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Abstract

This work revisits the computational performance of non-intrusive Monte Carlo versus intrusive Galerkin methods of
large-scale stochastic systems in the framework of high performance computing environments. The purpose of this work is
to perform an assessment of the range of the relative superiority of these approaches with regard to a variety of stochastic
parameters. In both approaches, the solution of the resulting algebraic equations is performed with a combination of pri-
mal and dual domain decomposition methods implementing specifically tailored preconditioners. The solution of repeated
simulations of the Monte Carlo method is accelerated with an A-orthogonalization procedure aiming at reducing the iter-
ations of subsequent simulations, while the solution of the augmented equations of the stochastic Galerkin method is
enhanced with preconditioners which combine the block diagonal features of the resulting matrices as well as the sparsity
pattern of the off block-diagonal terms. Numerical results are presented, demonstrating the efficiency of the proposed
implementations on a large-scale 3D problem with different stochastic characteristics and useful conclusions are derived
regarding the ranges of stochastic parameters in which non-intrusive solvers have a superior performance compared to
intrusive ones and vice versa.
� 2014 Published by Elsevier B.V.
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Primal–dual domain decomposition; FETI method
1. Introduction

The most straightforward technique of solving stochastic partial differential equations (PDE) are the widely
applicable non-intrusive Monte Carlo (MC) methods. They can handle any type of problems (linear, nonlinear,
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dynamic) as well as any kind of uncertainty in the load or in the system properties and they can be implemented
in a non-intrusive manner in the framework of existing deterministic solvers. In particular, when dealing with
deterministic external loading, Monte Carlo methods feature the solution of successive linear systems with mul-
tiple left-hand sides, since only the coefficient matrix K changes in every simulation. Due to the fact that the
solution process has to start from the beginning, a new stiffness matrix needs to be formed at each simulation.
Thus, the repeated solutions of the system of equations for each newly formed solution becomes a major com-
putational task that hinders the stochastic assessment of large-scale problems with MC methods. Such solution
can be performed either with a standard direct method based on Cholesky factorization or with iterative meth-
ods. The solution with a direct method has two major drawbacks: poor performance in 3D large scale problems
and in parallel and distributed computing environments, as well as incapability of exploiting the near-by nature
of the successive simulations.

In order to alleviate the incapability of direct schemes to exploit the proximity of the resulting systems of
equations, iterative solvers have been proposed which are customized to the particular properties of the
equilibrium equations arising in the context of MC methods. Such iterative solvers have been presented for
sequential [1–5] as well as for parallel computing environments [6–11]. The resulting near-by problems can
be effectively solved using the preconditioned conjugate gradient (PCG) algorithm equipped with a precondi-
tioner following the rationale of incomplete Cholesky preconditioning. This solution procedure consists of uti-
lizing the deterministic K0 stiffness matrix as its preconditioner throughout the entire simulation process for
the solution of the near-by problems. The repeated solutions required for the preconditioning step of the
MC-PCG-Skyline algorithm can be treated as problems with multiple right-hand sides, since the entries in
the residual vector are updated at each PCG iteration of each MC simulation. A direct solver for this proce-
dure is proposed in [12] and the dual decomposition FETI method is proposed in [11].

On the other hand, recently proposed approaches, such as stochastic collocation and Galerkin methods, are
intrusive and are using tensor product spaces for the spatial and stochastic discretizations. In the case where
the uncertain input parameters are modeled via the Karhunen–Loève (KL) expansion and the system response
is projected on a polynomial chaos (PC) basis, the method is called spectral stochastic finite element method
(SSFEM). SSFEM approach applies a Galerkin minimization in order to transform a stochastic PDE into a
coupled set of deterministic PDEs. Thus, the solution of stochastic problems using the SSFEM approach has
to be performed on augmented linear equation systems which can be up to orders of magnitude larger than the
corresponding deterministic ones [13–21].

For large-scale problems the solution of such augmented algebraic systems can become quite challenging
due to the increased memory and computational resources required. Solution techniques for addressing these
problems are based on adaptive methods [22,23] and on iterative solvers like the block Gauss–Jacobi [8,24–26]
and the PCG [2,5,8,18,27–32]. The variant proposed in [32] is an extension of the domain decomposition
FETI-DP method to SSFEM problems where the Lagrange multipliers are enhanced in order to take into
account the interaction forces occurring at both the deterministic and stochastic parts. Although such an
implementation might prove efficient when compared to the aforementioned iterative solvers, its performance
can be degraded when dealing with large KL and PC expansion orders. The two-level variant proposed in [29]
proves to be quite efficient since it exploits the block-sparsity structure of the augmented stiffness matrix while
utilizing a domain decomposition solver, optimized for multiple right-hand sides.

The present work revisits the computational performance of non-intrusive Monte Carlo versus intrusive
Galerkin methods for large-scale stochastic systems in the framework of high performance computing envi-
ronments. The purpose of this work is to perform an assessment of the range of the relative superiority of these
approaches with regard to a variety of stochastic parameters. In both approaches, the solution of the resulting
algebraic equations is performed with a combination of primal and dual domain decomposition methods
implementing specifically tailored preconditioners. The solution of repeated simulations of the Monte Carlo
method is accelerated with an A-orthogonalization procedure aiming at reducing the iterations of subsequent
simulations, while the solution of the augmented equations of the stochastic Galerkin method is enhanced
with preconditioners which combine the block diagonal features of the resulting matrices as well as the
sparsity pattern of the off block-diagonal terms. Numerical results are presented demonstrating the efficiency
of the proposed implementations on a variety of problems with different stochastic characteristics and useful
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conclusions are derived regarding the ranges of stochastic parameters in which non-intrusive solvers have a
superior performance compared to intrusive ones and vice versa.
2. Monte Carlo simulation in high performance computing environments

MC methods require the solution of problems of the form
Kiui ¼ f i iði ¼ 1; . . . ; nsimÞ ð1Þ
where Ki is the stiffness matrix corresponding to the stochastic realization of the i-th simulation, ui is the
corresponding vector of unknown nodal displacements, nsim is the number of Monte Carlo simulations and
f is the vector of nodal loads. The size of the stiffness matrix and the corresponding vectors is equal to the
size of the equivalent deterministic problem. Thus, if K0 is the stiffness matrix of the deterministic problem
with dimensions N � N , Eq. (1) can be written as
ðK0 þ DKiÞui ¼ f; i ¼ 1; . . . ; nsim ð2Þ
which specifies a set of near-by problems.
If the uncertainties in the input parameters are modeled by Gaussian random fields then the truncated KL

expansion is defined as [33,34]:
baðx; #Þ ¼ a0ðxÞ þ
XM

i¼1

ffiffiffi
k
p

iniðhÞ/iðxÞ ð3Þ
where, a0ðxÞ denotes the mean value of the random field, niðhÞ is a set of uncorrelated zero mean Gaussian
random variables, h being the random event. ki and /iðxÞ are the eigenvalues and mutually orthogonal eigen-
functions of its covariance function Cðx1; x2Þ which may be calculated in the domain D of the random field
aðx; hÞ, from the solution of the homogeneous Fredholm integral equation of the second kind given by
Z

D
Cðx1;x2Þ/iðx1Þ ¼ ki/iðx2Þ ð4Þ
Thus, in the case of Gaussian random fields Eq. (2) can be written as
K0 þ
XM

j¼1

KjnjðhÞ
 !

uðhÞ ¼ f ð5Þ
Kj are deterministic and are given by:
Kj ¼ K
ffiffiffi
k
p

j/jðxÞ
� �

j ¼ 1; . . . ;M ð6Þ
These repeated solutions can be performed either with a standard direct method based on Cholesky factor-
ization or with preconditioned iterative methods. In high performance computing environments which feature
computing systems with multicore processors and distributed memory architectures, iterative schemes are
more advantageous since they manage to harness the computational power of such environments while being
more easily custom tailored to the particular properties of the equilibrium equations arising in the context of
the numerical simulation used. In this work, we have further improved two variants of the MC-PCG-Skyline
method previously proposed in [11,12].
2.1. The MC-PCG-Skyline method

The PCG algorithm, when solving a linear system of the form Ax ¼ b with a preconditioner ~A, is depicted
in Table 1 for iteration k.



Table 1
The PCG algorithm.

