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SUMMARY

A methodology is proposed in this paper to construct an adaptive sparse polynomial chaos (PC) expansion

of the response of stochastic systems whose input parameters are independent random variables modeled

as random fields. The proposed methodology utilizes the concept of variability response function (VRF) in

order to compute an a priori low cost estimate of the spatial distribution of the second-order error of the

response, as a function of the number of terms used in the truncated Karhunen-Lo eve (KL) expansion. This

way the influence of the response variance to the spectral content (correlation structure) of the random input

is taken into account through a spatial variation of the truncated KL terms. The criterion for selecting the

number of KL terms at different parts of the structure is the uniformity of the spatial distribution of the

second order error. This way a significantly reduced number of PC coefficients, with respect to classical

PC expansion, is required in order to reach a uniformly distributed target second-order error. This results in

an increase of sparsity of the coefficient matrix of the corresponding linear system of equations leading to

an enhancement of the computational efficiency of the spectral stochastic finite element method (SSFEM).
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1. INTRODUCTION

It is common knowledge that the analysis of structural systems with ambiguous characteristics

has been the focal point of research work over the course of the last two decades. Epistemic

uncertainty can be taken into consideration in simulation by setting the problem in a probabilistic

framework, resulting in governing equations that are, in general, stochastic partial differential

equations. Throughout this period of time, a plethora of stochastic finite element methodologies

(SFEM) for the numerical solution of the aforementioned stochastic partial differential equations

have been developed [1]. Especially, the application of the Polynomial Chaos (PC) expansion

within the SFEM has drawn significant attention with the introduction of the so-called Spectral

SFEM (SSFEM) [2], where the Karhunen-Loève (KL) [3] representation is employed to model

the uncertain input parameters, while the stochastic responses are propagated using the PC

formulation based on Galerkin minimization scheme as well as the application of the polynomial

dimensional decomposition (PDD) [4, 5] method which is based on a hierarchical decomposition of

a multivariate response function in terms of variables with increasing dimensions. A comparison of

the PCE and PDD approximations can be found in [6] where it is shown that significant differences

in terms of accuracy, efficiency, and convergence properties exist between the two approaches

due to their truncation. For both the PCE and PDD expansions the independent assumption is

commonly adopted by most researchers. However, in reality, there may exist significant correlation

or dependence among input variables. In this case commonly used transformation methods (e.g

Rosenblatt) usually degrade the convergence properties of probabilistic solutions. A recent work [7]

addresses dependent variables head on and explicitly, that is, without invoking any transformations.

It could be argued that one of the most blurry areas of the PCE-based methods, where the

system response is underpinned by a set of polynomials of the fundamental random variables, is

the computational effort involved, especially in cases where the corresponding random input is

described by a non-Gaussian marginal distribution and the truncation order of the KL as well as

of the PC order are high. In these cases, the sparsity of the corresponding deterministic matrix

that has to be inverted is decreased, leading in a dramatic increase of the required computational
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effort. Stochastic adaptivity and model reduction techniques for the SSFEM have been proposed

in [8, 9, 10] in an effort to reduce the overall problem dimensionality and augment the sparsity

of the deterministic matrix, in tandem with efficient preconditioning and domain decomposition-

based approaches which reduce the computational cost encountered in the inversion of coupled

deterministic problems [11, 12]. Regarding the PDD method, an adaptive variant was recently

introduced in [13] where global sensitivity indices are used to truncate the PDD.

The concept of variability response function (VRF) was introduced by Shinozuka in the late

1980s [14] in order to provide information of the spatial distribution of the variability of a structure’s

response with no information of the spatial correlation structure of the uncertain system parameters.

The VRF is a deterministic function dependent on the structure, its boundary conditions and loading,

assumed to be independent of the distributional and spectral characteristics of the uncertain system

parameters. It identifies the sensitivity of the correlation structure of the uncertain parameters on the

variability of the response. Although VRFs were initially proposed for relatively simple statically

determinant structures, subsequent developments allowed for their successful implementation to

general stochastic finite element while recent advances include extention of this approach to

non-linear problems [15]. Different aspects and applications of the VRF were introduced in

[16, 17, 18, 19, 20, 21], while an efficient fast Monte Carlo simulation for the numerical computation

of VRF of this approach was provided in [16, 22]. A development of this approach, which further

boosted the validity of the assumption of independence of VRF to the stochastic parameters of

the problem, was proposed in [23] where the concept of generalized VRF (GVRF) was introduced

which is derived from a family of different VRFs for corresponding combinations of different pdfs

with different sets of power spectral density functions.

Summarizing, PC expansions are used in the framework of SFEM to represent the uncertain

parameters as well as the response of the system by a set of coefficients in a suitable random

polynomial basis. The implementation of classical solution schemes (i.e. Galerkin) for the

estimation of the PC coefficients leads to a system of coupled deterministic equations. However,

solving this coupled system becomes unaffordable, especially if the number of terms in the truncated
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KL as well as the order of the PC are high and/or a PC expansion is also used for the descritization

of the random input (i.e non-Gaussian correlation structures). Motivated by this drawback of the

SSFEM method the present paper describes a methodology in which the concept of VRF is utilized

for an a priori low-cost estimate of the spatial distribution of the statistical second-order error of the

response, as a function of the truncation order of the KL decomposition. This is how the sensitivity

of the response variance towards the spectral content (correlation structure) of the random input

is taken into consideration by means of a spatial variation of the truncated KL terms. The basic

criterion for the selection of the number of KL terms at different locations of the structure is in

essence the uniformity displayed of the spatial distribution of the second order error. This way a

significantly decreased amount of PC coefficients, with regard to classical PC expansion, is required

in order to reach a uniformly distributed target second-order error. This variation of the KL terms

leads to a certain increase of sparsity of the coefficient matrix of the corresponding augmented

linear system of equations, thus resulting into the embellishment of the computational efficiency of

the SSFEM. This enhancement of the computational efficiency is demonstrated with a comparison

between the computing time required for the solution of the full SSFEM formulation and the

corresponding sparse one. In both cases a standard Preconditioner Conjugate Gradient (PCG)

iterative method with a block-diagonal preconditioner was implemented as a reference solution

scheme for the assessment of the computational performance of the proposed methodology [24, 25].

