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a b s t r a c t

In this paper, the effect of initial geometric imperfections on the buckling load of steel tubes (relatively
thick cylindrical shells) under axial load and lateral pressure is investigated. The geometric imperfections
are modeled as a 2D-1V non-homogeneous Gaussian stochastic field simulated using the spectral
representation method. The evolutionary power spectrum of the non-homogeneous field is derived from
available experimental measurements using the recently proposed method of separation. For the
determination of the limit load variability of the tubes, a stochastic formulation based on Monte Carlo
simulation is implemented. It is shown that the imperfections can lead to a substantial reduction of the
buckling load and thus should be taken into account via a realistic description through stochastic field
modeling.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The failure of shell-type structures is often due to buckling
phenomena mainly triggered by the initial geometric imperfec-
tions which occur during the manufacturing process. Therefore,
the study of imperfect shell structures raised the interest of many
researchers in the recent years. The main issues when dealing with
this problem are the big discrepancy between theory and experi-
ment as well as the large scatter in the measured buckling loads.
Both deterministic and probabilistic approaches have been used to
address the aforementioned issues. It was soon realized that a
realistic approach to the problem could only be achieved by taking
into account the inherent randomness of the imperfect geometries
[10,15,18]. Buckling analysis based on such approach allows for a
robust modeling of the buckling load scatter produced by different
manufacturing processes as well as of the observed dispersion of
experimental results [8,9,12].

Various methods have been developed to take into account the
uncertainty in the geometry of the shell. Some methods use the
Fourier series analysis of measured initial imperfections consider-
ing the series coefficients as random variables [5]. The idea of
using two-dimensional Fourier series with random coefficients

resulted from the analytical solution of the problem of stability of
cylindrical shells which leads to the representation of buckling
modes by series of this kind. These methods have in common that
the limit load is computed analytically or semi-analytically. More
recent research has proposed the use of stochastic fields to
simulate the imperfections in conjunction with the finite element
(FE) method to solve the stability problem [1–4,6,11,13,16,17,
19–28,30–34].

The quality of the results obtained from the stochastic approach
depends largely on the existence of data (experimental measure-
ments) validating the assumptions made for the probabilistic char-
acteristics (probability distribution, correlation structure) of the
initial geometric imperfections. Many researchers have dealt with
this issue in recent years. The result of their investigations has led to
the conclusion that the variance does not remain constant in space
and therefore the stochastic field describing the geometric imperfec-
tions cannot be considered homogeneous. In addition, the histo-
grams of the computed buckling loads show that the probability
density function is highly skewed and hence buckling loads follow a
non-Gaussian distribution [9,23]. It is thus evident that the existence
of databanks is important in order to avoid false assumptions and to
achieve a realistic simulation of initial imperfections. In this frame-
work, a novel approach has been recently proposed for the estima-
tion of the evolutionary power spectra of non-homogeneous
stochastic fields [26]. This approach, called “the method of separa-
tion”, combines computational efficiency and accuracy as it achieves
optimum simultaneous resolution in space and frequency domains.
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In the present paper, the effect of initial (out-of-plane) geometric
imperfections on the buckling load of steel tubes (relatively thick
cylindrical shells) under axial load and external lateral pressure is
investigated. The stability analysis of relatively thick steel tubes
under external pressure is important, e.g. for the design and
construction of offshore pipeline members [35,36]. The buckling
behavior of this type of structures in presence of random imperfec-
tions has been studied very scarcely in the literature, in contrast to
the case of thin cylindrical shells. Although relatively thick shells
under pure axial loading are not imperfection sensitive, the simul-
taneous application of external lateral pressure results in a strongly
unstable post-buckling path. The reason is that, even for thin tubes,
the inelastic deformation, which occurs at the maximum moment
locations, enables the formation of a plastic collapse mechanism.
Tube stiffness is lost and the tube exhibits sudden collapse. An
immediate consequence is the strong sensitivity of the response on
the amplitude of the initial out-of-roundness [14].

