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This work examines the effect of random geometric imperfections in the buckling response of I-profile
steel beam–column members as well as portal frame structures. Geometric imperfections are assumed
to be non-homogeneous Gaussian random fields. Samples of these fields are generated using the spectral
representation method with evolutionary power spectra derived from experimental measurements using
the method of separation. A number of samples of random imperfect geometries are generated and sim-
ulated with detailed discretization with triangular shell finite elements. The stochastic buckling loads are
determined in the context of brute force Monte Carlo simulation by repeated material and geometrically
nonlinear finite element analyses. Single beam–column members are subjected to pure axial compression
while the portal frames are tested for lateral loading. Various types of boundary conditions are imple-
mented and histograms of bucking loads are derived for each case examined leading to useful conclusions
for this type of structures, regarding imperfection triggered buckling response and buckling load
variability.
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1. Introduction number of works was emerged in the last decade, treating the
The wide usage of thin-walled slender members of steel struc-
tures has made necessary the study of their behavior under various
types of loading and boundary conditions. These members are pre-
ferred because they lead to light-weighted and economic construc-
tions and are proven to have a more efficient load-carrying
behavior especially under bending. However, the structural re-
sponse of a thin-walled I-section member is sensitive to imperfec-
tions that are created in the web and the flanges during the
manufacturing process or during the transportation and the place-
ment in the building site [1,2]. These imperfections are predomi-
nantly geometric imperfections referring to the deviation of the
geometry from ideal shape of the member.

Various methods have been developed in order to simulate
numerically initial imperfections. Conventional deterministic ap-
proaches assume that imperfections are in the form of critical
eigenmodes of the perfect structure [3–5], while probabilistic ap-
proaches were mainly implemented by treating the Fourier coeffi-
cients obtained by series expansion of corresponding experimental
measurements as random variables [6–9]. However, a realistic
description of initial imperfections in a rational probabilistic
framework is absolutely necessary in order to capture the discrep-
ancy between observed and predicted buckling loads as well as the
large scatter that these loads usually exhibit. Towards this aim, a
imperfections as stochastic fields which can be simulated with a
standard numerical procedure such as Karhunen–Loeve expansion
or the spectral representation method [10–19]. These stochastic
approaches were mainly introduced for shell type structures, while
a variant of these methods was recently applied for short-length I
beam–column structural elements which exhibit a predominant
local buckling behavior [20]. In that work, the ‘‘method of separa-
tion’’ was proposed for capturing the non-homogeneous character-
istics of initial imperfections which proved very accurate, with
optimum localization in space and frequency domain. Further-
more, the method proved efficient in deriving evolutionary power
spectra (EPS) from samples of narrow banded separable stochastic
fields, such as initial imperfections [20–22].

The present paper examines the effect of random geometric
imperfections in I-profile beam–column steel members, with pre-
dominant global buckling modes, as well as steel portal frame
structures. Geometric imperfections are assumed to be non-
homogeneous Gaussian random fields. Samples of these fields are
generated using the spectral representation method, having previ-
ously estimated the corresponding evolutionary power spectra
(EPS) using the method of separation and real measurements of
imperfections. A number of samples of random imperfect geome-
tries are generated and simulated with detailed discretization with
3-noded triangular shell finite elements. The stochastic buckling
loads are determined in the context of brute force Monte Carlo
simulation by repeated material and geometrically nonlinear finite
element analyses. Single beam–column members are subjected to
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pure axial compression while the portal frames are tested for lat-
eral loading. Various types of boundary conditions are imple-
mented and histograms of bucking loads are derived for each
case examined leading to useful conclusions for this type of struc-
tures, regarding imperfection triggered buckling response and the
buckling load variability.

2. Stochastic finite element method (SFEM)

SFEM represents a combination of two important methodolo-
gies that are used for the solution of complicated problems of mod-
ern mechanics: the finite element method and stochastic analysis.
The latter is based on reliability analysis, signal processing and
probability theory [23–28]. In SFEM analysis random parameters
are modeled as stochastic fields with statistical properties based
on corresponding experimental measurements when available.

