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The effect of interfacial shear strength (ISS) on the mechanical and damping properties of carbon nano-
tube reinforced composites (CNT-RCs) is investigated in the present study using a multiscale simulation.
The atomic lattice of CNTs is modeled with the modified molecular structural mechanics (MMSM)
approach and reduced to an equivalent beam element (EBE) which is used as the basic building block
for the construction of full length CNTs embedded in the polymer. Linear material properties are assigned
to the EBEs, while a Maxwell–Wiechert material model is used for modeling the viscoelastic behavior of
the polymer. The interfacial load transfer mechanism between the lateral surface of the carbon nanotube
and the surrounding matrix is taken into account with a nonlinear bond-slip friction-type model. Finite
element models of representative volume elements (RVEs) are constructed comprised of two indepen-
dent meshes: a structured with solid elements for the matrix and a series of embedded EBEs for the full
length CNTs inside the matrix. Straight as well as wavy CNTs are considered. In the case of wavy CNTs,
random CNT geometries are generated using the spectral representation method with evolutionary
power spectra (EPS) which are derived from processing scanning electron microscope (SEM) images. Sto-
chastic average properties were derived with Monte Carlo simulation. The mechanical and damping
properties of the CNT-RCs are assessed on the basis of sensitivity analyses with respect to various weight
fractions and interfacial shear strength (ISS) values. Numerical results are presented, showing the signif-
icant effect of the ISS as well as the influence of CNT waviness on the damping behavior of CNT-RCs.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years carbon nanotubes (CNTs) have attracted a lot of
interest due to their superior mechanical properties. Experimental
measurements (Demczyk et al., 2002; Iijima, 1991; Salvetat et al.,
1999; Yu et al., 2000; Treacy et al., 1996) verified by numerical
simulations (Arroyo and Belytschko, 2004a; Chang and Gao,
2003; Jin and Yuan, 2003; Thostenson and Chou, 2003) have calcu-
lated the stiffness of carbon nanotubes in the order of 1 TPa while
their tensile strength is measured at about 150 GPa. These signifi-
cant mechanical properties as well as their high aspect ratio and
low density make CNTs ideal reinforcing elements in composite
nanostructured materials. Nevertheless, unlike conventional fi-
ber-reinforced composites, CNTs, due to their small length scale,
can interact with polymer chains only through weak van der Waals
forces, usually having marginal influence on the mechanical prop-
erties of the nanocomposite. However, experimental evidence
(Ramanathan et al., 2005; Velasco-Santos et al., 2003; Zhu et al.,
2003) demonstrated that if functionalization techniques are
ll rights reserved.
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applied on the surface of carbon nanotubes, higher interfacial shear
strength (ISS) may be achieved leading to improved stiffness and
damping properties of the CNT-RCs.

From the computational mechanics point of view, classic atomic
computational approaches, such as ab initio calculation (Chandr-
aseker and Mukherjee, 2007; Van Lier et al., 2000; Zhou et al.,
2001), molecular dynamics (MD) simulation (Agrawal et al.,
2008; Chen et al., 2007) and the equivalent continuum modeling
(ECM) (Cheng et al., 2009; Hu et al., 2007; Nasdala and Ernst,
2005; Odegard et al., 2002) are among the most widely used theo-
retical approaches for the numerical simulation of CNTs. In spite of
the recent advances in computer technology, ab initio calculations
and MD simulations are still limited to an atomic-scale and femto-
second time-scale models. On the other hand, ECM approaches
tend to be a more efficient modeling technique for simulating lar-
ger-scale systems or longer time spans. In principle, this approach
transforms chemical bonds between atoms in molecular mechan-
ics (MM) into a continuum model using the finite element method
(FEM) and thus provides a link between molecular mechanics and
continuum mechanics. Among the ECM methods, the molecular
structural mechanics (MSM) approach has attracted great
attention because of its simplicity and effectiveness. In MSM, the
lattice of the CNTs is modeled as a space frame structure with
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Fig. 1. Schematic representation of the multiscale RVE modeling.
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the C–C covalent bond between the atoms being represented by
continuum round beam (Li and Chou, 2003a). In a modified version
of the molecular structural mechanics approach (MMSM) different
bending rigidities are assigned along the major and minor principal
axes of the considered rectangular beam (Chen et al., 2010). The
stiffness properties of these beams are based on interatomic-
potentials and equivalence between structural and molecular en-
ergy quantities. A quadratic potential is often used to account for
the linear interaction behavior of atoms, while the Morse potential
is used to account for the nonlinearity of the interactions (Arroyo
and Belytschko, 2004b; Li and Chou, 2003a; Tserpes et al., 2006).