The remainder of this paper is organized as follows. In Section 2, the theoretical background of

modeling Gaussian and non-Gaussian random fields using the KL and PC expansions, respectively,

is described. Section 3 contains a brief description of the SSFEM. Section 5 describes a solution

method for the stochastic partial differential equations. The proposed method is overviewed in

Section 6 while Section 7 reports performance results in an attempt to demonstrate both the

effectiveness and the applicability of the proposed methodology. Last but not least, in Section 8

numerical data is presented demonstrating the computational merits of the proposed methodology

in terms of the computational performance.
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2. MODELING OF UNCERTAIN STRUCTURAL PARAMETERS

2.1. Gaussian random fields

In terms of discretization error, an efficient decomposition of a zero-mean Gaussian random field

is the Karhunen-Loève (KL) expansion [3, 26, 27] which approximates it by a linear combination

of orthogonal deterministic functions with independent standard Gaussian random variables, where

the orthogonal deterministic functions and their magnitude are the eigenfunctions and eigenvalues

of the covariance function, respectively. The KL expansion of a multi-dimensional random field

f(x, θ) is written as:

f(x, θ) = µ(x) +

∞∑
i=1

√
λiξi(θ)φi(x) (1)

x ∈ Rn, n = 1, 2, 3 being a position variable and θ the random event. In eq.(1) µ(x) is the mean

value of the random field, λi and φi(x) are the eigenvalues and eigenfunctions of its covariance

function C(x1, x2). By definition, C(x1, x2) is bounded, symmetric and positive definite with the

following spectral or eigen-decomposition:

C(x1, x2) =

∞∑
i=1

λiφi(x1)φi(x2) (2)

The eigenvalues and eigenfunctions of C(x1, x2) may be calculated, in the range D of the random

process f(x, θ), from the solution of the homogeneous Fredholm integral equation of the second

kind given by: ∫
D

C(x1, x2)φi(φ1) = λiφi(φ2) (3)

The parameter ξi(θ) in eq.(1) is a set of uncorrelated Gaussian random variables which can be

expressed as

ξi(θ) =
1√
λi

∫
D

[f(x, θ)− µ(x)]φi(x)dx (4)

with mean and covariance function given by:

E[ξi(θ)] = 0

E[ξi(θ)ξj(θ)] = δij (5)

For practical purposes, the KL series expansion of eq.(1) is approximated by a finite number of M
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terms, giving

f(x, θ) ' f̂(x, θ) = µ(x) +

M∑
i=1

√
λiξi(θ)φi(x) (6)

and corresponding covariance function

Ĉ(x1, x2) =

M+1∑
i=0

λiφi(x1)φi(x2) (7)

2.2. Non-Gaussian random fields

However, the Gaussian fields are not well suited to modeling material properties (Young’s modulus,

yield stress, etc.) which are by their nature positive valued. Indeed, when a large dispersion of the

parameter is considered, choosing a Gaussian representation can easily lead to negative realizations

of the parameter, which have no physical meaning (in contrast, the lognormal field appears attractive

in this sense). On the other hand, if the parameter under consideration is modeled by a non-

Gaussian random field, it is not possible to expand it as a linear expression in standard normal

variable space as in Eq. (6). In this case, non-Gaussian random fields g(x) can be obtained by

translation field theory [28, 29] which combines mathematical rigorousness and wide applicability

in engineering and applied science. It provides a framework for simulation of processes and fields

according to a prescribed Autocorrelation Function (ACF) or equivalently Power Spectral Density

Function (PSDF) and a marginal non-Gaussian Probability Density Function (PDF). A descritized

non-Gaussian field ĝ(x) can be obtained by a Gaussian random field ĥ(x) using a nonlinear

transformation h(·) :

ĝ(x) = h(f̂(x)) (8)

Other techniques have also been developed for simulation of non-Gaussian stochastic fields. One

important group of such techniques are those utilizing KL expansion and PC expansion such as

those by Sakamoto and Ghanem [30, 31]. In order to be able to include lognormal fields in the

SSFEM approach, Ghanem [32] proposed to expand them into the PC basis as

ĝ(x) = e(f̂(x)) =

P∑
i=0

yi ·Ψi (9)
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where Ψi is constructed from Hermite polynomials. According to the classic truncation scheme

[2, 33] the number of coefficients in the PC is given by

P =
(M + p)!

M !p!
(10)

In view of the orthogonality of the Ψi variables,

〈Ψi〉 = 0 (11)

〈ΨiΨj〉 = 〈Ψ2
i 〉δij

where δij is the Kronecker-delta function, the coefficients yi can be obtained as

yi =
〈Ψi · ef 〉
〈Ψ2

i 〉
(12)

Although for any arbitrary random field with finite second-order moments the Hermite-chaos

expansion converges efficiently [34], it has been demonstrated that the convergence rate is optimal

for Gaussian fields; in fact the rate is exponential [35]. This can be understood from the fact that

the weighting function of Hermite polynomials is the same as the probability density function

of the Gaussian random variables. For non-Gaussian random fields the convergence rate may

be substantially slower. In this case, other types of orthogonal polynomials, instead of Hermite

polynomials, could use to construct the chaos expansion such as measure-consistent polynomials

which be obtained analytically for lognormal random fields [5].