A one dimensional homogeneous zero-mean random field f(x)
can be easily described by its mean and autocorrelation function
as follows:

lf ðxÞ ¼ E½f ðxÞ� ð1aÞ

Rff ðx1; x2Þ ¼ E½f ðx1Þf ðx2Þ� ¼ Rff ðx1; x1 þ sÞ ¼ Rff ðsÞ ð1bÞ

where E[ ] denotes the mathematical expectation and s = x2 � x1.
Applying the Fourier transform on the autocorrelation function

we obtain the power spectrum as:

Sff ðxÞ ¼
1

2p

Z þ1

�1
Rff ðsÞ expð�ixxÞds ð2Þ

A non-zero stochastic field can be described as the sum of its
deterministic mean function l(x) and a zero-mean field f(x), as
follows:

hðxÞ ¼ lðxÞ þ f ðxÞ ð3Þ

On the other hand, in non-homogeneous random fields the
power spectrum depends not only on the frequency x but also
on the spatial state variable x. In cases in which these spectra are
separable (or approximately separable) which, as demonstrated
in [21], is definitely the case of initial imperfections of I-section
steel members, the corresponding evolutionary power spectrum
can be expressed as the product of a homogeneous power spec-
trum Sh(x) and a spatial envelope function gh(x) as follows:

Sðx; xÞ ¼ ShðxÞ � ghðxÞ ð4Þ
2.1. The method of separation

Various methodologies have been proposed in the past for esti-
mating EPS from available experimental measurements, i.e. from
real samples of stochastic signals. Among them the most widely
Fig. 1. Local and glob
used are the short-time Fourier transform and the wavelet-based
EPS estimation [29–33]. The basic disadvantage of these ap-
proaches is that they cannot achieve simultaneous resolution in
space and frequency domains. A novel methodology was proposed
in [21] to obtain estimates of EPS in cases of separable processes.
This method is based on simple principles of stochastic process
theory and for this reason it is easy to implement and computa-
tionally efficient, while at the same time proved to be accurate
with optimum simultaneous resolution in space and frequency
[20–22].

According to this approach an estimate of the first term in Eq.
(4) can be readily obtained by averaging the periodograms over
the ensemble:

ShðxÞ ¼ E
1

2pL

Z L

0
f ðiÞðxÞ � e�Ixxdx

����
����
2" #

ð5Þ

while an estimate of the spatial envelope function can be obtained
from the distribution of the mean square over the samples as
follows:

�ghðxÞ ¼
E jf ðiÞðxÞj2
h i

2
R1

0 ShðxÞdx
ð6Þ

It can be easily shown that an unbiased estimate of the evolutionary
power spectrum may be obtained as follows [21]:

Shðx; xÞ ¼ E f ðiÞðxÞ
�� ��2h i ShðxÞ

2
R1

0 ShðxÞdx
ð7Þ
2.2. Spectral representation

Having estimated the EPS from a series of experimentally mea-
sured imperfections, samples of imperfection field can be gener-
ated using the spectral representation method, as follows:

f̂ ðxÞ ¼
ffiffiffi
2
p XN�1

n¼0

An cosðxnxþunÞ ð8Þ

where

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sðxn; xÞDx

p
;n ¼ 0;1; . . . ;N � 1

xn ¼ nDx;n ¼ 0;1; . . . ;N � 1

Dx ¼ xup

N
A0 ¼ 0; Sðx0; xÞ ¼ 0

ð9Þ

The parameter xup refers to an upper limit of the frequency, beyond
which the power spectrum is supposed to be zero. Parameter un ex-
presses random phase angles and takes values in the field [0,2p] so
that:
al imperfections.