For the modeling of CNT-RCs, various multiscale methods have
been proposed to account for the coupling of different length scales
involved and the corresponding phenomena taking place at the
interface of the CNT-RCs constituents. Among them, concurrent
and sequential approaches are the most widely applied (Qian
et al., 2008; Wernik and Meguid, 2009). Concurrent multiscale
methodologies try to combine MD and continuum methods, bridg-
ing the atomistic nano-scale to the continuum macro-scale. In
these approaches, the solution of the atomistic problem provides
the boundary conditions or kinematic constraints that must be im-
posed to the continuum problem. On the other hand, sequential
approaches apply a length separation and the problem is solved
progressively form the smallest scale passing information to its
subsequent scale and onwards. Following the latter approach
Odegard et al. (2002), modeled the CNT, the local polymer near
the nanotube, and the CNT-polymer interface as an effective
continuum fiber which retains the local molecular structure and
bonding information, and serves as a means for linking the equiv-
alent-continuum to the nanomechanics model. Other researchers
followed similar formulations for the modeling of CNT-RC interface
(Lu et al., 2008; Needleman et al., 2010; Tan et al., 2007). In Tserpes
et al. (2008) CNTs are modeled with a MSM model bonded with a
surrounding polymer, while in Georgantzinos et al. (2009) spring
elements connecting the CNT atoms and the polymer chain
molecules were used to model the interface through weak van-
der-Waals interactions based on the Lenard–Jones potential.

In the present study, the effect of ISS on the mechanical and
damping properties of CNT-RCs is investigated using a multiscale
simulation. The atomic lattice of CNTs is modeled as space frame
structure using the MMSM approach. However, as CNTs form
‘‘ropes’’ with lengths of the order of micro meters, the detailed
modeling of their nanostructure leads to an enormous computa-
tional effort in the context of MMSM. For this reason the MMSM
model is reduced to an equivalent beam element (EBE) which is
used subsequently as the basic building block for the construction
of full length CNTs at the micro-scale embedded in the polymer.
Linear material properties are assigned to the EBEs, while a
Maxwell–Wiechert material model is used for modeling the visco-
elastic behavior of the polymer. The polymer considered is the
poly-ether–ether-ketone (PEEK). The interfacial load transfer
mechanism between the lateral surface of the CNT and the sur-
rounding matrix is taken into account with a nonlinear bond-slip
friction-type model. Finite element models of RVEs are constructed
comprised by two independently discretized meshes: a structured
mesh with solid elements for the matrix and a series of embedded
3D EBEs for the full length CNTs inside the matrix. The influence of
straight as well as wavy CNTs is investigated. In the case of wavy
CNTs, random CNT geometries are generated using the spectral
representation method with evolutionary power spectra (EPS)
which are derived from scanning electron microscope (SEM)
images. Stochastic average properties were derived with Monte
Carlo simulation. The mechanical and damping properties of the
CNT-RCs are assessed on the basis of sensitivity analyses with
respect to various weight fractions in the range from 0.1% to 2%
as well as to various ISS values ranging from very low values up
to values larger than the shear strength of PEEK. Numerical results
are presented, showing the significant effect of the ISS as well as
the influence of CNT waviness on the damping behavior of CNT-
RCs. A schematic representation of the adopted multiscale ap-
proach is illustrated in Fig. 1.
2. Modeling of carbon nanotubes