Solution estimate xk ¼ xk�1 þ gk�1pk�1

Residual vector rk ¼ rk�1 � gk�1qk�1

Preconditioned residual vector zk ¼ ~A�1rk

Search vector Using re-orthogonalization pk ¼ zk �
Pk�1

i¼0
zkT

qi

pkT
qi

pi

A matrix product vector qk ¼ Apk

g Estimation Using re-orthogonalization gk ¼ pkT
rk

pkT
qk
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� Initialization phase: r0 ¼ b� Ax0z0 ¼ ~A�1r0; p0 ¼ z0; q0 ¼ Ap0; g0 ¼ p0T
r0

p0T
q0

,
� Repeat for k ¼ 1; 2 . . . until convergence:

The PCG algorithm equipped with a preconditioner following the rationale of incomplete Cholesky precon-
ditioning features an error matrix Ei. This matrix is dependent on the discarded elements of the lower trian-
gular matrix produced by the incomplete Cholesky factorization procedure, which do not satisfy a specified
magnitude or position criterion [35]. Considering the near-by problems of the form (2), if matrix Ei is taken
as DKi, the preconditioning matrix becomes the initial matrix ~A ¼ K0. The PCG algorithm equipped with the
latter preconditioner throughout the entire solution process constitutes the MC-PCG-Skyline method for the
solution of the nsim near-by problems of Eq. (2).

With the preconditioning matrix ~A ¼ K0 remaining the same during the successive Monte Carlo simula-
tions, the repeated solutions required for the evaluation of the preconditioned residual vector zk ¼ ~A�1rk

can be treated as problems with multiple right-hand sides, since this vector needs to be evaluated at each
PCG iteration k of each simulation i. In order for this evaluation to be efficient, a solution scheme capable
of solving efficiently problems with multiple right-hand sides is required.

The original MC-PCG-Skyline algorithm proposed in [12] uses a Cholesky direct solver for performing the
proconditioning step, where K0 is factorized to LLT at the beginning of the Monte Carlo simulation procedure
and each evaluation of the preconditioned residual vector is carried out by a forward substitution, a vector
operation and a backward substitution. Another implementation for obtaining the preconditional residual
vector zk was proposed in [11] where the dual domain decomposition FETI method is applied to perform
the repeated solutions in parallel computing environment. In the present work, each evaluation of the precon-
ditioned residual vector is carried out using a PFETI solver [36], optimized for multiple right-hand sides [37],
as described in the following section, adhering to the rationale of the PCG method where the preconditioning
step is performed with the FETI method [11].
2.2. The PSM, FETI and PFETI methods

2.2.1. The primal substructuring method (PSM)

The primal substructuring method (PSM) is based on the elimination of the internal dof of the subdomains
and solving for the interface dof. The interface problem is of the form:
Sub ¼ f̂b ð7Þ
where
S ¼ LbSsLb ð8Þ
us

b ¼ Lbub ð9Þ
f̂b ¼ LT

b f̂s
b ð10Þ
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and
Ss ¼

Sð1Þ

. .
.

SðsÞ

. .
.

SðNsÞ

266666664

377777775
f̂s

b ¼ f̂
ð1Þ
b � � � f̂

ðNsÞ
b

� �

Ns is the number of subdomains s of the global domain, L is the Boolean global to local mapping operator,
while index b denoting that the vectors are applied to interface dof. Moreover, the Schur complement matrix
SðsÞ and f̂

ðsÞ
b are defined as follows:
SðsÞ ¼ K
ðsÞ
bb � K

ðsÞ
bi K

ðsÞ
ii

� ��1

K
ðsÞ
ib ð11Þ

f̂
ðsÞ
b ¼ f

ðsÞ
b � K

ðsÞ
bi K

ðsÞ
ii

� ��1

fs
i ð12Þ
with subscript i denoting the restriction of the matrices and vectors to internal degrees of freedom (dof).
All Kxy , with x ¼ b; i and y ¼ b; i, can be obtained by rewriting the local subdomain problem to the

form:
K
ðsÞ
bb K

ðsÞ
bi

K
ðsÞ
ib K

ðsÞ
ii

" #
¼ u

ðsÞ
b

u
ðsÞ
i

" #
� BT

b

0

" #
� k ð13Þ
with k being the traction forces between each subdomain and Bb is a signed Boolean matrix. Displacement and
force vectors are defined as:
us
b ¼ u

ð1ÞT
b � � � u

ðsÞT
b � � � u

ðNsÞT
b

h iT
ð14Þ

fs
b ¼ f

ð1ÞT
b � � � f

ðsÞT
b � � � f

ðNsÞT
b

h iT
ð15Þ
2.2.2. The dual substructing method (FETI)

The dual substructing FETI method proposed by Farhat and Roux [38] is based on solving the following
dual problem after the elimination of all internal and boundary dof:
FI �G

�GT 0

� �
k

a

� �
¼

d

�e

� �
ð16Þ
where
FI ¼ BKsþBT ð17Þ

G ¼ Bð1ÞRð1Þ � � � BðNsÞRðNsÞ
� �T ð18Þ

d ¼ BKsþ fs ð19Þ
e ¼ RsT

fs ð20Þ
RðsÞ ¼ null KðsÞ

	 

ð21Þ
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and
Ksþ ¼

Kð1Þ
þ

. .
.

KðsÞ
þ

. .
.

KðNsÞþ

266666664

377777775 ð22Þ

Rs ¼ Rð1Þ
T

� � � RðNsÞT
h iT

ð23Þ

fs ¼ fð1Þ
T

� � � fðNsÞT
h iT

ð24Þ
with the superscript ðþÞ denoting the generalized inverse of a given matrix. The FETI method is usually imple-
mented with a preconditioned conjugate projected gradient (PCPG) algorithm for the solution of the
Lagrange multipliers in Eq. (16).

2.2.3. The primal–dual substructuring method (PFETI)

The PFETI belongs to the primal–dual substructuring methods family, introduced by Fragakis and Papad-
rakakis [36]. These methods are derived by the PSM with the following rationale: The PSM solves Eq. (7) in
order to evaluate the interface displacements ub, using the PCG algorithm. An efficient preconditioner of PSM
treats the residual vector r ¼ f̂b � Sub as an external force vector applied on the subdomain interface in order
to provide an accurate estimation of the interface displacements caused by the aforementioned force vector.
The preconditioner which estimates the subdomain interface displacements after performing the first iteration
of a dual domain decomposition method is the one proposed at [36]. The PCG algorithm applied to Eq. (7)
with the following preconditioner
~S�1 ¼ LT
pb

HT
b SsþHbLpb

ð25Þ
where
Hb ¼ I� BbGðGT GÞ�1
RsT

b ð26Þ
constitutes the PFETI method.
One of the main differences between the FETI and PFETI methods is their interface problem. The interface

problem of PFETI is based on the primal displacements variables at the interface nodes, while for FETI the
interface problem is dual as it is based on the interaction forces, the Lagrange multipliers, between the sub-
domains. This difference leads to a significant increase of the interface problem size of the FETI method when
compared to PFETI, particularly in 3D problems and irregular meshes where the domain decomposition pro-
duces a large number of crosspoints at the intersections of the subdomains which lead to an increase of the
number of Lagrange multipliers. This difference results to superior performance with respect to iteration count
of the PFETI method, as shown in [36], when compared to the FETI method equipped with either the lumped
or Dirichlet preconditioners. On the other hand, each preconditioning step of the FETI method, when
equipped with the lumped preconditioner, is cheaper compared to the PFETI method since it only involves
a forward and backward substitution whereas for PFETI and the Dirichlet-preconditioned FETI, a series
of matrix–vector multiplications are also required.

2.3. Optimizing the solution with multiple right-hand sides

When using the PCG algorithm to solve problems with multiple right-hand sides, convergence can be accel-
erated by utilizing appropriately information accumulated during the previous solutions. In particular, given a
sequence of linear systems with a constant left-hand side matrix A and multiple right-hand side vectors of the
form
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Axi ¼ bi; i ¼ 1; . . . ; j; jþ 1; . . . ; na ð27Þ

where na is the number of solutions required, the number of PCG iterations required for each linear system
may be reduced using the Krylov subspaces generated from search vectors p during the previous solutions.
For the solution of the linear system jþ 1, the following first solution estimate is considered:
x0
jþ1 ¼ Pnpxp ð28Þ
with
Pnp ¼ ½p1 . . . pn0�

xp ¼ QT
np

Pnp

� ��1

PT
np

bjþ1Qnp

Qnp
¼ APnp ¼ ½Ap1 . . . Apn0� ¼ ½q1 . . . qn0�

ð29Þ
Given that search vector p and matrix product vector q using a re-orthogonalization procedure are ensured to
be A-orthogonal, the evaluation of xp is trivial since QT

np
Pnp has values only in its diagonal. Moreover, the

search vector evaluation step can be carried out using not necessarily all but a fraction of the vectors stored
from all the accumulated solutions.