The numerator of eq.(12) can be rewritten as

〈Ψi · ef 〉 =

∫ +∞

−∞
Ψ(ξ)exp[g − 1

2
ξT ξ] (13)

This integral can be evaluated in closed form resulting in

yi =
〈Ψ(η)〉
〈Ψ2

i 〉
exp[µg +

1

2

P∑
i=0

gi] (14)

where Ψ(η) can be found in [32].
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3. USING GALERKIN-BASED PC EXPANSION FOR THE PROPAGATION OF

STRUCTURAL RESPONSES

Aside from the modeling of random input parameters, the PC formulation so far has been mostly

used in order to propagate the stochastic responses. In the Galerkin based approach, the deterministic

PC coefficients are calculated by solving the system of linear equations derived by forcing the

residual to be orthogonal to the approximation space. Consider a stochastic finite element system

with deterministic boundary conditions, deterministic loading and a stochastic system property (i.e.

modulus of elasticity). The equilibrium equations for the system can be written as follows:

K̂Û = F (15)

where K̂ denotes the stochastic stiffness matrix, Û is the stochastic displacement vector and F stands

for the deterministic force vector. The stochastic matrix can be approximated in the following form

K̂ =

M+1∑
i=0

kiξi (16)

In the above equation, k0 stands for the mean stiffness matrix and ki are deterministic matrices

of size N ×N . Using the PC expansion in order to represent the stochastic displacement vector Û

leads to,

Û =

P−1∑
j=0

ujΨj (17)

where uj are N dimensional vectors of deterministic coefficients to be calculated. Substituting the

expressions for K̂ and Û into eq.(15) and adopting the Galerkin approach leads to the following

system of linear equations,
M+1∑
j=0

P−1∑
i=0

cijkkiuj = 〈FΨk〉 (18)

where cijk = 〈ξiΨjΨk〉 is a deterministic quantity, which depends on the dimension and order of

the expansion only. This system of equations can be expressed as

K · U = F (19)

where,
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K =



M+1∑
i=0

ci,0,0ki
M+1∑
i=0

ci,1,0ki · · ·
M+1∑
i=0

ci,P,0ki
M+1∑
i=0

ci,0,1ki
M+1∑
i=0

ci,1,1ki · · ·
M+1∑
i=0

ci,P,1ki

...
...

. . .
...

M+1∑
i=0

ci,0,P−1ki
M+1∑
i=0

ci,1,P−1ki · · ·
M+1∑
i=0

ci,P−1,P−1ki



U =

[
u0, u1, · · · , uP−1

]T

F =

[
F0, F1, · · · , FP−1

]T
After solving the system we obtain the coefficients uj and we can estimate the displacement vector

from eq.(17).If the random field is lognormal the stiffness matrix K̂ can be approximated using the

PC expansion,

K̂ =

P−1∑
i=0

kiΨi (20)

leading to
P−1∑
j=0

P−1∑
i=0

dijkkiuj = 〈FΨk〉 (21)

where dijk = 〈ΨiΨjΨk〉. In this case however, the solution of the system is computationally more

demanding because dijk contains more non-zero elements compared to cijk. Once the coefficients

of the expansion are computed, approximate statistics of the solution can be derived by Monte Carlo

simulation (MCS). In this case however, MCS is costless since it is applied directly to a polynomial

representation without the need of solving a system of equations.

4. VARIABILITY RESPONSE FUNCTION

The variability response function (VRF) is a deterministic function that identifies the sensitivity of a

response quantity to the correlation structure (or spectral contents), of a property of the structure that

is modeled as a homogeneous random field. It has been demonstrated that the VRF depends only on

deterministic parameters related to the geometry, material properties and loading of the structure, as

well as on the standard deviation σf of the random parameter (for statically determinate structures,

VRF is independent of σf as well [16]). The VRF’s concept is defined as
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Var[Ui] =

∞∫
−∞

VRFi(κ, σf ) · Sf (κ)dκ (22)

where Sf (κ) is the power spectrum of the stochastic field defined over the wave number domain κ.

From eq.(25) we can estimate the variance of the displacement field (in each degree of freedom i)

of a linear SFEM under static loading. The major drawback of this method is that it can effectively

provide with up to second order information of the stochastic system response. Thus, if higher order

moments of the marginal pdf of the response is required, one must resort to a classical intrusive or

non-intrusive approach.

4.1. Fast Monte Carlo simulation

The variability response function can be estimated numerically using a fast Monte Carlo simulation

(FMCS) approach whose basic idea is to consider the stochastic field f(x) as a random sinusoid. The

numerical estimation of the VRF through FMCS is extremely important as the closed-form analytic

expressions involve modulating functions that are very difficult to establish. For this reason, FMCS

is used exclusively to determine the VRF. The basic steps of the FMCS approach are described in

the following.

1 For every wave number κ generateN sample functions of the stochastic field f(x) as a random

sinusoid with standard deviation σf :

fj(x) =
√

2σf cos(κx+ φj) j = 1, 2, ..., N (23)

where φj are random phase angles uniformly distributed in the range [0, 2π]. Rather than

picking up the φj s randomly in [0, 2π], they can be selected at N equal intervals in [0, 2π] for

significant computational savings.