The geometric imperfections are modeled as a 2D–1V non-
homogeneous Gaussian stochastic field simulated using the spec-
tral representation method [29]. The evolutionary power spectrum
of the non-homogeneous field is derived from available experi-
mental measurements [7] using the method of separation. For the
determination of the limit load of the tubes, a stochastic finite
element formulation based on Monte Carlo simulation (MCS) is
implemented. Useful conclusions are derived regarding the effect
of initial imperfections on buckling load variability and the
necessity of using stochastic fields for a realistic representation
of the imperfections is highlighted.

2. Modeling of random initial geometric imperfections

2.1. The method of separation

Out-of-plane initial geometric imperfections of shells are
usually modeled as 2D non-homogeneous Gaussian stochastic
fields. In this paper, the evolutionary power spectra of the non-
homogeneous fields representing the initial geometric imperfec-
tions are derived from experimental measurements using the
method of separation [26]. This method is based on simple
principles of stochastic process theory. It is easy to implement,
computationally efficient and at the same time accurate with
optimum simultaneous resolution in space and frequency domains
in contrast to the other existing methods [3,26].

The method of separation assumes that the available samples
represent a separable zero-mean random field, thus the evolu-
tionary power spectrum (EPS) can be decomposed into a fre-
quency and a spatial part, which can be dealt with separately

Sðκ; xÞ ¼ ShðκÞchðxÞ ð1Þ
An estimate ~ShðκÞ of the homogeneous Fourier power spectrum

in Eq. (1) can be obtained by the periodogram, where the

integration over the frequency is done with a window as large as
the sample length L
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Accordingly, an estimate ~chðxÞ for the spatial envelope can be
derived from the mean square of samples f(i)(x) as follows:

E½jf ðxÞj2� ¼ 2
Z 1

0
ShðκÞchðxÞdκ¼ chðxÞ2

Z 1

0
ShðκÞdκ ð3Þ

The estimate of the spatial envelope can then be obtained by
replacing in Eq. (3) the analytical homogeneous spectrum ShðκÞ
and mean square E½jf ðxÞj2� by the corresponding estimates

~chðxÞ ¼
E½jf ðiÞðxÞj2�

2
R1
0

~ShðκÞdκ
ð4Þ

2.2. Representation of the imperfect geometry

The imperfect geometry of the tube is represented by the
spatial variation of the radius of the structure as follows:

rðx; yÞ ¼ Rþa0ðx; yÞþ f ðx; yÞ ð5Þ
where r(x,y) is the varying initial radius at each point of the
structure, R is the radius of the perfect cylinder, a0(x,y) is the mean
function of the imperfections with respect to the perfect geometry
of the tube and f(x,y) is a zero-mean non-homogeneous Gaussian
stochastic field. From the statistical analysis of the measured
imperfections, it follows that the assumption of normality is in
accordance with the experimental data.

The mean function a0(x,y) as well as the properties of stochastic
field f(x,y) are derived from a statistical analysis of experimentally
measured imperfections on a group of six tubes, contained in a
data bank of initial imperfections [7]. The geometric and material
properties of these tubes are presented in Table 1. The average
thickness, Young modulus and yield stress have been used in the
analyses. A typical pattern of measured out-of-plane geometric
imperfections is plotted in Fig. 1 for specimen 12Α-3-1. The
assumption of non-homogeneity of the imperfections is mainly
based on the physical interpretation that imperfections are attrib-
uted to the manufacturing process where there is a basic mechan-
ism creating an average imperfection pattern followed by a small
scatter around this pattern. This is also verified in a number of
publications on the topic [9,21,24,26], some of which involve a
larger sample size. The mean function a0(x,y) is calculated via
ensemble averaging at each point of the unfolded cylinder. A plot
of a0(x,y) is presented in Fig. 2 where it can be observed that the
mean value varies substantially along the two directions of the
cylinder. At this point, it should be mentioned that, in order to be
consistent with the assumption of a zero-mean random field used

Table 1
Experimental data of six imperfect tubes [7].