3. SSFEM in high performance computing environment

In the SSFEM approach, the system response is projected in a PC basis as follows
uðhÞ ¼
XQ�1

j¼0

ujWjðnÞ ð30Þ
where fWjðnÞgQ�1
j¼0 ¼ fWjððn1ðhÞ; . . . ; nMðhÞÞÞgQ�1

j¼0 is the PC basis, consisting of the M-dimensional zero mean
and orthogonal Hermite polynomials of order p, satisfying:
W0 ¼ 1

E½Wj� ¼ 0 j > 0

E½WjðhÞWkðhÞ� ¼ 0 j – k ð31Þ
The value of Q in Eq. (30) is determined by the following formula
Q ¼
M þ p

p

� �
ð32Þ
In this case Eq. (5) can be written as
XM

i¼0

KiniðhÞ
 !

�
XQ�1

j¼0

ujWjðhÞ
 !

¼ f ð33Þ
with the following residual due to the truncation error
�M ;Q ¼
XM

i¼0

XQ�1

j¼0

KiujniðhÞWjðhÞ � f ð34Þ
The best approximation of the exact solution uðhÞ spanned by fWkgQ�1
k¼0 is obtained by minimizing this residual

in a mean square sense:
E½�M ;Q �Wk� ¼ 0 k ¼ 0; 1; . . . ;Q� 1 ð35Þ
By introducing the following notation:
cijk ¼ E½niWjWk� ð36Þ
fk ¼ E½Wkf� ð37Þ
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Eq. (33) can be rewritten as
XM

i¼0

XQ�1

j¼0

cijkKiuj ¼ fk k ¼ 0; . . . ;Q� 1 ð38Þ
and by defining for the sake of simplicity
Kjk ¼
XMþ1

i¼0

cijkKi ð39Þ
Eq. (38) rewrites as follows:
XQ�1

j¼0

Kjkuj ¼ fk ð40Þ
In the above equation, each uj is a N�dimensional vector and each Kjk is a matrix of size N � N . The Q dif-
ferent equations can be cast in a matrix form of size ðN � Q� N � QÞ as follows:
K � u ¼ f ð41Þ
where,
K ¼

XM

i¼0

ci;0;0Ki

XM

i¼0

ci;1;0Ki � � �
XM

i¼0

ci;Q�1;0Ki

XM

i¼0

ci;0;1Ki

XM

i¼0

ci;1;1Ki � � �
XM

i¼0

ci;Q�1;1Ki

..

. ..
. . .

. ..
.

XM

i¼0

ci;0;Q�1Ki

XM

i¼0

ci;1;Q�1Ki � � �
XM

i¼0

ci;Q�1;Q�1Ki

266666666666664

377777777777775

and
u ¼ u0; u1; � � � ; uQ�1½ �T

f ¼ f0; f1; � � � ; fQ�1½ �T
The sparsity patterns of the ðN � NÞ non-zero block sub-matrices of K for two dimensional elasticity cases is
shown in Figs. 1 and 2.

After solving the augmented system for u ¼ fuk; k ¼ 0; . . . ;Q� 1g, the required uðhÞ is computed from:
uðhÞ ¼
XQ�1

j¼0

ujWjðhÞ ð42Þ
Fig. 1. Sparsity pattern of K for the Gaussian case (M ¼ 2; p ¼ 2).



Fig. 2. Sparsity pattern of K for the Gaussian case (M ¼ 6; p ¼ 4).
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Once the coefficients uj of the expansion are computed, approximate statistics of the solution can be derived by
MC simulations. In this case however, the MC simulation computational effort is trivial since it is applied
directly to the polynomial representation of Eq. (42) without the need of solving a system of equations at each
simulation.
3.1. Log-normal random fields

If the random field is considered to be non-Gaussian the probabilistic structure of niðhÞ in Eq. (3) cannot be
determined so the KL expansion is of no practical interest. For the case of log-normal random fields lðx; hÞ the
truncated KL expansion of an underlying Gaussian field can be defined as follows
l̂ðx; hÞ ¼ e
g0ðxÞþ

XM

i¼1

ffiffi
k
p

iniðhÞ/iðxÞ

( )
ð43Þ
Ghanem proposed in [39] an expansion of lðx; hÞ into a polynomial basis in order to be able to include these
fields in the context of the spectral stochastic finite element method. The truncated PC expansion of a log-
normal random field lðx; hÞ reads
l̂ðx; hÞ ¼
XQ�1

i¼0

liðxÞWiðnÞ ð44Þ
In this case the stiffness matrix of Eq. (5) becomes
KðhÞ ¼
XQ�1

i¼0

KiWiðnÞ ð45Þ
where WiðnÞ is the PC basis. Substituting Eq. (45) in Eq. (33), the stochastic equilibrium equation can be
written as follows:
XQ�1

i¼0

KiWiðhÞ
 !

�
XQ�1

j¼0

ujWjðhÞ
 !

¼ f ð46Þ
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The Galerkin minimization of error leads to a system of linear equations similar to Eq. (38) where the
coefficients cijk are replaced by:
dijk ¼ E½WiWjWk� i; j; k ¼ 0; . . . Q� 1 ð47Þ
The matrix K retains the block-sparsity nature and its diagonally block-dominance albeit to a lesser extent
than the Gaussian case.

When dealing with Gaussian stochastic fields, each block of the diagonal is comprised of the deterministic
stiffness matrix K0 scaled by an integer. In log-normal stochastic fields, each block of the diagonal is comprised
either of the deterministic stiffness matrix K0 scaled by an integer or of a linear combination of the determin-
istic stiffness matrix K0 and stochastic matrices K1 to Kn. Matrices K1 to Kn may differ up to orders of mag-
nitude when compared to K0, so matrix K is also considered block-dominant. Figs. 3 and 4 depict the sparsity
pattern of the non-zero block sub-matrices of K in the case of a log-normal distribution for the same M and p

values considered in the Gaussian case of Figs. 1 and 2. It can be seen that the augmented matrix K in the case
of a log-normal random field is far more dense than the one obtained in the case of a Gaussian input (see
Figs. 2 and 4).

3.2. Solution of the augmented systems

The augmented systems that are generated when using SSFEM are suitable candidates for iterative solvers
since they are flexible enough to be custom tailored to their particular architecture of the augmented systems
Fig. 3. Sparsity pattern of K for the non-Gaussian case (M ¼ 2; p ¼ 2).

Fig. 4. Sparsity pattern of K for the non-Gaussian case (M ¼ 6; p ¼ 4).
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while they are amenable to be efficiently implemented in high performance computing environments. A
number of solution procedures for solving Eq. (41) has been proposed addressing small to medium problems.
However, as the problem size grows, such a solution can become quite challenging due to the enormous
memory and computational resources required. Solution techniques are based on either Gauss–Jacobi
[8,24–26] or PCG [2,5,8,18,27,28,30,31,40] iterative solvers for addressing this problem. In this work two
specialized preconditioners that take advantage of the properties of the augmented SSFEM linear systems
are proposed which were found to be effective for both Gaussian and log-normal distributions.

Consider the preconditioning matrix for the case of Gaussian distribution of the form
~A ¼

a1K0 0 � � � 0

0 a2K0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � anK0

266664
377775 ð48Þ
where an are the coefficients as calculated from the PC bases (see Eq. (36)). For each evaluation of the
preconditioned residual vector, the same K0 matrix needs to be “inverted” n times, as in the case of the
MC-PCG-Skyline method. This matrix “inversion” is implemented as the solution of n linear systems. Since
matrix ~A is block diagonal, the solution process can be pipelined as the successive solution of n linear systems
with multiple right-hand sides. The PCG algorithm equipped with preconditioning matrix ~A and utilizing the
FETI method for solving the successive linear systems is proposed in [29]. A variant of this approach is tested
in this work by employing PFETI for the solution of the repeated linear systems involved in the precondition-
ing steps of PCG. This algorithm is abbreviate as SSFEM-PCG-B for the solution of the augmented linear
system that occurs from SSFEM.

The second preconditioner is based on the SSOR-type preconditioning matrix. In particular, the augmented
matrix K is decomposed into the diagonal component D as it appears in Eq. (48) strictly lower triangular
component L of the form:
L ¼

0 0 0 0

K21 0 � � � 0

..

.
Km2

. .
. ..

.

Kn1 Kn2 � � � 0

266664
377775 ð49Þ
Using this decomposition, the SSOR-type preconditioner is of the form:
~A ¼ ðD� LÞD�1ðD� LT Þ () ~A�1 ¼ ðD� LT Þ�1
DðD� LÞ�1 ð50Þ
The evaluation of the preconditioned residual vector of the PCG algorithm is implemented as follows:

1. Solve:
ðD� LÞzk
1 ¼ rk ð51Þ
2. Evaluate:
zk
2 ¼ Dz1 ð52Þ
3. Solve:
ðD� LT Þzk ¼ zk
2 ð53Þ
The matrix of the linear system of Eq. (51) is lower triangular and its solution involves the implementation
of a forward substitution algorithm in block form, as follows:
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a11K0x1 ¼ b1

a21K1x2 þ a22K0x2 ¼ b2

..