2 Using these N generated sample functions of fj(x), it is straightforward to compute the

corresponding N displacement responses either analytically or numerically. Then, the mean

value of the response ε[Ui]κ and its variance Var[Ui]κ can be easily determined for the specific

value of κ considered by ensemble averaging the N computed responses.

3 The value of the VRFi at degree of freedom i, for wave number κ and for standard deviation

σf is computed from

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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VRFi(κ, σf ) =
Var[Ui]κ
σ2
f

, i = 1, . . . , ndof (24)

where ndof is the total number of degrees of freedom.

4 Steps 1− 3 are repeated for different values of the wave number κ of the random sinusoid.

Consequently VRFi(κ, σf ) are computed over a wide range of wave numbers, wave number

by wave number. The entire procedure can be eventually repeated for different values of the

standard deviation σf .

It should be pointed out that the FMCS can be implemented into the framework of a deterministic

finite element code making this approach very general. For a two-dimensional random field VRF is

defined as

Var[Ui] =

∞∫
−∞

∞∫
−∞

VRFi(κ1, κ2)Sf (κ1, κ2)dκ1dκ2 (25)

= 4(∆κ)2
n∑
i=1

n∑
j=1

VRFi(κi, κj)Sf (κi, κj)

and eq.(23) is replaced by

fj(x, y) =
√

2σf cos(κ1x+ κ2y + φj) j = 1, 2, ..., N (26)

5. SOLUTION OF THE SYSTEM OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

5.1. Monte Carlo methods

When dealing with deterministic external loading, the FMCS procedure of section 4.1 for the

estimation of the mean value of the response in every wave number κ features the solution of

successive linear systems with multiple left-hand sides, since only the coefficient matrix K changes

in every simulation. Due to the fact that the solution process has to start from the beginning, a new

stiffness matrix needs to be formed at each simulation. Such solution can be performed either with

a standard direct method based on Cholesky factorization or with iterative methods.

In order to alleviate the incapability of direct schemes to exploit the proximity of the resulting

systems of equations, iterative solvers have been proposed which are customized to the particular
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properties of the equilibrium equations arising in the context of MCS methods. The resulting near-by

problems can be effectively solved using the preconditioned conjugate gradient (PCG) algorithm,

equipped with a preconditioner following the rationale of incomplete Cholesky preconditioning

[36, 37, 38]. This solution procedure consists of utilizing the deterministic K0 stiffness matrix as its

preconditioner throughout the entire simulation process for the solution of the near-by problems.

The PCG algorithm, when solving a linear system of the form Ax = b with a preconditioner Ã,

is depicted in Table 1 for iteration k.

• Initialization phase: r0 = b−Ax0 z0 = Ã
−1

r0, p0 = z0, q0 = Ap0, η0 = p0T r0

p0T q0
,

• Repeat for k = 1, 2... until convergence:

Solution estimate xk = xk−1 + ηk−1pk−1

Residual vector rk = rk−1 − ηk−1qk−1

Preconditioned residual vector zk = Ã
−1

rk

Search vector Using re-orthogonalization pk = zk −
∑k−1
i=0

zk
T

qi

pkT qi
pi

A matrix product vector qk = Apk

η estimation Using re-orthogonalization ηk = pk
T

rk

pkT qk

Table I The PCG algorithm

The PCG algorithm equipped with a preconditioner following the rationale of incomplete Cholesky

preconditioning features an error matrix Ei. This matrix is dependent on the discarded elements

of the lower triangular matrix produced by the incomplete Cholesky factorization procedure.

Considering the near-by problems of the form,

(K0 + ∆Ki)ui = f , i = 1, ..., nsim (27)

If matrix Ei is taken as ∆Ki, the preconditioning matrix becomes the initial matrix Ã = K0.

The PCG algorithm equipped with the latter preconditioner throughout the entire solution process

constitutes the PCG method for the solution of the nsim near-by problems of eq.(27). With the

preconditioning matrix Ã = K0 remaining the same during the successive Monte Carlo simulations,

the repeated solutions required for the evaluation of the preconditioned residual vector zk = Ã
−1

rk

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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can be treated as problems with multiple right-hand sides, since this vector needs to be evaluated at

each PCG iteration k of each simulation i.

5.2. Solution of the augmented SSFEM systems of equations

The augmented systems that are generated when using SSFEM (see eq.(19)) are suitable candidates

for iterative solvers since they are flexible enough to be custom tailored to their particular

architecture of the augmented systems. A number of solution procedures for solving eq.(19) has

been proposed addressing small to medium problems. However, as the problem size grows, such a

solution can become quite challenging due to the enormous memory and computational resources

required. Solution techniques are based on either Gauss-Jacobi or preconditioned conjugate gradient

(PCG) [24, 25] iterative solvers for addressing this problem.

The augmented systems that are generated from the application of SSFEM involve large

coefficient matrices that feature a block form. When dealing with Gaussian stochastic fields, each

block of the diagonal is comprised of the deterministic stiffness matrix k0 scaled by an integer.

Consider the preconditioning matrix for the case of Gaussian distribution of the form

Ã =



a1k0 0 · · · 0

0 a2k0 · · · 0

...
...

. . .
...