A single wall CNT (SWCNT) can be visualized as a tubular struc-
ture which can be constructed by rolling up a graphene sheet.
According to the chirality of their atomic lattice, CNTs are grouped
into armchair, zigzag and chiral nanotubes. Multiwall CNTs
(MWCNTs) are constructed by co-axially situated SWCNTs with
different radii, which are connected to each other by weak van
der Waals forces. In the present study a MWCNT with an approxi-
mately outer diameter 14 nm is considered. Only the outer tube
which is an armchair (100,100) nanotube is modeled using the
MMSM approach. The reason for this simplification in the nano-
tube’s modeling is that the effect of the inner tube layers on the
mechanical properties of the MWCNT is slightly noticeable and be-
comes minor as the diameter of the tubes increases (Li and Chou,
2003b). In addition, the paper focuses on the effect of the ISS on
the damping properties of the RVE, which means that only the lat-
eral surface of the outer tube is important. The load transfer from
polymer to the nanotube is totally accomplished through the outer
tube’s surface as the inner tubes are sliding on each other due to
their weak interactions. However modeling of the inner layers of
the MWCNT is required when vibrational characteristics and espe-
cially the ‘‘breathing’’ modes of the nanotubes are studying (Cheng
et al., 2010).

2.1. Modified molecular structural mechanics

In the context of MMSM approach the C–C bonds of the atomic
lattice of the nanotube are replaced by rectangular beam elements.



Fig. 2. FE mesh and boundary conditions for (a) Tension, (b) Bending and (c) Torsion loading on CNT model.

Fig. 3. Young’s modulus of a pipe EBE for the armchair (8,8) CNT with respect to
selected wall thickness values.
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According to the potential energy of a covalent bond in molecular
mechanics the beam bending rigidity is dependent on both the
bond-angle variation energy and the inversion energy. More spe-
cifically, the inversion energy would mainly determine the bending
stiffness of the covalent bond in the minor principal centroidal axis
of the section while the bond-angle variation energy for that in the
major one. Thus the following relationship between the structural
mechanics parameters and molecular mechanics force field con-
stants are derived:

kr ¼
EA
L
; kh ¼

EðI00y þ IzÞ
L

; kx ¼
3EI0y

L
; ks ¼

GJ
L

ð1Þ

Iy ¼ I0y þ I00y ¼
kx

3kh
þ tan /

� �
Iz ð2Þ

Detailed explanations on the above equations can be found in Chen
et al. (2010) where the modified MSM model was first presented.

2.2. Equivalent beam element (EBE) for CNTs

Although the MMSM approach overcomes the restrictions in
time and size-scales that the MD method has, the detailed simula-
tion of the nanostructure of a CNT results into a large-scale compu-
tational problem. For example a CNT with a diameter of 14 nm and
1 lm long corresponds to a numerical problem with degrees of
freedom in the order of 107. Thus, the analysis of a CNT-RC contain-
ing even 1% weight fraction of CNTs is an extremely computation-
ally demanding task. For this reason, the detailed MMSM model of
the CNTs is reduced to an EBE with linear material properties. In
order to derive the stiffness properties of the EBE, the detailed
MMSM space frame model of CNT is subjected to three indepen-
dent loading conditions, namely tension, bending and torsion.
The boundary and loading conditions for each case are depicted
in Fig. 2.

More specifically, the axial stiffness of the EBE is calculated by
imposing an axial displacement ux at one CNT’s end simulated with
a MMSM space frame of length L0. The other end, in which the
resulting reaction force Fx is calculated, is considered fixed
(Fig. 2a). Thus, the axial stiffness can be calculated by

ðEAÞeq ¼
FxL0

ux
ð3Þ

For the bending case, a transverse displacement uy is applied at the
center point of one CNT’s end where all nodes of this end are kine-
matically constrained as shown in Fig. 2b. The other CNT’s end,
where the resulting reaction force Fy is calculated by means of FE
analysis, is considered fixed. The equivalent bending stiffness is
then given by

ðEIÞeq ¼
Fy

3uy
L3

0 ð4Þ
Similarly, for the torsion case, a torque T is applied at the center
point of one CNT’s end, which is kinematically constrained to the
peripheral nodes of this section, as shown in Fig. 2c. The nodes at
the other end section of the CNT are considered fixed. The angle
of rotation u of the center point is calculated by means of a FE anal-
ysis and the equivalent torsional stiffness of the EBE is calculated
from