. . .
. ..

.
¼ ..

.

am1K1xm þ am2K2x2 þ � � � þ ammK0xm ¼ bm

ð54Þ
where rk ¼ ½bT
1 � � � bT

m�; zk
1 ¼ ½xT

1 � � � xT
m� and axyKz are the various block matrices as they occur from the formu-

lation of the SSFEM augmented system. The evaluation of these block equations are executed in a sequential
manner and are implemented as the successive solution of the following linear systems:
K0x1 ¼
b1

a11

K0x2 ¼
b2 � a21K1x1

a22

..

.
¼ ..

.

K0xm ¼
bm �

Pm�1
i¼1 amiKixi

amm

ð55Þ
Similarly, the linear system of Eq. (53) is upper triangular and its solution involves the implementation of a
backward substitution algorithm in block form, as follows:
a11K0y1 þ a12K2y2 þ � � � þ a1mKmym ¼ c1

a22K2y2 þ � � � þ a2mKmym ¼ c2

..

.
¼ ..

.

ammK0ym ¼ cm

ð56Þ
where zk
2 ¼ cT

1 � � � cT
m

� �T
; zk ¼ yT

1 � � � yT
m

� �T
. The evaluation of these block equations are executed as the succes-

sive solution of the following linear systems:
K0ym ¼
cm

amm

K0ym�1 ¼
cm�1 � am�1;m�1Km�1ym�1

am�1;m�1

..

.
¼ ..

.

K0y1 ¼
c1 �

Pm�1
i¼1 a1iKiyi

a11

ð57Þ
The PCG algorithm equipped with the above SSOR preconditioner and utilizing the PFETI method for solv-
ing the linear systems occurring at each step of the aforementioned forward and backward substitutions, con-
stitutes the SSFEM-PCG-S method for the solution of the augmented linear system that occurs from SSFEM.
It is worth noting that, in contrast to the point SSOR preconditioner applied within an iterative solver, the
evaluation of the preconditioned residual vector of the SSFEM-PCG-S method is parallel and scalable due
to the fact that all block matrices that take part in the matrix–vector multiplication operations of the forward
and backward substitutions are already decomposed into subdomains. This means that each operation at each
step of these forward and backward substitutions, including both the matrix–vector multiplications and the
solution process, are carried out in parallel, exhibiting the scalability of the PFETI method [36].

3.3. Implementing the A matrix–vector product

The augmented systems that are generated from the application of SSFEM involve large coefficient matri-
ces that feature a block form. Each block is comprised of a linear combination of stiffness matrix realizations
that have identical sparsity pattern and bandwidth with the deterministic matrix K0.
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Both the SSFEM-PCG-B and SSFEM-PCG-S methods need the computation of the ~A matrix–vector prod-
uct at each iteration i. In this work, this computation is performed as a series of matrix–vector multiplications
where the resulting vectors are linearly combined in order to form the final vector. This is accomplished by
forming and storing all the linear combination of the aforementioned stiffness matrix realizations in a symmet-
ric sparse storage format in order to minimize storage requirements. Moreover, matrix structure identity is
exploited by generating and storing only one data structure for the location of non-zero elements, reducing
memory storage requirements and improving cache locality (see Appendix A). Due to the nature of the aug-
mented stiffness matrix as it occurs for log-normal input fields, a caching scheme has been developed for the
log-normal case in this work, in order to minimize the computational burden of this evaluation, which is
described subsequently.
3.4. A caching scheme for the log-normal case

Stochastic problems modeled with input random fields featuring a log-normal distribution, produce
augmented stiffness matrices that have three major differences compared to those produced with a Gaussian
distribution input field. The coefficient matrix sparsity in a log-normal case is:

i. Much denser compared to the Gaussian ones, as shown in Figs. 2 and 4 and in Table 2.
ii. Each block position might be the result of a linear combination of the stochastic matrices, while in

Gaussian matrices each block position is occupied by one stochastic matrix multiplied by an integer
coefficient.

iii. A number of block diagonal matrices is composed of a linear combination of the deterministic matrix
and some of the stochastic matrices, while in Gaussian matrices each block position is occupied by
the deterministic matrix multiplied by an integer coefficient.

Table 2 presents an indication of how many block positions are occupied for each p from 1 to 6 and the
relative sparsity (0% is fully dense) for M ¼ 4 and the computational effort ratio of log-normal vs Gaussian
formulation for each PCG iteration. These differences affect the performance of the solvers greatly, with
respect to the number of iterations necessary for convergence and the amount of computations required to
perform each PCG iteration. The computational effort is further magnified due to a more cumbersome imple-
mentation of the A matrix–vector product computations that are needed in each iteration of the SSFEM-
PCG-B and SSFEM-PCG-S methods.

As shown in the previous section, the augmented matrix is never formulated as a whole and each product is
being evaluated by multiplying every block matrix with its corresponding block vector and accumulating the
partial results to the corresponding position of the resulting vector. This means that if a block position of the
coefficient matrix is comprised of a linear combination of n terms, n matrix–vector products must be evalu-
ated, for the complete calculation of the resulting vector, while for a Gaussian field only one matrix–vector
product for each block position needs to be evaluated.

In order to alleviate this additional computational effort, a caching scheme has been applied where each
unique linear combination that occurs in every block position is being pre-calculated and stored in order to
Table 2
Sparsity of the resulting augmented stochastic matrix for KL expansion of order M ¼ 4 and for various polynomial chaos orders p and the
computational effort ratio of log-normal vs Gaussian formulation for each PCG iteration.

p Block size Gaussian Log-normal Computational effort ratio

Filled blocks Sparsity ð%Þ Filled blocks Sparsity ð%Þ
1 5 � 5 13 48 13 48 1.00
2 15 � 15 45 80 135 40 1.05
3 35 � 35 125 97.14 725 40.81 1.35
4 70 � 70 285 94.18 3090 36.94 2.48
5 126 � 126 565 96.44 10158 36.02 5.41
6 210 � 210 1013 97.70 29448 33.22 11.82
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reduce the computation cost of each A matrix–vector evaluation at each iteration of the SSFEM-PCG-B and
SSFEM-PCG-S methods.

In order to demonstrate this technique, we consider again the case of M ¼ 2; p ¼ 2 for the log-normal case
as depicted in Fig.3, where the linear combination K0 þ 2K3 is found two times. At the uncached case, we
would need to perform 4 matrix–vector operations (the augmented stiffness matrix is symmetric so we need
to perform 2 matrix vector operations twice) and 2 linear scaling operations (it is the operation of multiplying
a vector or matrix with a scalar and is performed also twice). However, for the cached case only 2 matrix–
vector operations need to be performed since the linear combination is stored as a separate matrix.

Table 3 compares the amount of matrix–vector products needed for a KL expansion per PCG iteration, of
order M ¼ 4 and a PC order varying from p ¼ 4 to p ¼ 6.

It has to be mentioned that this caching scheme requires one to two orders of magnitude more computer
memory resources for storing the corresponding stiffness matrices but it can offer significant performance ben-
efits as it is shown in the numerical examples section. If memory requirements of this caching scheme cannot
be met, only a portion of the re-occurring matrices can be cached in order to decrease memory resources con-
sumption, at the benefit of speedup.
3.5. A full block preconditioning scheme for the log-normal case

The existence of a number of linear combinations of the deterministic matrix with stochastic ones at the
block diagonal part of the augmented stiffness matrix, as shown in Fig. 3 for the log-normal case, can really
deteriorate the convergence rate of both the preconditioner of the SSFEM-PCG-B method and the precondi-
tioner of the SSFEM-PCG-S method, especially at large input covariances where the magnitude of the
stochastic matrices is comparable to the magnitude of the deterministic one.

In order to overcome this deficiency, a MC-PCG-PFETI solver is used instead of a regular PFETI solver, in
order to evaluate the preconditioned residual of each iteration of the SSFEM-PCG-B solver as well as to solve
the linear systems Eqs. (54) and (57) of the SSFEM-PCG-S solver. Thus the MC-PCG-PFETI solver takes
into account the full linear combination of the block diagonal, enhancing the convergence rate of the
SSFEM-PCG-B and SSFEM-PCG-S solvers, instead of taking into account only K0 matrix which gives an
approximation to the preconditioned residual.