Fig. 2. Mapping from perfect to imperfect geometry: (a) local and (b) global imperfection modes.
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Fig. 3. (a) EPS of global imperfection u and (b) homogeneous power spectrum of
local imperfection d1.
2.3. Monte Carlo simulations (MC)

Generally, the implementation of MC method consists of
numerically simulating a population corresponding to the random
quantities in the physical problem, solving the deterministic prob-
lem associated with each member of the population, and obtaining
a population corresponding to the random response quantities,
that can be used to obtain statistics of the response variables
[34–36]. In the present study, the Monte Carlo simulation is imple-
mented with a large number of FEM analyses, taking into account
randomly generated samples of geometric imperfections, for the
computation of the corresponding critical buckling loads. Further-
more, histograms are prepared by statistically processing the com-
puted results, showing the distribution of the buckling loads for
each case examined. In the present study, the stochastic analysis
is referred only to the initial geometric imperfections while all
other geometric and material properties of the members are as-
sumed deterministic.

3. Modeling of random imperfections

Experimental measurements of imperfections were taken from
Hasham and Rasmussen [37]. These data refer to a total of nine glo-
bal and local imperfections of the cross-sections, as shown in Fig. 1
(d1–d9). These measurements have been performed on the free
edges of the flanges (d1, d3, d5, d7), on the centre of the cross-section
(d4), on web-flange junctions (d2, d6) and on the outer edges of the
flanges (d8, d9). From d2, d6, d8 and d9, the three global imperfections
which correspond to the two global translations u, v and the global
rotation h of the cross-section, are extracted with reference to Fig. 1
as follows:

u ¼ ðd8 þ d9Þ
2

;v ¼ ðd2 � d6Þ
2

; # ¼ ðd9 � d8Þ
600

ð11Þ

The local imperfections are considered directly as the d1, d3, d4, d5

and d7 measurements.
Samples of the imperfect geometry are then constructed by the

following mapping:

Y

Z

� �
ðx;y;zÞ¼

y

z

� �
þ

DYglob

DZglob

� �
ðx;y;zÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

global

þ
0

DZf lg;iðxÞyi
w

" #
þ DYwebðxÞð1�

z2
i

HÞ
0

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

local

ð12Þ
where as shown in Fig. 2, (x, y, z) are the coordinates of the perfect
geometry of the I profile section and (X, Y, Z) are the coordinates of
the distorted section with x = X and w is the flange length and H the
web height. In the above equation, DYglob and DZglob correspond to
the global imperfection components given by [20]:

DYglob

DZglob

� �
ðx;y;zÞ¼

U

V

� �
ðxÞþ

fu

fv

� �
ðxÞþ

cosðHþ fhÞ �sinðHþ fhÞ
sinðHþ fhÞ cosðHþ fhÞ

� �
ðxÞ �

y

z

� �
ð13Þ
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Fig. 4. (a) Mean value of global imperfection U, (b) one sample of global imperfection u, and (c) one sample of local imperfection d1.
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In the above Eq. (13) the global components are extracted from the
corresponding measurements u, v and h (see Eq. (11)). The corre-
sponding mean values of these measurements are denoted as
U(x), V(x) and H(x) for the two translations and the rotation respec-
tively, while fu(x), fv(x) and fh(x) are zero mean evolutionary stochas-
tic fields describing the fluctuations of the global imperfections
around their mean values and for which the evolutionary power
spectra are calculated with the method of separation. For the local
components of Eq. (12), DZflg,i(x) is a stochastic field generated inde-
pendently for each flange i, while i = 1,2,3,4 corresponding to the
experimental measurements d1, d3, d5 and d7, respectively. This field
is assumed to be zero mean and homogeneous throughout its
length. Similarly, DYweb(x) is the stochastic field extracted from d4.
A linear interpolation of flange imperfections is assumed for the
outer flange edge until the web assuming zero imperfections at
the flange connection to the web. A quadratic interpolation is as-
sumed for the distribution of the web imperfections along the
web height with zero value at the connections with the flanges
and d4 at the central web point (see Fig. 2).