0 0 · · · ank0


(28)

where an are the coefficients as calculated from the PC basis. For each evaluation of the

preconditioned residual vector, the same k0 matrix needs to be ”inverted” n times. This matrix

”inversion” is implemented as the solution of n linear systems. Since matrix Ã is block diagonal,

the solution process can be pipelined as the successive solution of n linear systems with multiple

right-hand sides. In lognormal stochastic fields, each block of the diagonal is comprised either of the

deterministic stiffness matrix k0 scaled by an integer or of a linear combination of the deterministic

stiffness matrix k0 and stochastic matrices k1 to kn. Matrices k1 to kn may differ up to orders of

magnitude when compared to k0, so the augmented matrix can be considered block-dominant.
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6. ADAPTIVE SSFEM BASED ON VRF

As mentioned in the introduction, the aim of the present study is to set up a methodology for building

a sparse PC expansion. In this respect, the VRF is used in order to estimate the propagation of the

second-order error of the response as a function of the number of terms in the Karhunen-Loève

expansion. As a result a spatial adaptation of the number of terms used for describing the random

field is achieved in order to obtain a uniform error distribution, leading to a significant reduction of

the number of PC coefficients as well as in a significant increase in the sparsity of the corresponding

augmented deterministic matrix. The proposed methodology utilizes eq.(25) in order to compute an

a priori estimate of the second order error of the response at each degree of freedom of the structure,

after estimating the power spectrums which correspond to different number of terms in the KL

expansion. This procedure is summarized in the following two distinct phases:

6.1. Phase 1: Error estimation

The first phase consists of the following steps: For each degree of freedom i

(1a) Estimate the variability response function VRFi(κ) numerically, using a fast Monte Carlo

simulation as described in the previous section.

(1b) For a target autocorrelation function with corresponding power spectrum Sf (κ) calculate an

”reference” value for the response’s variance as

VarT [Ui] = 2 ·
∞∫
0

VRFi(κ) · Sf (κ)dκ (29)

(1c) Generate realizations of the stochastic field using Karhunen-Loève expansion for various

number of terms M and estimate the corresponding power spectrum of the sample function

in an ensemble average sense as follows:

SMf (κ) =
1

2πL

∣∣∣∣∣
L∫

0

fM (x)e−iκxdx

∣∣∣∣∣
2

(30)

where L is the length of the sample functions of the random fields modeling the uncertainties.

(1d) Calculate the variance of the displacement from:
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VarM [Ui] = 2 ·
∞∫
0

VRFi(κ) · SMf (κ)dκ (31)

(1e) Estimate the error:

ErrorM (Ui) =

∣∣∣VarT [Ui]−VarM [Ui]
∣∣∣

VarT [Ui]
· 100(%) (32)

(1f) Repeat steps (1c)− (1f) with increasing number of termsM until the error of Eq.(32) reaches

a target value (e.g. < 10%) uniformly distributed all over the domain. In general, a different

number Mi will be required in each degree of freedom i in order satisfy this criterion.

It must be mentioned here that due to implementation issues, a KL order is assigned to each finite

element as the maximum value among the KL orders computed for the corresponding degrees of

freedom of this element.

6.2. Phase 2: Building a sparse PC coefficient matrix

The procedure for building the sparse PC coefficient matrix is presented next.

(2a) For each finite element estimate the number of PC terms Pi required for the degree of freedom

i according to the formula Pi =
p∑
k=0

(
Mi+k−1

k

)
.

(2b) The nodal displacement vector is decomposed as U = [U1, ...Uj ]
T j = 1, . . . , N where Uj are

the nodal displacements of N elements. Using the PC expansion the nodal displacements are

decomposed as

U1 =

P1∑
i=0

uiΨi

U2 =

P2∑
j=0

ujΨj

...

UN =

PN∑
k=0

ukΨk
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(2c) Assemble the corresponding sparse PC coefficient matrix and solve the linear system

according to eq.(19)

The advantage of the proposed methodology is that the sparsity of the matrix K in eq.(19) is

significantly increased compared to the classical Galerkin approach. The number of PC coefficients

that are zero with the proposed methodology depends on the maximum PC basis size and the number

of elements with the higher KL order. More specifically, the higher the dispersion of the KL terms

in the domain the higher the sparsity increment and, the less the elements with higher KL order in

the domain the more the sparsity increase of the augmented matrix.

7. NUMERICAL EXAMPLES

In order to assess the performances of the proposed methodology, a detailed comparison of the

classical full PC representation and the proposed sparse one, in terms of by-products of interest,

namely the first two statistical moments is performed. Three test examples are considered, one

based on a 3D cantilever-type model and two based on a plane stress models. In both cases the

elastic modulus is assumed to vary according to the formula,

E(x, θ) = E0 ·
(

1 + f(x, θ)
)

(33)

where E0 is the mean value, f(x, θ) is assumed to be a one-dimensional, zero-mean homogeneous

stochastic field. In the first example f(x, θ) is assumed one-dimensional and Gaussian, while in

the second and third example it follows a lognormal distribution, which varies spatially in both

directions. We must state here that in the first example where a Gaussian random field was used, in

order to avoid phenomena with negative values for the Young’s modulus, a small value was selected

for the standard deviation (σ = 0.1). The mean values µ and standard deviations σ are reported in

Table 2, while the autocorrelation function is given by the following equations for one- and two-

dimensional random fields, respectively:

Rf (τ) = σ2e−
|τ|
b , Rf (τ1, τ2) = σ2e−(

|τ1|
b1
− |τ2|

b2
) (34)

where κ is the wave number and b the correlation length parameter. Their corresponding power
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spectrums can be obtained using the Fourier transform.

Test Case Distribution E0 (KN/m2) σ

Cantilever N (µ, σ2) 2.1× 107 0.1

2D rectangular plate lnN (µ, σ) 1.0× 106 0.6

2D L-shaped plate lnN (µ, σ) 2.1× 107 0.6

Table II Test cases - input random variable

7.1. 3D model of a Cantilever structure

Consider the 3D model of a cantilever structure of Fig.1 with length L = 10 m and section

A = 0.25× 0.5 m2, loaded with a deterministic load p = 10 KN/m2, uniformly distributed in the

nodes of the top edge of the cantilever. The nodes of the starting section of the cantilever are fixed

against translations. The cantilever is discretized with 402 HEXA finite elements resulting in a

problem with ndof = 5412. The value b = 5 m is selected for the correlation length parameter of

eq.(34) for this example.