Circumferential direction Longitudinal direction

Experiment D/t t (mm) L (mm) fys (kPa) Ε (kPa) fys (kPa) Ε (kPa)

12Α-3-1 96 6.5532 2413 2.64Eþ05 2.10Eþ08 2.69Eþ05 1.99Eþ08
12Α-3-2 96 6.5024 2413 2.64Eþ05 2.10Eþ08 2.69Eþ05 1.99Eþ08
12Α-3-3 96 6.4262 2413 2.56Eþ05 2.05Eþ08 2.66Eþ05 2.04Eþ08
12Α-3–4 96 6.5024 2413 2.56Eþ05 2.05Eþ08 2.66Eþ05 2.04Eþ08
12Α-3–5 96 6.477 2413 2.81Eþ05 2.05Eþ08 2.81Eþ05 2.02Eþ08
12Α-3–6 96 6.5278 2413 2.81Eþ05 2.05Eþ08 2.81Eþ05 2.02Eþ08
Average 6.498167 E (kPa) 2.0417Eþ08

fys (kPa) 2.6950Eþ05
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Fig. 1. (a) Tube 12A-3-1 with initial geometric imperfections and (b) Measured initial unfolded shape of (a).

Fig. 2. Ensemble average of initial imperfections.
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in the method of separation, the mean function a0(x,y) has been
subtracted from each measured imperfection.

2.3. The spectral representation method

For the simulation of the non-homogeneous field f(x,y) in
Eq. (5), an evolutionary form of the spectral representation
method is implemented. The EPS adopted in the present study is
assumed to be uncoupled with respect to the axial and circumfer-
ential directions of the cylinder, as implied by the experimental
measurements (refer to Fig. 1b). The assumption of spectral
separability is valid for the case of geometric imperfections with
narrow-band EPS, as shown in [24,26]. Therefore, the EPS of the
stochastic field f(x,y) can be written as follows:

Sðκx; κy; x; yÞ ¼ Sxðκx; xÞSyðκy; yÞ ð6Þ
where Sxðκx; xÞ and Syðκy; yÞ are two independent 1D power spectra
for the axial and circumferential direction, respectively. The two

power spectra are obtained using the method of separation for 1D
random fields described in Section 2.1 and are strongly narrow-
band as shown in Fig. 3.

Using the EPS of Eq. (6), samples of the non-homogeneous
imperfection field can be generated using the spectral representa-
tion method as follows:

f ðiÞðx; yÞ ¼
ffiffiffi
2

p
∑

N1 �1

n1 ¼ 0
∑

N2 �1

n2 ¼ 0
½Αð1Þ

n1n2 cos ðκ1n1xþκ2n2yþφð1ÞðiÞ
n1n2

Þþ

þΑð2Þ
n1n2

cos ðκ1n1x�κ2n2yþφð2ÞðiÞ
n1n2 Þ� ð7Þ

where Αð1Þ
n1n2

, Αð2Þ
n1n2

depend not only on the wave numbers but also
on the positions x, y

Að1Þ
n1n2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sðκ1n1 ; κ2n2 ; x; yÞΔκ1Δκ2

q
ð8aÞ

Að2Þ
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¼
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q
ð8bÞ

Fig. 3. Evolutionary power spectra along the: (a) axial direction and (b) circumferential direction of the tube.
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and

κ1n1 ¼ n1Δκ1 κ2n2 ¼ n2Δκ2 ð9Þ

Δκ1 ¼
κ1u
N1

Δκ2 ¼
κ2u
N2

ð10Þ

n1 ¼ 0;1; :::;N1�1; n2 ¼ 0;1; :::;N2�1 ð11Þ

The parameter κju, j¼1, 2, is a cut-off wave number defining the
“active region” of the power spectral density function, beyond
which the spectral power is supposed to be zero. φðjÞðiÞ

n1n2
, j¼1, 2,

represent the realization for the (i) simulation of the independent
random phase angles uniformly distributed in the range [0,2π].
A sample function of the initial geometric imperfections and
the corresponding imperfect cylinder are depicted in Fig. 4. The

comparison of Figs. 1 and 4 shows a very good agreement between
measurements and simulations.