Fig. 3a presents the EPS computed for global u imperfection
mode, while Fig. 3b presents the homogenous power spectrum of
local zero mean imperfection mode d1. Fig. 4 depicts the calculated
mean value U(x), as well as randomly selected sample functions of
d1 and u respectively. A sample realization of the complete imper-
fect geometry of the member generated using Eq. (12), is plotted in
Fig. 5. All imperfections are scaled by a factor k = 15 for visualiza-
tion purposes.
Fig. 5. Complete imperfect geometry (imperfection modes are scaled by factor
k = 15).
4. Numerical examples

4.1. I-section beam–column members

A number of 4 m long beam–column members under compres-
sion are examined in this section. Three different boundary condi-
tions were implemented. In the first case (case A) a fully fixed
condition is assumed on both member’s end-sections, i.e. all nodes
restrained against translations and rotations, except at the end-
section of the applied axial load, in which only the translations
along the member axis are released. In the second case (case B) a
fixed condition is again assumed for the one end-section but with
the following difference with respect to case A: Rotations along
cross-sectional major axis are released to allow rotations of the
web and flanges, while the overall end-section rotation remains
fixed. Fig. 6a and b present the deformed shapes of the end-
sections for cases A and B, respectively. A partially fixed condition
is assumed for the other end-section with the middle node of the
section restrained against all rotations and translations except
from the one along the member axis and the cross-sectional major
axis rotation. According to the above, the beam–column member
has its one end fixed and the other, where the loading is applied,
pinned on the x–z plane, but both ends are fixed on the x–y plane.
In the third case (case C) both end-sections are assumed partially
fixed as described above, which means that they are both pinned
on the x–z plane and fixed on the x–y plane. A schematic represen-
tation of the three boundary condition cases is presented in Fig. 7.



Fig. 6. Case A, B and C boundary conditions.

Fig. 7. Boundary and loading conditions of the three cases examined.

Fig. 8. I-section geometric properties.
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4.1.1. FEM discretization

The cross-sectional properties of the beam–column members
are depicted in Fig. 8. 3-noded triangular shell finite elements with
6 dof (three translational and three rotational) per node were used
for the FEM modeling. The FE discretization of the perfect column
configuration is shown in Fig. 9 and consists of 250 elements along
the member’s longitudinal direction, 12 elements along its width
(flanges) and 16 elements along its height (web) with a total of
10,291 nodes and 61,746 dof.
4.1.2. Stochastic analysis

A full material and geometrical nonlinear analysis was per-
formed on each of the 100 samples of imperfect beam–columns
generated using Eq. (12) in the context of MC. The Arc Length
Fig. 9. (a) Longitudinal and (b) flan
method was implemented for tracking the unstable branches of
the equilibrium path close to bifurcation points. The solution pro-
cedure is terminated at an axial deformation of 25 mm. The mate-
rial is considered to be elasto-plastic with a Von-Mises yield
criterion with isotropic hardening equal to the 10% of the elastic
Young’s modulus E = 21 GPa. Fig. 10 presents the histogram of
the buckling loads computed for case A boundary conditions,
where both ends of the beam–column members are fully fixed
(FF). The corresponding buckling load of the perfect beam–column
is computed at 1230 kN and the load computed by the eigenvalues
analysis, that corresponds to the first global eigenmode is about
960 kN. The mean value of the buckling loads is computed at
975 kN that corresponds to a 20% reduction with respect to the
buckling load of the perfect configuration. A relatively small coef-
ficient of variation (Cov) of about 1.1% is observed for this case.

Fig. 11a and b present plots of the deformed shape and the cor-
responding force–displacement curve computed for a randomly se-
lected imperfect geometry of the member. From this figure it can
be observed that the buckling mode triggered by the specific pat-
tern of imperfections is a global minor axis bending. Fig. 12a and
b present the same plots with Fig. 11a and b, but for a sample that
is located at the extreme left side of the histogram of Fig. 10. From
this figure it can be observed that the buckling mode triggered by
the specific imperfection pattern is a combined torsional-bending
type.