L = 10m

z

yx

Figure 1 Finite element mesh and boundary conditions of 3D-cantilever model

Figure 2 presents the plots of the power spectrums SMf for various values of M together with

the target power spectrum (eq.(34)), all computed via the Fourier transform of the autocorrelation

function of eq.(30). From this Fig. it can be seen that as M increases, SMf converges gradually to
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the target power spectrum. At S8
f , the 95% of the total area is covered. Figure 3 presents plots of

the VRF calculated at locations x1 = 2.5 m, x2 = 7 m and x3 = 10 m together with the plot of S8
f .

The VRFi(κ) is estimated numerically along the x−axis of the cantilever, in the range κ ∈ [0, κu],

κu being an upper cut-off frequency, taken equal to 4 rad/m.

Inspection of Fig.3, keeping in mind that the variance is given by the integral form expression of

eq.(25), reveals that the error of the variance depends not only on the number M but also on the

values of the VRF at the frequencies that are not well represented in the power spectrum due to the

KL truncation. Thus, the error for x1 = 2.5 m and M = 8 is expected to be smaller than the same

error for x2 = 7m and the error at x2 = 7m is smaller than the one at x3 = 10m since, at the latest

location the VRF has significant contributions at frequencies larger than the frequency at which S8
f

becomes zero ( κ5u = 0.5), while for x1 = 2.5 m and κ > 0.5, VRF becomes almost zero. Indeed,

the corresponding errors computed via eq.(32) are found to be 6%, 14% and 17.5% respectively.

This error behavior is presented concisely in Fig.4, which plots the (%) error computed via eq.(32)

for the three representative locations x1, x2 and x3 as a function of M . As we can see, the error is

much smaller for x1 = 2.5 m and small number of M for the reasons previously mentioned. Figure

5 depicts the areas with values up to a certain M required to reach a target error less than a fixed

value. More specifically, if we require a uniform error less than 15% then for all the points in Area

I the values 1 ≤MI ≤ 5 are required, for points inside Area II we need 5 ≤MII ≤ 7, while for all

the other points in Area III, 7 ≤MI ≤ 9 is satisfying the requirement. Thus, we choose to represent

all stochastic degrees of freedom in Area I with M = 2, in Area II with M = 6 and M = 8 for Area

III.
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Figure 2 Calculated power spectrums for various values of KL order M together with the exact power spectrum
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ff with VRF(x1 = 2.5 m), VRF(x2 = 7 m), VRF(x3 = 10 m)
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Figure 5 Subdomains with the same number of M

This problem is first solved with the classical PC expansion method with M = 2, 6 and 8 all over

the domain and p = 2, 3 and 4. The z-axis displacement Uz at the tip (x3 = 10 m) and its standard

deviation σz , are monitored in order to obtain the results, which are presented in Table 3. From this

Table it can be seen that the minimum error computed with eq.(32) is achieved for M=8 and p=4 as

expected and it is 11.17 %.
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(M,p) Uz (m) σz (m) Error(M)(%)

(2,2) -0.2265 0.0172 42.15

(6,2) -0.2275 0.0197 26.23

(8,2) -0.2284 0.0202 12.95

(2,3) -0.2280 0.0195 38.22

(6,3) -0.2281 0.0206 23.15

(8,3) -0.2285 0.0214 11.99

(2,4) -0.2283 0.0201 39.12

(6,4) -0.2285 0.0209 22.81

(8,4) -0.2285 0.0222 11.17

Table III Standard PC expansion

The same calculation is repeated using the proposed adaptive sparse PC methodology described

in section 5. For this calculation the different values of M = 2, 6 and 8 are used for areas (I), (II)

and (III) respectively (see Fig.5). The corresponding results for p = 2, 3 and 4 are presented in Table

4 together with the (%) relative error, with respect to the classical PC. This Table also depicts the

(%) sparsity increase of the PC coefficient matrix for each case. From these results it can be seen

that the same level of accuracy is achieved in all cases with the one of the classical PC using M = 8

everywhere. However, this accuracy is reached with a 40% sparsity increase of the coefficient

matrix.

(〈MI ,MII ,MIII〉, p) Uz (m) σz (m) Error (%) Sparsity(%)

(〈2, 6, 8〉, 2) -0.2284 0.0197 4.06 +38.63

(〈2, 6, 8〉, 3) -0.2285 0.0212 1.39 +41.17

(〈2, 6, 8〉, 4) -0.2285 0.0221 0.45 +43.21

Table IV Adaptive PC expansion

A visual representation of the sparsity increase for this problem is presented in Fig.6.
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(a) (b)

Figure 6 Non-zero elements of the : (a) full PC and (b) sparse PC

7.2. Plane stress with 2D lognormal random field

Next, the case of a 2D lognormal random field is investigated in order to show the performance of

the method in a non-Gaussian case. The two-dimensional domain of Fig.7 is a rectangle of length

Lx = 1 m, width Ly = 1 m and thickness equal to one. The domain is divided with a uniform

mesh of 20× 20 quadrilateral plane stress finite elements. The model is subjected to a constant

deterministic uniform load p = 100 KN/m along its boundary at its upper side. The Young’s

modulus E is considered to vary randomly in both directions, following a lognormal distribution

lnN (µ, σ) with mean value µ = 0 and σ equal to 0.6. The correlation length parameters are selected

arbitrary for this case to be b1 = b2 = 1 m . A schematic view of the corresponding power spectrum

of the underlying Gaussian field is given in Fig.8. The VRF for this example is estimated with FMCS

technique according to eq.(23). The number of MCS per wave number dyad (κx, κy) required is

usually 5-10, the cost of which must be added to the total computational cost of the procedure.