As in the case of the Monte Carlo simulations, the repeated solutions required for the preconditioning step
of the MC-PCG-PFETI algorithm can be treated as problems with multiple right-hand sides, since the entries
in the residual vector are updated at each PCG iteration k of each block diagonal part of the coefficient matrix.
In order to illustrate this technique, we consider once more the augmented stiffness matrix of Fig. 3. For the
SSFEM-PCG-B method the preconditioner is of the form:
Table
Norma

p

4
5
6

~A ¼

K0

K0 þ 2K3

K0 þ 2K5

K0 þ 8K3

K0 þ 2K3

2K0 þ 8K5

2666666664

3777777775
ð58Þ
3
l and cached schemes.

Non-zero block submatrices Matrices stored Total MV multipliers

Normal Cached Normal Cached

3.090 70 710 4.937 3.090
10.158 126 2109 19.542 10.158
29.448 210 6064 70.952 29.448
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This means that for each iteration k of the SSFEM-PCG-B method, the preconditioned residual vector
involves the solution of the following linear systems:
K0zk
0 ¼ rk

0 ð59Þ
ðK0 þ 2K3Þzk

1 ¼ rk
1

ðK0 þ 2K5Þzk
2 ¼ rk

2

ðK0 þ 8K3Þzk
3 ¼ rk

3

ðK0 þ 2K3Þzk
4 ¼ rk

4

ð2K0 þ 8K5Þzk
5 ¼ rk

5

with
zk ¼ zkT

0 zkT

1 zkT

2 zkT

3 zkT

4 zkT

5

� �T
and
rk ¼ rkT

0 rkT

1 rkT

2 rkT

3 rkT

4 rkT

5

� �T
The SSFEM-PCG-B algorithm equipped with preconditioner ~A of Eq. (58) and utilizing the MC-PCG-PFETI
method for solving the linear systems at each step of Eq. (59) constitutes the SSFEM-PCG-BF variant for the
solution of the augmented linear system that occurs from the SSFEM.

In the same fashion, the SSFEM-PCG-S method requires the successive solution of systems (51) and (53)
which for the case considered in connection to Fig. 3 and Eqs. (28) and (50) are of the form:
K0x1 ¼ b1 ð60Þ
ðK0 þ 2K3Þx2 ¼ b2

ðK0 þ 2K5Þx3 ¼ b3

ðK0 þ 8K3Þx4 ¼ b4

ðK0 þ 2K3Þx5 ¼ b5

ð2K0 þ 8K5Þx6 ¼ b6
and
ð2K0 þ 8K5Þy6 ¼ c6 ð61Þ
ðK0 þ 2K3Þy5 ¼ c5

ðK0 þ 8K3Þy4 ¼ c4

ðK0 þ 2K5Þy3 ¼ c3

ðK0 þ 2K3Þy2 ¼ c2

K0y1 ¼ c1
The PCG algorithm equipped with the block SSOR preconditioner of the SSFEM-PCG-S method and
utilizing the MC-PCG-Skyline method for solving the linear systems occurring at the preconditioned residual
vector evaluation, constitutes the SSFEM-PCG-SF variant for the solution of the augmented linear system
that occurs from the SSFEM.

4. Numerical test

Numerical tests are performed for stochastic finite element and reliability analysis implementing the
proposed versions of SSFEM and MC. For the case of Gaussian fields we will examine the performance of
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SSFEM-PCG-B, and SSFEM-PCG-S. For log-normal fields we will test the performance of SSFEM-
PCG-B, SSFEM-PCG-BF, SSFEM-PCG-S, SSFEM-PCG-SF and their variants with caching SSFEM-
PCG-BC, SSFEM-PCG-BFC, SSFEM-PCG-SC, SSFEM-PCG-SFC, respectively. For the case of the MC
method, we will examine the performance of the MC-PCG-Skyline, MC-PCG-FETI and MC-PCG-PFETI
solvers. The computer platform used is an Intel Core i7 X980 with 6 physical cores at 3.33 GHz with
24 GB of RAM.

In order to assess the computational efficiency of the MC and SSFEM methods for the analysis of systems
with uncertain properties, a soil cube of 10� 10� 20 m under load in the center of its upper surface due to a
large footing was considered, resulting to a finite element mesh of 10k dof approximately. This mesh is decom-
posed into 16 subdomains featuring a cubic aspect ratio each, as shown in Fig. 5.

A multi-parametric study has been carried out first, considering both Gaussian and log-normal stochastic
fields. One dimensional stochastic fields are used to describe the spatial variation of the system’s modulus of
elasticity E around its mean as E ¼ E0 � ð1þ f ðxÞÞ, where E0 is the mean value of E and f ðxÞ a zero mean
homogeneous stochastic field with standard deviation rE. The covariance function of the random field f ðxÞ
is assumed to be exponential:
Fig.
Cðx1; x2Þ ¼ r2
Ee�

jDxj
b ð62Þ
where Dx ¼ x2 � x1. Three test cases regarding coefficients rE are examined: (a) rE ¼ 15% (Gaussian), (b)
rE ¼ 30% (log-normal) and (c) rE ¼ 80% (log-normal), which is a typical value for the standard deviation
in soil mechanics problems. Moreover, four correlation length values are assumed: (a) b ¼ 0:1a, (b) b ¼ 1a,
(c) b ¼ 10a and (d) b ¼ 100a, with a being the height of the cube. For all these test cases, two separate prob-
lems are addressed: evaluation of the second moments of the response field and a reliability analysis with 0.1%
probability of failure. Setting a ¼ 20 m, the correlation lengths that were examined for this example were 2 m,
20 m, 200 m and 2000 m.
4.1. Solver assessment procedure

In order to set an objective basis for assessing the computational performance of the numerical algorithms
discussed, a parametric study was conducted, regarding different values for standard deviation rE and corre-
lation length b. For the computation of the second moments of the response field, the following procedure was
followed:
5. Domain decomposition of a quarter of the deterministic soil problem with 10k dof. (a) Element mesh (b) subdomain mesh.



G. Stavroulakis et al. / Comput. Methods Appl. Mech. Engrg. 276 (2014) 627–658 643
Step 1. A series of Monte Carlo analyses of 100k simulations was carried out, using M ¼ 1 as the order of the
KL expansion, in order to estimate the necessary number of simulations for a convergence error of less
than 1% for each value of rE and b examined. This error is computed as the normalized difference of the
COV ð%Þ at each simulation with respect to the COV ð%Þ computed at the end of the 100k simulations.

Step 2. Assuming that the convergence behavior of the previous step remains invariant for increasing M,
another series of Monte Carlo analyses was carried out, in the range of M ¼ 2 to M ¼ 12, in order to
estimate the appropriate order of the KL expansion for a convergence error of less than 1%. In this case
an “exact” solution was assumed at M ¼ 12 in order to compute the relative error (%) for different M.
Fig. 6. Step 1: COV ð%Þ convergence error of MC for the Gaussian field with rE ¼ 15%.

Fig. 7. Step 1: COV ð%Þ convergence error of MC for the log-normal field with rE ¼ 30%.



Fig. 8. Step 1: COV ð%Þ convergence error of MC for the log-normal field with rE ¼ 80%.

Table 4
Required number of MC simulations for achieving a COV error less than 1%.

Correlation length b rE ¼ 15% rE ¼ 30% rE ¼ 80%

0:1a 20.000 10.000 53.000
1a 25.000 18.000 28.000
10a 23.000 23.000 34.000
100a 50.000 43.000 45.000

Fig. 9. Step 3: COV ð%Þ convergence error of the SSFEM for the Gaussian field with rE ¼ 15% and p ¼ 2; 4.
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Fig. 10. Step 3: COV ð%Þ convergence error of the SSFEM for the log-normal field with rE ¼ 30% and p ¼ 2; 3; 4.

Fig. 11. Step 3: COV ð%Þ convergence error of the SSFEM for the log-normal field with rE ¼ 80% and p ¼ 2; 3; 4.

Table 5
Step 2: COV ð%Þ convergence errors for the various KL expansion orders.

Correlation length b rE ¼ 15% rE ¼ 30% rE ¼ 80%

M Error (%) M Error (%) M Error (%)

0:1a 12 “exact” 10 0.43 4 0.75
1a 6 0.93 4 0.75 4 0.57
10a 2 0.36 2 0.85 4 0.26
100a 2 0.48 2 0.53 4 0.96
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Step 3. Using the results of step 2, the same procedure as in step 2 was carried out performing SSFEM anal-
yses, in order to estimate the appropriate order of the PC expansion required for convergence to the
corresponding MC results.

Step 4. For the case of reliability analysis with 0.1% target probability of failure, the order of the PC expan-
sion is being modified, with respect to step 3 (convergence in COV %), in order to reach a convergence
error in the estimation of the probability of failure of less than 10%, compared to the corresponding
MC results. The number of simulations for both MC and SSFEM is in this case 100k.
Fig. 12. Settlement covariance for rE ¼ 15% , correlation length 2 m, and M ¼ 12 for MC and SSFEM.