Figs. 13 and 14 present the histograms of the buckling loads
computed for cases B and C, respectively. The corresponding buck-
ling loads of the perfect configurations are computed at 1052 kN
for both cases. The critical buckling load computed by the
ge and web FE discretization.



Fig. 10. Case A: Histogram of the stochastic critical buckling loads of FF–FF
members.

V. Papadopoulos et al. / Engineering Structures 47 (2013) 54–66 59
eigenvalue analysis was 962.63 kN for both cases, while the mean
values of the buckling loads were computed at 898 kN and 970 kN,
respectively, indicating a reduction of almost 15% and 10% with re-
spect to the perfect configurations. Comparing to the critical loads
computed by the eigenvalue analysis in case B we have a reduction
of the critical buckling load of almost 7%, while in case C the reduc-
tion is less than 1%. The Cov was computed at 5.5% and 1.6% for
cases B and C, respectively. From these results it can be seen that
the case C boundary conditions result in a relatively small mean
buckling load with a Cov almost five times larger than the Cov
computed for the other examined boundary conditions. Worth
mentioning here is that the lowest buckling load for this case is
computed at 755 kN which is almost 20% lower from the lowest
buckling loads of the two other cases.

Figs. 15 and 16 present plots of the deformed shapes and the
force–displacement curves of randomly selected imperfect column
for cases B and C, respectively. From these figures it can be ob-
served that the buckling mode triggered by the specific pattern
of imperfections in case B is of global bending type (see Fig. 15),
while for case C the buckling initiates locally (point A in Fig. 16c)
Fig. 11. Case A: (a) Deformed shape and (b) force–displacement curve alon
and evolves to a global torsional-bending type (point B in
Fig. 16c). This behavior is further demonstrated in Fig. 16d where
a diagram of the axial force versus the lateral displacement along
the y-axis direction of the central node of the mid-span cross-sec-
tion is provided, while Fig. 16e depicts the evolution of the defor-
mations of the mid-span cross-section from the undeformed state
to the states at points A, B, C and finally point D, where the analysis
is terminated. These results indicate the crucial role that boundary
conditions play on the behavior of imperfect I beam–column steel
members under axial compression.
4.2. I-section frames

In this section, portal steel frame structures of net 4 m height
and span are examined. The frames are constructed with the pre-
viously described beam–column members possessing exactly the
same imperfection patterns with those described in Section 3. In
addition to the aforementioned random imperfections, a random
sign parameter (+ or �) is added to the global imperfections DYglob

and DZglob of Eq. (13) for each beam or column member of the
frame. This is done in order to ensure a complete statistical inde-
pendence between imperfection samples of these members. The
beam–column junctions of the frame are assumed to be perfect.
The perfect frame FE discretization follows the one described in
the previous section for the beam–column members with the addi-
tion of beam–columns junctions and their stiffening elements (see
Fig. 17). The frames consist of a total of 33,723 nodes, 69,268 ele-
ments and 415,608 degrees of freedom.

The nonlinear stochastic analyses of the frames were solved in
parallel at five PC clusters with the following technical characteris-
tics: CPU Core i7 X980 @ 3.33 GHz, 12 MB Cache and 6 GB RAM.
The total computing time for one stochastic analysis with 100
Monte Carlo simulations was approximately 16 h.
g x-direction of a random imperfect column under axial compression.



Fig. 13. Case B: Histogram of the stochastic critical buckling loads.

Fig. 14. Case C: Histogram of the stochastic critical buckling loads.

Fig. 12. Case A: (a) Deformed shape and (b) force–displacement curve along x-direction of a sample located on the extreme left side of Fig. 10.