ðGJÞeq ¼
T
/

L0 ð5Þ

In order to derive the elastic moduli from the calculated rigidities, a
profile section for the EBE must be assumed. For instance, if a pipe
profile is selected, its section properties are given by

Aeq ¼
p
4
ðdeq þ tÞ2 � ðdeq � tÞ2
h i

ð6Þ

Ieq ¼
p
64

2 ðdeq þ tÞ4 � ðdeq � tÞ4
h i

and Jeq ¼ 2Ieq ð7Þ

where the equivalent diameter deq is calculated from the axial and
bending rigidities, for an arbitrarily selected wall thickness value t
of the hollow beam:

deq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
ðEIÞeq

ðEAÞeq
� t2

s
ð8Þ

Young’s and shear moduli of the pipe EBE of an armchair (8,8) CNT,
were computed by Eqs. (3)–(8) for different selected wall thickness
values and compared to corresponding published results in the
literature for various methodologies including MD, tight-binding



Fig. 4. (a) Curved MMSM model and corresponding series of EBE model, (b) Tensile stress strain curves.

Fig. 5. SEM image and processing of wavy geometry of selected CNTs.
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models, ab initio computations and others (Jin and Yuan, 2003;
Hernandez et al., 1998; Kudin et al., 2001; Li and Chou, 2003a; Lu,
1997; Odegard et al., 2002; Pantano et al., 2004; Tu and Ou-Yang,
2002; Yakobson et al., 1996; Zhou et al., 2000). Fig. 3 summarizes
the results of the aforementioned comparison.

2.3. Validation of curved CNT EBEs model against MMSM model

In this section the ability of the EBE derived in the previous sec-
tion, to predict the mechanical behavior of curved CNTs is demon-
strated. For this purpose the predicted tensile mechanical behavior
of a detailed curved MMSM model, which stands for a sinusoidal
armchair (8,8) CNT, is compared to the corresponding prediction
of a model constituted of a series of EBEs forming the same sinusoi-
dal curve (Fig. 4a). The stress strain curves calculated with the
above models are presented in Fig. 4b. From this figure it can be
observed that the tensile elastic modulus extracted from the two
models is almost the same with a difference of less than 5%.

3. Stochastic modeling of CNT waviness

Random CNT waviness is modeled as a non-homogeneous
stochastic field using the spectral representation method in con-
junction with evolutionary power spectra (EPS). The statistical
properties of the EPS are derived from processing a number of
CNT geometries from scanning electron microscope (SEM) images
(Fig. 5).

3.1. The method of separation

The EPS depend not only on the frequency x but also on spatial
state variables. In cases of separable or approximately separable
EPS, which as demonstrated in Schillinger and Papadopoulos
(2010) is definitely the case of geometric imperfections such as
the CNT waviness, the corresponding EPS can be expressed as the
product of a homogeneous power spectrum Sh(x) and a spatial
envelope function gh(x) as follows:

Sðx; xÞ ¼ ShðxÞ � ghðxÞ ð9Þ

Various methodologies have been proposed in the past for esti-
mating EPS from available experimental measurements, i.e., from
real samples of stochastic signals. Among them the most widely
used are the short-time Fourier transform and the wavelet-based
EPS estimation (Cohen, 1995; Mallat, 1999; Newland, 1994a,b;
Spanos et al., 2005). The basic disadvantage of these approaches
is that they cannot achieve simultaneous resolution in space and
frequency domains. A novel methodology was proposed in
Schillinger and Papadopoulos (2010) to obtain estimates of EPS
of separable processes. This method is based on simple principles
of stochastic process theory and for this reason it is easy to imple-
ment as well as computationally efficient, while at the same time
proved to be accurate enough with optimum simultaneous
resolution in space and frequency (Broggi and Schuëller, 2011;
Schillinger and Papadopoulos, 2010; Schillinger et al., 2010).