Fig. 13. Settlement covariance for rE ¼ 30% , correlation length 2 m, and M ¼ 10 for MC and SSFEM.



Fig. 14. Settlement covariance for rE ¼ 80% , correlation length 2 m, and M ¼ 4 for MC and SSFEM.

Table 6
Convergence errors for the SSFEM.

Correlation length b rE ¼ 15% rE ¼ 30% rE ¼ 80%

p Error (%) p Error (%) p Error (%)

0:1a 2 0.23 2 0.07 6 30.00
1a 4 0.09 4 0.69 6 0.52
10a 2 0.03 3 0.36 4 0.68
100a 4 0.36 3 0.74 6 0.88

Table 7
Settlements with 0.1% probability of failure.

Correlation length b MC

rE ¼ 15% rE ¼ 30% rE ¼ 80%

0:1a 0.019405 0.023468 0.076088
1a 0.024796 0.032947 0.118410
10a 0.028214 0.038950 0.166543
100a 0.029439 0.039841 0.168306

Table 8
Probability of failure as computed by SSFEM for the settlements of Table 7 for the
limit states.

Correlation length b SSFEM

rE ¼ 15% rE ¼ 30% rE ¼ 80%

0:1a 0.06 0.04 –
1a 0.09 0.09 0.07
10a 0.03 0.09 0.01
100a 0.07 0.10 0.10
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4.2. Computation of the second moments of the response field

Figs. 6–8 show the convergence error for each field as per step 1 of the assessment procedure. Based on
these figures, the number of simulations necessary for evaluating the second moments of the response field
are shown in Table 4.

Following step 2, Figs. 9–11 show the convergence error for each field as per step 3 of the assessment pro-
cedure for the selection of PC expansion order (p) required for the SSFEM to converge at an error less than
Table 9
Probability of failure as computed by SSFEM for the settlements of Table 7 and the necessary PC order (values marked in bold correspond
to analyses that needed an increase of the PC order expansion).

Correlation length b rE ¼ 15% rE ¼ 30% rE ¼ 80%

p Prob p Prob p Prob

0:1a 4 0.09 5 0.09 – –
1a 4 0.09 4 0.09 7 0.09
10a 4 0.09 3 0.09 8 0.10

100a 6 0.09 3 0.10 6 0.10

Table 10
Performance of the various MC-PCG-Skyline variants for the MC for evaluating the second moments of the response field for rE ¼ 15%

in sequential and parallel implementation.

rE ¼ 15% Correlation length b 0:1a 1a 10a 100a

MC simulations 20.000 25.000 23.000 50.000
PCG iterations 184.398 196.875 114.715 144.592

MC-PCG-Skyline Time (s)-sequential 31.759 85.930 163.202 224.143
Time (s)-parallel 4.670 12.637 24.000 32.962

MC-PCG-FETI FETI iterations 455.016 (2.950.368) 134.198 (3.150.000) 22.015 (1.835.440) 39.060 (2.313.472)
Time (s)-sequential 48.001 36.752 21.203 39.827
Time (s)-parallel 7.059 5.405 3.118 5.857

MC-PCG-PFETI PFETI iterations 425.281 (2.950.368) 124.133 (3.150.000) 20.157 (1.835.440) 35.761 (2.313.472)
Time (s)-sequential 36.771 28.076 16.443 30.590
Time (s)-parallel 5.407 4.129 2.418 4.498

Table 11
Performance of the various MC-PCG-Skyline variants for the MC for evaluating the second moments of the response field for rE ¼ 30%

in sequential and parallel implementation.

rE ¼ 30% Correlation length b 0:1a 1a 10a 100a

MC simulations 10.000 18.000 23.000 43.000
PCG iterations 110.100 221.531 114.541 153.825

MC-PCG-Skyline Time (s)-sequential 18.922 105.391 161.203 241.235
Time (s)-parallel 2.783 15.499 23.706 35.476

MC-PCG-FETI FETI iterations 314.475 (1.761.600) 107.198 (3.544.496) 23.442 (1.832.656) 37.087 (2.461.200)
Time (s)-sequential 33.053 32.437 22.189 38.625
Time (s)-parallel 4.861 4.770 3.263 5.680

MC-PCG-PFETI PFETI iterations 294.235 (1.761.600) 99.478 (3.544.496) 21.777 (1.832.656) 34.375 (2.461.200)
Time (s)-sequential 25.337 24.956 17.393 30.080
Time (s)-parallel 3.726 3.670 2.558 4.423
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1% using the KL expansion orders M shown in Table 5. This relative error is computed with respect to the
corresponding MC simulations with the same parameter M.

Figs. 12–14 depict some indicative graphs of the convergence behavior of the SSFEM in specific cases.
Table 6 summarizes the convergence of the SSFEM (relative error %) with respect to MC, for all cases
considered.

It is worth noting that for the case of b = 0:1a, the SSFEM failed to provide a solution within the accept-
able error margin when compared to the MC solution. While increasing the p-order of the PC expansion, the
SFFEM method was asymptotically converging to a solution which exhibited a 30% error when compared to
the corresponding Monte Carlo solution.
4.3. Reliability analysis

Utilizing the values of M obtained at step 2 of the solver assessment procedure for the computation of the
second moments of the response field, we performed reliability analysis on the same test problem. Table 7
shows the settlement values which correspond to a probability of failure of 0.1%, as estimated by MC with
Table 12
Performance of the various MC-PCG-Skyline variants for the MC for evaluating the second moments of the response field for rE ¼ 80%

in sequential and parallel implementation.

rE ¼ 80% Correlation length 0:1a 1a 10a 100a

MC simulations 53.000 28.000 34.000 45.000
PCG iterations 1.193.825 695.100 272.340 253.350

MC-PCG-Skyline Time (s)-sequential 205.082 68.030 370.320 400.378
Time (s) -parallel 30.159 10.004 54.459 58.879

MC-PCG-FETI FETI iterations 3.413.444 (19.101.200) 1.624.400 (11.121.600) 72.507 (4.357.440) 56.799 (4.053.600)
Time (s)-sequential 358.806 97.472 65.108 60.159
Time (s)-parallel 52.765 14.334 9.575 8.847

MC-PCG-PFETI PFETI iterations 3.265.860 (19.101.200) 1.530.760 (11.121.600) 67.320 (4.357.440) 52.650 (4.053.600)
Time (s)-sequential 281.182 75.286 50.653 46.932
Time (s) -parallel 41.350 11.071 7.449 6.902

Fig. 15. Performance of the MC-PCG-PFETI and MC-PCG-FETI for Gaussian rE ¼ 0:15%.
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100k simulations, for various stochastic parameters (rE and b) considered. Table 8 shows the probability of
failure for the corresponding limit state settlements of Table 7 using SSFEM with the KL and PC order expan-
sions used for the second order moments analysis as shown in Tables 5 and 6, respectively. The settlement
values of Table 7 are used as reference values, i.e. as the limit states that correspond to a probability of failure
0.1% for all cases considered.

While Table 9 shows the same probability of failure with the PC order expansion needed to reach almost
the same accuracy with the “reference” MC solution. Values marked in bold correspond to analyses that
needed an increase of the PC order expansion.

For the case of b = 0:1a and rE ¼ 80%, a series of analyses were performed with various expansion orders
M and p, going up to M ¼ 12 and p ¼ 6. However, SSFEM failed to converge to an acceptable solution
resulting to a minimum convergence error of 20%.
Fig. 16. Performance of the MC-PCG-PFETI and MC-PCG-FETI for log-normal rE ¼ 0:30%.

Fig. 17. Performance of the MC-PCG-PFETI and MC-PCG-FETI for log-normal rE ¼ 0:80%.
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4.4. Performance of the proposed solution procedures

Using all previous numerical data (number of simulations, KL expansion order and PC expansion
order), a series of numerical tests were performed in order to assess the performance of the various solu-
tion techniques discussed and proposed in this work. For all cases considered the normalized solution
accuracy was set to 10�7 while for the computation of the preconditioned residual vector, the required
accuracy was set to 10�3. Also, the first 600 search vectors were used, achieving a reduction between 90
and 95% of the required iterations for each PFETI solutions when compared to the non re-orthogonaliza-
tion procedure.

Tables 10–12 show the performance of proposed MC-PCG-PFETI solver for the evaluation of the second
order moments of the response field using the MC method, in comparison to MC-PCG-Skyline and MC-
PCG-FETI and are visually depicted in Figs. 15–17. The PFETI and FETI iterations correspond to the
sum of the PFETI and FETI iterations needed for all the MC simulations using the A-orthogonalization
technique, while in parentheses the corresponding PFETI and FETI iterations without A-orthogonalization
Table 13
Performance metrics for the Gaussian case (re ¼ 15% covariance).