60 V. Papadopoulos et al. / Engineering Structures 47 (2013) 54–66
4.2.1. Boundary and loading conditions
As shown in Fig. 18, two different boundary conditions were

implemented to the previously described portal frames. In the first
case all degrees of freedom of the nodes at both ends are com-
pletely restrained, while in the second case the middle nodes of
the I-section profile (the nodes on the centroid of the I cross-
section) at both ends are considered pinned with respect to major
axis rotations, while all translational dof of the remaining nodes
are kinematically constrained to their corresponding middle nodes.
As far as the junction nodes are concerned (the nodes at the centre
of the beam–column junction, see Fig. 17b), these are assumed to
be either totally free against all translations and rotations (case
A) or restrained against out-of-plane translations (case B), where
FF–FF denotes the fully fixed boundary conditions at both ends of
the frame and P–P denotes the pinned ones.

Incremental horizontal loads were applied in addition to a per-
manent vertical self-weight load of the structure. The horizontal
load increment is set at P = 221 kN uniformly distributed at each
node of the left beam–column junction profile (see Fig. 18), which
is an area with height 0.255 m and width 0.175 m and is discret-
ized as shown in Fig. 17, while the vertical is 10 kN/m uniformly
distributed at each node of the upper flange of the horizontal
beam.
4.2.2. Stochastic analysis
A full 3D material and geometrical non-linear analysis has been

performed in a sample of 100 imperfect frames for both cases to
extract the critical buckling loads of the portal thin-walled steel
frames and the results for each case are as follows.
4.2.2.1. Case A: Frame free of out-of-plane restraints. Fig. 19a and b
present the histograms of the stochastic critical loads obtained
for the frames without out-of-plane restraints for fixed and pinned
boundary conditions, respectively. In the case of fixed boundary
conditions the mean critical buckling load is computed at 97 kN,
with the corresponding buckling load of the perfect configuration
being 142 kN – while the buckling load corresponding to the low-
est eigenvalue of the perfect structure is 136 kN – indicating a sig-
nificant strength reduction of about 32%. The Cov for this case is



Fig. 15. Case B: (a) Deformed shape and (b) force–displacement along x-direction curve of a random imperfect column under axial compression of a PF–P member.
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computed at 8%. In the case of pinned boundary conditions, the
mean value is computed at 62 kN with the corresponding buckling
load of the perfect configuration being 65 kN and the buckling load
from the eigenvalue analysis being 75 kN. Thus, a marginal average
strength reduction of about 4.6% is observed. The Cov for this case
Fig. 16. Case C: (a) Deformed shape at point A, (b) deformed shape after point B, (c) forc
span along the y-axis direction, and (e) evolution of deformations of mid-span cross-sec
is computed at 3% which is less than half of the Cov of the fixed
case.

Figs. 20 and 21 present the deformed shapes and the force–
displacement diagrams of a randomly selected imperfect fixed
frame and its corresponding perfect frame, respectively. As can
e–displacement curve along x-axis, (d) axial force–lateral displacement of the mid-
tion at points 0, A, B, C and D.



(a) (b)
Fig. 17. (a) Portal frame and (b) detail of beam–column junction discretization.
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be seen in these figures, the buckling mode triggered by the spe-
cific imperfection pattern is a bifurcation buckling of torsional type
with out-of-plane bending of the columns. Worth noting is that
Fig. 18. Loading and boundary condition case (a) FF–FF and (b) P–P.

Fig. 19. Histogram of the critical buckling loads of (a)

Fig. 20. (a) Deformed shape and (b) force–displacement cu
some samples at the extreme right part of the histogram reach
the buckling resistance of the perfect configuration that corre-
sponds to a predominant local elasto-plastic buckling scenario of
the columns. In these cases the corresponding buckling modes
are the same with the ones of the perfect structure, i.e. minor axis
bending buckling but without a global torsional behavior (Fig. 21).