3. Summary of the proposed approach

The proposed approach comprises the following steps:

i. Numerical treatment of available experimental measurements
of initial geometric imperfections.

ii. Use of the method of separation (Section 2.1) for the computa-
tion of the EPS of the imperfections.

iii. Generation of sample functions of the imperfections using the
spectral representation method (imperfect tubes to be used in
the analyses).

Fig. 4. (a) A sample function of the initial geometric imperfections generated using the spectral representation method and (b) the corresponding imperfect cylinder.
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iv. Selection of FE mesh size. Mesh convergence studies are
performed to define the appropriate mesh size for the analysis,
which combines accuracy and computational efficiency.

v. Stochastic analysis of a number of imperfect tubes with
different loading conditions (axial load, lateral pressure, com-
bined axial load and lateral pressure) in the framework of MCS.
In the nonlinear FE analyses performed, the load-displacement
curve is obtained using a path-following strategy based on the
arc-length method.

vi. Statistical treatment of the results: computation of buckling
load variability.

4. Numerical examples

The mean material and geometric properties of the perfect
cylinder are shown in Fig. 5 along with the bilinear stress–strain
curve modeling the behavior of the material. The boundary

conditions are specified as follows: the base edge nodes of the
cylinder are fixed against all translations while the top edge nodes
are free. As mentioned previously, mesh convergence studies are
performed first in order to determine an optimum FE mesh size
satisfying the following two requirements: (i) accurate prediction
of the buckling load and (ii) accurate representation of the
gradients of the stochastic initial imperfection field. Fig. 6 presents
the results of such a convergence study of an imperfect cylinder
under axial loading, for different mesh sizes. Although there are no
significant differences in the computed buckling loads, the differ-
ences in the computational cost are substantial. For a 113�181

X

Z

Y

Fig. 5. Material and geometrical data of the perfect tube.

Fig. 6. Mesh convergence study for an imperfect tube under axial loading.

Fig. 7. Histograms of the computed buckling loads for different loading cases:
(a) axial loading, (b) lateral pressure, (c) axial load/lateral pressure ratio¼1.25, and
(d) axial load/lateral pressure ratio¼1.75.
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mesh, the analysis required five times less computing time than
that required for a 225�361 mesh. In addition, the average
element size in the 113�181 mesh is smaller than a quarter of
the periods of the stochastic field in the axial and circumferential
directions corresponding to the upper cut-off frequency and thus
provides sufficient accuracy. Therefore, the coarse mesh
(113�181) will be used in the following analyses as it combines
accuracy and computational efficiency.

Fifty tubes with initial geometric imperfections produced by
the spectral representation method have been analyzed using the
nonlinear FE approach mentioned in Section 3 for six different
loading cases: axial load, lateral pressure, combined axial load and
lateral pressure with ratio of 5, 2.5, 1.75 and 1.25. For comparison
purposes, nonlinear FE analyses of the perfect cylinder have also
been performed.

The histograms of the computed buckling loads Pu along with
their mean value and coefficient of variation (Cov) are presented in
Fig. 7 for the different loading cases examined. The form of the
histograms is different and the scatter of buckling loads around
the mean value is moderate. In the case of axial load/lateral
pressure ratio equal to 1.25, the buckling load Cov reaches the
value of 7%. The load–displacement curves for an imperfect
cylinder and various loading combinations are shown in Fig. 8. It
can be observed that the form of the load–displacement curve is
highly sensitive to the ratio of axial load vs. lateral pressure. The
limit load is reduced by increasing the lateral pressure (see also
Fig. 7). In the case of pure axial compression, buckling is clearly
elastoplastic and becomes gradually a bifurcation-type elastic one
as external pressure increases.