Correlation length b 0:1a 1a 10a 100a

Gaussian rE ¼ 15%

SSFEM-PCG-B MC simulations 20.000 25.000 23.000 50.000
PCG iterations 7 10 5 8
PFETI iterations 650 702 96 123
Total time (s)-sequential 2.417 3.339 105 168
Total time (s)-parallel 422 586 18 29

SSFEM-PCG-S PCG iterations 3 4 3 4
PFETI iterations 377 269 74 74
Total time (s)-sequential 1.026 1.178 77 100
Total time (s)-parallel 179 204 13 17

Table 14
Performance metrics for the log-normal case (rE ¼ 30% covariance).

Correlation length b 0:1a 1a 10a 100a

Log-normal 30%

SSFEM-PCG-B MC simulations 10.000 18.000 23.000 43.000
PCG iterations 10 15 12 11
PFETI iterations 551 367 120 98
Total time (s)-sequential 2.786 6.568 244 256
Total time (s)-parallel 488 1.149 43 43

SSFEM-PCG-BF PCG iterations 10 17 13 11
PFETI iterations 577 328 132 91
Total time (s)-sequential 2.930 7.191 260 273
Total time (s)-parallel 516 1.241 44 46

SSFEM-PCG-S PCG iterations 4 5 4 4
PFETI iterations 403 260 100 79
Total time (s)-sequential 1.872 4.317 172 142
Total time (s)-parallel 330 745 31 24

SSFEM-PCG-SF PCG iterations 4 5 5 4
PFETI iterations 577 263 108 85
Total time (s)-sequential 2.728 4.347 200 150
Total time (s)-parallel 480 752 35 25
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are given. These numbers show a drastic decrease of iterations ranging from one to two orders of magnitude
as a result of the A-orthogonalization procedure. Moreover, from these tables, it is evident that the PFETI
variant outperforms the FETI one in all tests, showing a 1.25� speedup. This performance increase occurs
for two reasons: (i) PFETI needs �10% less iterations when compared to FETI. (ii) The cost for each reor-
thogonalization of the PFETI method is about 35% less when compared to the FETI method. This stems
from the fact that the interface problem of the PFETI method is based on the boundary dof of each sub-
domain while the interface problem of the FETI method is based on the lagrange multipliers which, due
to the existence of a considerable number of subdomains crosspoints, are significantly larger in quantity than
the boundary dof.

The Skyline variant seems to be more efficient for b = 0:1a but this happens due to the relatively small size
of the deterministic model. For large deterministic models, the Skyline variant is outperformed by domain
decomposition methods, particularly in massively parallel computation environments.

Tables 13–15 depict the performance of the proposed SSFEM solution methods. Table 13 shows the per-
formance of SSFEM methods, using the information gathered from steps 1–3 with respect to the necessary
number of simulations, KL expansion order ðMÞ and PC expansion order ðpÞ for the Gaussian case (see Tables
4–6).

For the Gaussian case, only the SSFEM-PCG-B and SSFEM-PCG-S solvers are used for the SSFEM. It
can be seen that the proposed SSFEM-PCG-S outperforms SSFEM-PCG-B achieving a 2.8� speedup with
respect to the SSFEM-PCG-B.

Table 14 shows performance metrics for the log-normal case with 30% covariance, where all solver variants
are implemented within SSFEM. As in the case of the Gaussian field SSFEM-PCG-S outperforms SSFEM-
PCG-B achieving a 2.3� speedup when compared to the SSFEM-PCG-B.
Table 15
Performance metrics for the log-normal case (rE ¼ 80% covariance).

Correlation length b 0:1a 1a 10a 100a

Log-normal 80%

SSFEM-PCG-B MC simulations 53.000 28.000 34.000 45.000
PCG iterations 48 89 33 58
PFETI iterations 685 1.010 523 584
Total time (s)-sequential 266.702 272.836 14.171 321.161
Total time (s)-parallel 46.799 49.175 2.447 55.380
Total time cached (s)-sequential 112.142 114.721 9.443 134.402
Total time cached (s)-parallel 1988 2079 131 2393

SSFEM-PCG-BF PCG iterations 47 117 47 82
PFETI iterations 2.827 12.393 423 467
Total time (s)-sequential 273.786 280.083 19.072 452.675
Total time (s)-parallel 48.047 50.475 3.291 78.050
Total time cached (s)-sequential 12.246 12.563 1.237 1.885
Total time cached (s)-parallel 21.495 22.580 2.130 32.538

SSFEM-PCG-S PCG iterations 16 186 36 59
PFETI iterations 528 1.167 414 338
Total time (s)-sequential 177.970 368.937 28.790 651.255
Total time (s)-parallel 31.236 66.484 4.968 112.289
Total time cached (s)-sequential 74.930 154.271 18.473 276.205
Total time cached (s)-parallel 13.180 27.807 3.189 47.624

SSFEM-PCG-SF PCG iterations 12 25 13 20
PFETI iterations 461 449 273 228
Total time (s)-sequential 133.533 276.818 10.529 220.894
Total time (s)-parallel 23.430 49.887 1.818 38.096
Total time cached (s)-sequential 56.253 115.818 6.803 92.094
Total time cached (s)-parallel 9.879 2.087 1.175 15.888
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Table 15 presents the performance metrics for the log-normal case with 80% covariance. As previously, the
SSFEM-PCG-S and SSFEM-PCG-SF variants outperform the SSFEM-PCG-B and SSFEM-PCG-BF meth-
ods, showing a speedup up to 2.8�. For this covariance of the log-normal case, the proposed caching scheme
proves to be quite efficient, providing up to 3� speedup when compared to the corresponding uncached
method.

Tables 16–18 compare the performance of the MC and SSFEM when using the most computationally effi-
cient solution method for evaluating the second order moments of the response field. It can be seen that for the
Gaussian input field that SSFEM outperforms Monte Carlo method. The same conclusion can be reached for
the log-normal case with 30% covariance.

Table 18 shows performance metrics for the log-normal case with 80% covariance, where all solver variants
are used for the SSFEM. In contrast to the log-normal case with 30% covariance, MC method outperforms
Table 16
Monte Carlo vs. SSFEM for the Gaussian case (15% covariance).

Correlation length b 0:1a 1a 10a 100a

Gaussian 15%
MC PCG iterations 184.398 196.875 114.715 144.592

PFETI iterations 425.281 124.133 20.157 35.761
Time (s)-sequential 36.771 28.076 16.443 30.590
Time (s)-parallel 5.407 4.129 2.418 4.498

SSFEM PCG iterations 3 4 3 4
PFETI iterations 377 269 74 74
Time (s)-sequential 1.026 1.178 77 100
Time (s)-parallel 179 204 13 17

Table 17
Monte Carlo vs. SSFEM for the log-normal case (30% covariance).

Correlation length b 0:1a 1a 10a 100a

Log-normal 30%
MC PCG iterations 110.100 221.531 114.541 153.825

PFETI iterations 294.235 99.478 21.777 34.375
Time (s)-sequential 25.337 24.956 17.393 30.080
Time (s)-parallel 3.726 3.670 2.558 4.423

SSFEM PCG iterations 4 5 4 4
PFETI iterations 403 260 100 79
Time (s)-sequential 1.568 2.884 162 132
Time (s)-parallel 277 498 28 23

Table 18
Monte Carlo vs. SSFEM for the log-normal case (80% covariance).

Correlation length b 0:1a 1a 10a 100a

Log-normal 80%

MC PCG iterations 1.194.328 695.100 272.340 253.350
PFETI iterations 3.265.860 1.530.760 67.320 52.650
Time (s)-sequential 281.182 75.286 50.653 46.932
Time (s)-parallel 41.350 11.071 7.449 6.902

SSFEM PCG iterations – 89 13 20
PFETI iterations – 1.010 273 228
Time (s)-sequential – 114.721 6.803 92.094
Time (s)-parallel – 20.679 1.175 15.888
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SSFEM in all cases except for the b = 10a correlation length. This is due to the small order of p ¼ 4 required
by the PC expansion, compared to the other cases which required an expansion of order p ¼ 6. For the
b ¼ 0:1a case, SSFEM fails to converge.

Tables 19–21 present performance comparisons of the MC and SSFEM when using the most efficient solu-
tion method for carrying out a reliability analysis. It can be seen that for the Gaussian input field, SSFEM
outperforms MC by more than 2 orders of magnitude, while for the log-normal input field with 30% covari-
ance, SSFEM outperforms MC for all cases except for the case of 0:1a correlation length. However, for the
log-normal input field with 80% covariance, SSFEM is inferior to the MC while being unable to converge for
the case of 0:1a correlation length.
Table 19
Reliability analysis: MC vs. SSFEM for the Gaussian case (rE ¼ 15% covariance).