Figs. 22 and 23 present the deformed shapes and the
corresponding force–displacement curves of a randomly selected
imperfect pinned frame and its corresponding perfect frame,
respectively. As can be seen in these figures, the buckling mode
triggered by the specific imperfection pattern is an out-of-plane
bending type but without torsion. In addition, local bucking is ob-
served at the initiation of the structural non-linear response. This
buckling mode is almost the same with the corresponding buckling
mode of the perfect configuration (Fig. 23). This also explains the
fact that the mean buckling load in this case is marginally lower
imperfect fixed and (b) imperfect pinned frames.

rve along x-axis direction of an imperfect fixed frame.
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than the corresponding buckling load of the perfect structure fol-
lowed by a very small value of the Cov.

4.2.2.2. Case B: Frame with out-of-plane restraints. Fig. 24a and b
show the histograms computed for the fixed and pinned frames
of case B, respectively. Fixed frames have a mean critical buckling
load around 144 kN with a Cov up to 1.5%. This corresponds to an
Fig. 21. (a) Deformed shape and (b) force–displacement c

Fig. 22. (a) Deformed shape and (b) force–displaceme

Fig. 23. (a) Deformed shape and (b) force–displacement cu
average strength reduction with respect to the perfect frame of
only 1.5%, while the critical buckling load corresponding to the
lowest eigenvalue of the perfect structure is 137 kN. In the case
of pinned frames the computed mean value of the buckling loads
is 64 kN with a Cov of about 2.11% and an average strength reduc-
tion with respect to the perfect configuration again 1.5%, while the
critical buckling load corresponding to the lowest eigenvalue of the
urve along x-axis direction of the perfect fixed frame.

nt along x-axis direction curve of pinned frame.

rve along x-axis direction of the perfect pinned frame.



Fig. 24. Histogram of the stochastic critical buckling loads of (a) imperfect fixed and (b) imperfect pinned frames.

Fig. 25. (a) Deformed shape and (b) P–u curve along x-axis direction of an imperfect fixed frame.

Fig. 26. (a) Deformed shape and (b) P–u curve along x-axis direction of the perfect fixed frame.
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perfect structure is 75 kN. Thus, in both cases the variability of
buckling loads is relatively small and close to the value of the per-
fect configuration.

Figs. 25 and 26 present the deformed shapes and the corre-
sponding force–displacement curves of a randomly selected imper-
fect fixed frame and its corresponding perfect configuration. As can
be seen in these figures, in both imperfect and perfect frames the
behavior is a local elasto-plastic buckling one with an out-of-plane
bending mode without torsion.

Figs. 27 and 28 present the same results with Figs. 25 and 26
but for the pinned frame. Again from these figures it can be
seen that the response of imperfect and perfect frames is
similar, undergoing a local elasto-plastic buckling behavior with
out-of-plane bending buckling of the columns with no torsion.
Thus for both boundary conditions applied in case B, the
imperfections seem to play a minor role in their buckling
behavior.

It should be mentioned here that, as in the case of imperfect
beam–column members in [20], the effect of material and thick-
ness imperfections is expected to have a minor influence the buck-
ling behavior in this type of structures. This influence however,
remains to be quantified in future research.



Fig. 28. Case B: (a) Deformed shape and (b) P–u curve along x-axis direction of the perfect P–P frame.

(a) (b)
Fig. 27. Case B: (a) Deformed shape and (b) P–u curve along x-axis direction of an imperfect P–P frame.
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5. Conclusions

The present paper implements a general SFEM approach for
treating random initial geometric imperfections of I section steel
beam–column members and portal frame structures. The method-
ology is based on the method of separation recently proposed for
extracting accurately the evolutionary characteristics of the power
spectrum of measured initial imperfections. Using this approach it
is made possible to quantify buckling load variability as well as the
strength reduction that occurs in imperfect I section steel beam–
column members and portal frame structures and address their
sensitivity to various types of boundary conditions.
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