Indicative plots of the VRFs, at point x1, x2 and x3 are shown in Figs.9 to 11, respectively.
After estimating the variability response function in each degree of freedom, we calculate the

power spectrum of the lognormal field SMl . The variance of the vertical displacement in each

location of the plate is then calculated using the analytic expression of eq.(25) and thus the error for
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Figure 7 Two-dimensional plate
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Figure 8 Spectral density function of the underlying Gaussian random field

all locations of the domain as a function of M is derived. This error behavior is presented concisely

in Fig.12, which plots the (%) error for the three representative locations shown in Fig.7 (x1, x2

and x3) as a function of M . It must be mentioned that this variance error is computed with respect

to the target variance obtained for M = 10 in the KL terms. From this figure it can be seen that the

values M=2,3 and 6 are required for points x1, x2 and x3, respectively, in order to reach the same

error level (2.5%). Figure 13 depicts the distribution of the KL order along the domain required

to reach a target error of about 2.5%. More specifically, for the all the finite elements of subdomain
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Figure 11 Computed VRF at location x3

(I) the value of up to MI = 2 is required, for finite elements of subdomain (II) we need MII=3,

while for all the other finite elements of subdomain (III), MIII=6 is satisfying the requirement for

a uniform error.
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Figure 13 Subdomains with equal M values required to reach a target error of about 2.5%

This problem is initially solved with the classical PC expansion method for M = 2, 3 all over

the domain and 6 and p = 2, 3 and 4. The y-axis displacement (Uy) of the upper node of the plate,

is monitored in order to obtain the results, which are presented in Table 5. The same calculation

is repeated using the proposed adaptive sparse PC methodology. For this calculation the different

values of M = 2, 3 and 6 are used (see Fig.13)and the corresponding results for p = 2, 3 and 4 are

presented in Table 6. Figures 14 and 15 depict the relative error in the mean and standard deviation
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M p Uy (×10−3) (m) σy (×10−4)

2 2.2 3.785

3 2 2.17 3.882

6 2.36 3.992

2 2.29 3.796

3 3 2.23 3.89

6 2.39 4.002

2 2.25 3.80

3 4 2.29 3.894

4 2.401 4.00

Table V Standard PC expansion

(MI ,MII ,MIII) p Uy (×10−3) (m) σy (×10−4)

2 2.2985 3.803

(2,3,6) 3 2.3114 3.877

4 2.412 3.988

Table VI Sparse PC expansion

of Uy, as a function of p for both approaches, respectively. These errors of the classical PC with

M = 2 and M = 3 and the sparse PC expansion, are computed with respect to the classical PC with

M = 6, which is considered a reference solution for all cases. It must be highlighted that, as shown

in Figs.14 and 15, this error is less than 1% for the sparse PC. Figures 16 and 17 depict the sparsity

of the augmented matrix for the plane stress problem of section 7.2, as a function of p. From these

figures we can see that, depending on the value of p, a sparsity increase of order 40− 70% can be

reached, when the sparse PC method is implemented with M = 2, M = 3 and M = 6. The non-

zero elements of the augmented matrix are almost one order of magnitude less with the proposed

methodology compared to the classic PC with M = 6 all over the domain. Finally, plots of the non-

zero elements of the augmented matrix is shown in Fig.18 for the full PC with M = 6 and p = 3

and for the sparse PC approach with MI = 3, MII = 2 MIII = 6 and p = 3, respectively.
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Figure 17 Increase of sparsity of the augmented matrix as a function of p
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Figure 18 Non-zero elements of the : (a) full PC and (b) sparse PC

7.3. L-shape, 2D plane stress problem

As a final numerical example, the proposed methodology is applied in a 2D, L-shaped domain

problem under static loading. This example aims in demonstrating the applicability of the method

in a more complex example in which the spatial variation of the VRF and thus the corresponding

KL order are expected to be significant. The geometric properties of the domain are shown in Fig.19
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along with its boundary conditions and the applied loads. The finite element mesh consists of 619

three-node plane stress triangular elements with a total of ndof = 682.

Lx = 1m

L
y
 =

 1
m

0.5m0
.5

m

p = 100.000 kN/m

F = 5000kN

Figure 19 L-shaped domain under static loading

Again, the Young’s modulus E is described by a two-dimensional lognormal random field

with the characteristics as described in section 7.2. Steps (1a) to (1f) of Phase 1 of the proposed

methodology are first implemented in order to estimate the spatial distribution of the KL truncation

order M . The final spatial distribution of the KL terms is constructed from the maximum order M

of each degree of freedom. In Figs. 20(a) and (b) we see the spatial distributions of the KL terms

obtained for x- and y- displacement, respectively while Fig.21 depicts the final KL order spatial

distribution. As we can see from Fig.20(a) the distribution of the KL orders obtained from the x-

displacement is uniform all over the domain, equal to M = 3, except in two areas, one in the upper

left corner and on the bottom of the domain where the required KL order is increased and reaches

a value of M = 4. For the case of the y-displacement of Fig.20(b) the dispersion in the spatial KL

distribution is more pronounced where we see that the value of M = 3 is limited in a short stripe at
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the left side of the domain and in the inner side of the L-shape while the value M = 4 is dominant at

the right edge of the domain and in a vertical stripe. Finally, there exist a small area where a value of

M = 5 is required in order to satisfy the uniform criterion of the error at the bottom of the L-shaped

domain. The final KL order distribution (see Fig.21) is a combination of these distributions with the

maximum value of M to be assigned in each element.

