mechanics is considered a task for future work since these types of
problems are most relevant in structural mechanics.
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