The failure modes of a randomly selected imperfect tube for
three of the six loading cases mentioned above are depicted in
Fig. 9. It can be observed that the failure modes are affected
significantly by the type of loading. There are three local buckles
for axial load/lateral pressure ratio equal to 2.5 and only one local
buckle for pure lateral pressure, indicating the complexity of the
buckling phenomenon. It is also evident that local buckling is
occurring in all loading cases. These observations confirm the
importance of initial geometric imperfections which are respon-
sible for the different failure modes.

The significance of initial geometric imperfections is further
highlighted through comparisons with the buckling behavior of
the perfect tube obtained also with nonlinear FE analysis. Table 2
shows the lateral pressure and the corresponding limit load of the
perfect tube. It can be observed that the limit (axial) load is much
larger than that resulting from the stochastic analysis of the
imperfect cylinders. Furthermore, by increasing the lateral pres-
sure, the limit load increases instead of decreasing. However, the
opposite happens in the imperfect cylinder where the limit load

decreases with the lateral pressure (see Fig. 8). Therefore, the
presence of initial geometric imperfections cannot be neglected.
The failure modes of the perfect tube are depicted in Fig. 10 for
different loading cases. In the case of pure axial load (Fig. 10a), it is
observed that the deformations are concentrated at the upper and
lower ends of the cylinder, which is in contrast to the results

Fig. 8. Load–displacement curves for an imperfect cylinder and various loading
combinations.

Fig. 9. Failure modes of a randomly selected imperfect tube for three loading cases:
(a) axial loading, (b) axial load/lateral pressure ratio¼2.5, and (c) lateral pressure.

Table 2
Applied lateral pressure and corresponding limit load of the perfect cylinder.

Limit load Pu (kΝ) Lateral pressure (kPa)

Pure axial load 7747.69 0.00
Ratio 5 7873.60 1574.72
Ratio 2.5 8535.58 3414.23
Ratio 1.75 8684.92 4962.81
Ratio 1.25 8205.93 6564.74
Pure lateral pressure 0.00 42120.80
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obtained from the stochastic analyses (see Fig. 9). For pure lateral
pressure (Fig. 10c), the perfect cylinder seems not to buckle unless
a small defect is introduced to the geometry that leads to some
kind of buckling initiation (Fig. 9). For axial load/lateral pressure
ratio equal to 2.5 (Fig. 10b), a local buckling occurs near the ends of
the cylinder and the failure mode is again substantially different to
that of the imperfect structure.

Finally, the stochastic interaction diagram is shown in Fig. 11.
The minimum and maximum values of the computed limit loads
are presented in the same diagram along with the mean value for
comparison purposes. It is evident that the variability is substan-
tial especially for large lateral pressure which also leads to
significant reduction of the buckling load.

5. Conclusions

In this paper, the effect of initial geometric imperfections on
the buckling load of steel tubes under axial load and external
lateral pressure was investigated. As demonstrated by the numer-
ical investigations and the experimental results, the imperfections
can lead to a substantial reduction of the buckling load and thus
should be taken into account via a realistic description through
stochastic field modeling. The buckling load variability due to the
presence of initial imperfections is moderate. The failure modes of
the tubes are significantly affected by the type of loading and the
imperfections. In the case of pure axial loading, local buckling
occurs near the middle of the imperfect tube, which is in contrast
to the results obtained for the perfect structure where “elephant
foot” buckling occurs. The effect of the variability of other
mechanical properties such as the thickness of the tube and the
yield stress of the material on the buckling load will be the subject
of future work.
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