According to this approach an estimate of the first term in Eq.
(9) can be readily obtained by averaging the periodograms over
the ensemble:

ShðxÞ ¼ E
1

2pL

Z L

0
f ðiÞðxÞ � e�ixxdx

����
����
2" #

ð10Þ

where f ðiÞðxÞ is a sample of the stochastic field (in particular the
wavy geometry of the ith CNT) and E½�� denotes the mathematical
expectation. An estimate of the spatial envelope function can be
obtained from the distribution of the mean square over the samples
as follows:

ghðxÞ ¼
E jf ðxÞj2
h i

2
R1

0 ShðxÞdx
ð11Þ

It can be easily shown that an unbiased estimate of the evolutionary
power spectra may be obtained as follows:



Fig. 7. Sample realizations of wavy CNTs.
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�Shðx; xÞ ¼ E f ðiÞðxÞ
�� ��2h i �ShðxÞ

2
R1

0 ShðxÞdx
ð12Þ

Having estimated the EPS from a number of selected CNTs taken
from Fig. 5 samples of wavy CNTs can be generated using Eq. (12)
for the spectral representation method, as follows:

f̂ ðjÞðxÞ ¼
ffiffiffi
2
p XN�1

n¼0

An cosðxnxþuðjÞn Þ ð13Þ

where

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�Shðxn; xÞDx

q
; n ¼ 0;1; . . . ;N � 1

xn ¼ nDx; n ¼ 0;1; . . . ;N � 1

Dx ¼ xup

N
A0 ¼ 0; �Shðx0; xÞ ¼ 0

ð14Þ

The parameter xup refers to an upper limit of the frequency, beyond
which the autocorrelation function is supposed to be zero. Parame-
ter uðjÞn stands for random phase angles in the range [0–2p], for the
jth sample realization.

Fig. 6 presents the EPS estimated from Eq. (12), while sample
realizations of the CNTs with wavy geometry generated using Eq.
(13), is plotted in Fig. 7. As can be seen in this figure, a 3D spatial
waviness is considered by assuming that the coordinates z ¼ zðxÞ
and y ¼ yðxÞ of the CNT are independent stochastic fields generated
from Eq. (13).

4. Viscoelastic modeling of PEEK

The viscoelastic material used for the polymer is the semi-
crystalline thermoplastic polymer poly-ether–ether-ketone (PEEK).
This polymer due to its superior mechanical properties (Jones et al.,
1985; Searle and Pfeiffer, 1985), such as high strength, modulus
and toughness, combined with its excellent thermal stability and
chemical resistance becomes highly suitable for high-performance
composite materials. The viscoelastic behavior of PEEK is rather
complex, so a more complicated numerical model than a simple
spring and a dashpot is required for its simulation. Such model is
the Maxwell–Wiechert model which accounts for a distribution
of relaxation times in a viscoelastic material response (Kaliske
and Rothert, 1997). It is consisted by a finite number of separate
0

200

400

600

800

1000 -8
-6

0

0.5

1

1.5

2

2.5

3

3.5

x 10
5

x(nm)

S(
,x

)

Fig. 6. EPS derived fr
Maxwell-elements and an elastic Hooke-element connected in
parallel, as depicted in Fig. 8.

The stress–strain relation for this model is given by

r̂ðtÞ ¼ E1êð0Þ þ
XN

j¼1

Ej exp � t
sj

� �
êð0Þ ð15Þ

where sj = nj/Ej are the various relaxation times, related to the
viscocity parameters nj and the elastic spring constants Ej.

4.1. Viscoelastic material characterization

A useful tool in viscoelastic material characterization is the dy-
namic mechanical analysis (DMA) test in conjunction with a time–
temperature correspondence principle. By this experimental tool
viscoelastic data is determined over a limited range of time or fre-
quency, but within a large range of temperatures. Master curves
derived by the above experimental procedure are used for param-
eter identification of the viscoelastic models. Using a nonlinear
least-squares fit the unknown relaxation times sj and the elastic
spring constants Ej are determined from the experimental master
curves of a specific viscoelastic material. The error function which
has to be minimized is

R2 ¼
XM

i¼1

1

Ĉ2
1
ðC0 � �C0Þ2i þ ðC

00 � �C00Þ2i
h i

ð16Þ

where C0 and C00 are the storage and loss modulus values of PEEK
predicted by the model, while �C0 and �C00 are their experimental data
measured at M values of frequency.