(a) (b)

Figure 20 KL order spatial distribution at the degrees of freedom of a) x-directions b) y-direction

Figure 21 Final KL order distribution of the domain

After having estimated the spatial distribution of the KL order in the domain we proceed in Phase

2 where we construct the sparse PC basis as described in section 6 and we estimate the mean value of

the displacement field and its corresponding variance. The mean value of the x- and y- displacements

are contoured in Fig.22(a) and (b). As it is expected, the variation of the mean x-displacements is

horizontally; the minimum displacements appear in the top of the domain and their values increase

towards the bottom side reaching a maximum value of 0.06m at the bottom right corner. For the

mean y-displacements we see that their values change along the vertical axis; their values increase
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from the left to the right reaching a maximum value of 0.08m at the right edge of the structure.

The variance of the mean x- and y- displacements are contoured in Fig.23(a) and (b), respectively.

As we can see from these Figs. a similar to the displacements behavior, regarding their distribution

along the structure, is observed to the variances. More specifically, the variance of the horizontal

displacements is practical zero at the top edge of the structure and its values are increasing as we

move towards the bottom side, reaching a high value of 8× 10−4, while the variance of the vertical

displacements is increasing from the left to the right with a maximum value of 17× 10−4 at the

upper right corner.

(a) (b)

Figure 22 Mean value of the a) x-displacement field b) y-displacement field, estimated with the adaptive SSFEM for

p = 4

(a) (b)

Figure 23 Variance of the a) x-displacement field b) y-displacement field, estimated with the adaptive SSFEM for

p = 4
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Finally, Fig.24 shows the mean squared error in the estimation of the mean value and its

corresponding variance of the displacement field with the proposed methodology and with the

standard SSFEM method with M = 5 uniformly all over the domain for p = 3, 4 and 5. We see

that this error is less than 0.1% for the mean displacement field in all cases while for its variance

reduces from 4% for p = 3 to less than 1% for p = 5, in both directions.
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Figure 24 Total mean squared error (mse) of the mean and variance of the displacement field estimated with the

proposed methodology and with the standard SSFEM with M = 5 all over the domain and p = 3, 4 and 5

8. COMPUTATIONAL PERFORMANCE OF THE PROPOSED METHOD

The enhancement of the computational performance of the proposed approach due to the

aforementioned increase in the sparsity of the coefficient matrix is demonstrated in Table 7. The

computational platform used is an Intel Core i7 X980 with 6 physical cores at 3.33 GHz with 24 GB

of RAM while the actual implementation was serial, using only one of the six available cores. In

order to assess the computational cost of the proposed approach, the cost required for the calculation

of the VRF must also be considered. Since this calculation is used in order to obtain an a priori rough

error estimation, the VRF can be computed with a relatively sparse discretization in the frequency

domain. Therefore, a value of N = 5 in eq.(23) is expected to be sufficient for the purposes of this
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estimation, leading to an additional cost of 50-100 MCS, which of course should be added to the

cost of the adaptive sparse PC solution. In order to minimize the cost of these MCS, the PCG method

described in section 5.1 is utilized.

In this Table it can be seen that for the example of section 7.2 a 75% reduction of the total

computing time was achieved with the sparse SSFEM approach compared to the full SSFEM

method, even with the addition of the extra 100 MCS required for the calculation of the VRF which

takes 1% of the total computation time. The sparse SSFEM solution was achieved with 32 PCG

iterations instead of 40 required for the full problem. In the example of section 7.3 the reduction of

the computational time was much higher with respect to the previous example reaching an almost

two orders of magnitude improvement of the computational efficiency. The sparse SSFEM solution

was achieved with 52 PCG iterations instead of 330 required for the full problem. This is attributed

to the increased size of the coefficient matrix of the last example due to the implementation of a

higher order polynomial chaos p = 5 instead of p = 3. Thus, the gaining from using the proposed

approach is more significant in large systems, requiring high order of PC approximations.

SSFEM

Example 2 Example 3

Factorization Direct solution Full Sparse Full Sparse

(1 MCS) (40 iter.) (32 iter. + 100 MCS) (330 iter.) (52 iter. + 100 MCS)

Computing
0.021 0.0004871 23.437 6.06279+0.06971 640.23 15.12+0.06971

time (sec)

Table VII Computational performance of classical SSFEM (Full problem) vs adaptive SSFEM (Sparse problem)

9. CONCLUSIONS

In this paper a methodology is described to construct an adaptive sparse polynomial chaos (PC)

expansion of the response of stochastic systems whose input parameters are independent random

variables modeled as random fields. The proposed methodology utilizes the concept of variability

response function (VRF) in order to compute an a priori inexpensive estimate of the spatial

distribution of the second-order error of the response as a function of the number of terms used
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in the truncated KL series representation of the random fields involved in the problem. As a result

a spatial adaptation of the number of terms used for describing the random field is achieved in

order to obtain a uniform error distribution, leading to a significant reduction of the number of PC

coefficients and a corresponding increase in the sparsity of the augmented deterministic matrix. This

sparsity increase improves significantly the computational performance of the SSFEM. The benefits

of using the proposed adaptive procedure are more pronounced in large FE stochastic systems which

require high orders of PC approximations. The extension of the proposed method to nonlinear cases

is considered for future work.
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