Correlation length b 0:1a 1a 10a 100a

Gaussian 15%

MC PCG iterations 899.678 763.678 490.980 271.804
PFETI iterations 2.022.934 469.789 469.789 72.059
Time (s)-sequential 179.401 112.023 68.632 59.793
Time (s)-parallel 26.382 16.474 10.093 8.793

p ¼ 4 p ¼ 4 p ¼ 4 p ¼ 6

SSFEM PCG iterations 3 4 5 6
PFETI iterations 473 269 180 448
Time (s)-sequential 6.797 1.178 291 1.276
Time (s)-parallel 1.156 204 53 203

Table 20
Reliability analysis: MC vs. SSFEM for the log-normal case (rE ¼ 30% covariance).

Correlation length b 0:1a 1a 10a 100a

Log-normal 30%

MC PCG iterations 1.087.678 1.143.034 490.236 356.205
PFETI iterations 287.4353 512.199 93.203 79.748
Time (s)-sequential 250.318 128.625 74.246 69.648
Time (s)-parallel 36.811 18.915 10.919 10.242

p ¼ 5 p ¼ 4 p ¼ 3 p ¼ 3

SSFEM PCG iterations 5 5 4 4
PFETI iterations 621 260 100 79
Time (s) -sequential 302.369 2.884 162 132
Time (s)-parallel 54.508 498 28 23

Table 21
Reliability analysis: MC vs. SSFEM for the log-normal case (rE ¼ 80% covariance).

Correlation length b: 0:1a 1a 10a 100a

Log-normal 80%
MCS PCG iterations 2.223.683 2.478.497 792.509 557.113

PFETI iterations 6.057.138 5.441.639 195.228 116.438
Time (s)-sequential 522.998 267.753 147.731 103.245
Time (s)-parallel 76.912 39.375 21.725 15.183

– p ¼ 7 p ¼ 8 p ¼ 6

SSFEM PCG iterations - 25 15 20
PFETI iterations – 449 309 228
Time (s)-sequential – 472.607 517.627 92.094
Time (s)-parallel – 79.033 86.419 15.888
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5. Conclusions

An investigation of the computational performance of non-intrusive Monte Carlo versus intrusive Galerkin
methods of large-scale stochastic systems has been made, in the framework of high performance computing
environments. The range of the relative superiority of these approaches was assessed with regard to a variety
of stochastic parameters. In both approaches, the resulting algebraic equations were solved utilizing primal
and dual domain decomposition methods with enhanced preconditioners, custom tailored to the specific
numerical properties of the each formulation of the stochastic problem with no loss of parallel scalability.

For the case of the Monte Carlo method, the standard PCG method equiped with a PFETI sover for the
preconditioning step is compared with the skyline and FETI solvers. For the case of the FETI and PFETI
methods, the preconditioning steps were accelerated using an A-orthogonalization procedure which substan-
tially reduced the number of iterations for each preconditioning step needed for the solution of the resulting
near-by problems. The PFETI variant, was shown to be the most efficient preconditioning method providing
enhanced numerical performance.

For the case of the spectral stochastic finite element method, a set of specialized preconditioners, custom-
ized to the properties of the augmented stiffness matrices were developed and applied, along with a caching
scheme which exploits the structure of the augmented stiffness matrices of log-normal input fields. In partic-
ular, besides the block-diagonal preconditioner, a block-SSOR preconditioner was implemented which was
shown to greatly enhance the solution convergence. Moreover, for the case of log-normal input fields, variants
of the block diagonal and block-SSOR solvers were implemented particularly suited to the diagonal form of
the augmented matrix. Furthermore, a caching scheme was proposed that greatly reduced the matrix–vector
multiplication operations needed for the solution process, thus reducing the overall processing power neces-
sary for solution at the expense of requiring more computer memory resources.

When comparing the novel solution techniques proposed for the MC procedure, a speedup of 1.25� was
exhibited while for the SSFEM, a speedup of 3� was exhibited when utilizing the block-SSOR precondition-
ing combined with caching techniques with respect to the diagonally block preconditioning, making the
SSFEM even more attractive for solving large scale stochastic problems in high performance computing
environments.

The efficiency comparison of the Monte Carlo method and SSFEM was based on the computation of the
second order moments of the response field as well as on reliability analysis. For the first case, SSFEM proved
to be more efficient when dealing with input fields exhibiting small to medium covariance. However, for the
case of large covariance, the Monte Carlo outperformed the SSFEM in most cases with the latter being unable
to converge in one of the problems cases. Results are similar for the reliability analysis tests with the addition
that the SSFEM needed a greater polynomial chaos order to converge to the MC solution, compared to the
first uncertainty analysis tests.
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Appendix A. This appendix describes the process discussed in Section 3.3 for the case of the SSFEM
augmented linear system of Fig. 3, where the A matrix–vector product qk ¼ Apk for iteration k is evaluated in
6 consecutive steps, as described below:

Initialization phase:
pk ¼ pkT

0 pkT

1 pkT

2 pkT

3 pkT

4 pkT

5

� �T

0qk ¼ 0q0
kT

0qkT

1 0qkT

2 0qkT

3 0qkT

4 0qkT

5

� �T ¼ 0
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Step i = 1: Calculate iqk
j ; j ¼ 0; 1; 2; 3; 4; 5
iq
k
0 ¼ i�1qk

0 þ K0 � pk
0

iq
k
1 ¼ i�1qk

1 þ K0 � pk
1

iq
k
2 ¼ i�1qk

2 þ K0 � pk
2

iq
k
3 ¼ i�1qk

3 þ K0 � 2pk
3

iq
k
4 ¼ i�1qk

4 þ K0 � pk
4

iq
k
5 ¼ i�1qk

5 þ K0 � 2pk
5 ðA:1Þ
Step i = 2: Calculate iqk
j ; j ¼ 0; 1; 2; 3; 4
iq
k
0 ¼ i�1qk

0 þ K1 � pk
0

iq
k
1 ¼ i�1qk

1 þ K1 � pk
0 þ K1 � 2pk

3

iq
k
2 ¼ i�1qk

2 þ K1 � pk
4

iq
k
3 ¼ i�1qk

3 þ K1 � 2pk
1

iq
k
4 ¼ i�1qk

4 þ K1 � pk
2 ðA:2Þ
Step i = 3: Calculate iqk
j ; j ¼ 0; 1; 2; 4; 5
iq
k
0 ¼ i�1qk

0 þ K2 � pk
2

iq
k
1 ¼ i�1qk

1 þ K2 � pk
4

iq
k
2 ¼ i�1qk

2 þ K2 � pk
1 þ K2 � 2pk

5

iq
k
4 ¼ i�1qk

4 þ K2 � 2pk
1

iq
k
5 ¼ i�1qk

5 þ K2 � 2pk
2 ðA:3Þ
Step i = 4: Calculate iqk
j ; j ¼ 0; 1; 3; 4
iq
k
0 ¼ i�1qk

0 þ K3 � 2pk
3

iq
k
1 ¼ i�1qk

1 þ K3 � 2pk
1

iq
k
3 ¼ i�1qk

3 þ K3 � 2pk
0 þ K3 � 8pk

3

iq
k
4 ¼ i�1qk

4 þ K3 � 2pk
4 ðA:4Þ
Step i = 5: Calculate iqk
j ; j ¼ 0; 1; 2; 3; 4; 5
iq
k
0 ¼ i�1qk

0 þ K4 � pk
4

iq
k
1 ¼ i�1qk

1 þ K4 � pk
2

iq
k
2 ¼ i�1qk

2 þ K4 � pk
1

iq
k
3 ¼ i�1qk

3 þ K4 � 2pk
4

iq
k
4 ¼ i�1qk

4 þ K4 � pk
0 þ K4 � 2pk

5

iq
k
5 ¼ i�1qk

5 þ K4 � 2pk
4 ðA:5Þ
Step i = 6: Calculate iqk
j ; j ¼ 0; 2; 5
iq
k
0 ¼ i�1qk

0 þ K5 � 2pk
5

iq
k
2 ¼ i�1qk

2 þ K5 � 2pk
2

iq
k
5 ¼ i�1qk

5 þ K5 � 2pk
0 þ K5 � 8pk

5 ðA:6Þ
with 6qk ¼ qk. By examining these steps, it is evident that the computation of A matrix–vector product is com-
putationally intensive since for a 6x6 matrix, 34 matrix–vector (MV) products and 19 linear scalings are being
computed.
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