Master curves of PEEK derived from corresponding DMA tests
are illustrated in Figs. 9 and 10 where the tensile storage and loss
-4
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om SEM image.



Fig. 8. The Maxwell–Wiechert model.
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modulus are depicted with respect to frequency in a log–log dia-
gram. The instantaneous Young’s modulus of PEEK can be obtained
from the tensile storage modulus value corresponding to the high-
est frequency and it is found to be approximately 3 MPa (NTUA-C,
MRECT report M18). For comparison reasons the corresponding
numerical curves are also plotted. The parameters of the Max-
well–Wiechert model derived after minimization of the error func-
tion in Eq. (16) are presented in Table 1. The nonlinear least square
fitting algorithm resulted in 12 Maxwell elements. Their contribu-
tion to the material’s response is also depicted in Figs. 9 and 10.
Notice that parameter identification is conducted on the basis of
the storage modulus �C0 which unavoidably leads to some discrep-
ancies between numerical and experimental curves for the loss
modulus �C00:
5. Modeling RVEs of CNT-RCs

5.1. The embedded element technique

To avoid complicated mesh discretization in the FEM analysis of
the CNT-RCs the embedded element technique is used. The EBE
stiffness matrix is calculated in global coordinate system by the
equation:
Fig. 9. Storage modulus: experimental m
KB ¼ TT kbT ¼ TT
Z

Ve

BT DBdVe

� �
T ð17Þ

where T is the transformation matrix with the kinematic con-
straints, kb is the beam’s local stiffness matrix, D is the material ten-
sor and B contains derivatives of beam shape functions connecting
strains to beam’s displacements and rotations. When the beam con-
sidered embedded for example in the 8 noded solid finite element
(Fig. 11), its translation degrees of freedom can be related to the
nodal displacements of the parent solid element according to the
following equation:

ui

uj

v i

v j

wi

wj

2
666666664

3
777777775
¼

NM O O
O NM O
O O NM

2
64

3
75 UM

VM

WM

2
64

3
75 ð18Þ

where

NM ¼
N1ðiÞ � � �N8ðiÞ

N1ðjÞ � � �N8ðjÞ

� �
ð19Þ

are the shape functions of the solid element evaluated at points i
and j where beam’s nodes lying (Fig. 11).

UM ¼ ½U1 � � �U8�T ; VM ¼ ½V1 � � �V8�T ; WM ¼ ½W1 � � �W8�T ð20Þ

are the nodal displacements of the host solid element.
Modifying the deformation matrix B in Eq. (17) to account for

the relation Eq. (18), we derive an extended matrix (30 � 30) for
beam’s stiffness �KB, relating 24 translations [UM,VM,WM] of the par-
ent element and 6 rotations [hXi,hYi,hZi,hXj,hYj,hZj] of the beam with
external nodal forces and moments, respectively. The final stiffness
matrix assemblage resulting from the parent solid element and the
embedded beam can be formulated as:

Kð30�30Þ ¼
KM þ �KB

TT
�KB

TR
�KB

RT
�KB

RR

" #
ð21Þ

where KM is the stiffness matrix of the solid element, �KB
TT stands for

the extended stiffness matrix of the beam related only to the
aster curve vs. mathematical model.



Fig. 10. Loss Modulus: experimental master curve vs. mathematical model.

Table 1
Parameters of Maxwell–Wiechert model for PEEK.

j Ej [MPa] sj j Ej [MPa] sj j Ej [MPa] sj

1 8.31E�02 1.42E�06 5 3.47E�01 8.85E�03 9 2.19E�01 2.12E+01
2 1.28E�01 1.96E�05 6 3.60E�01 5.78E�02 10 1.54E�01 2.09E+02
3 2.29E�01 1.74E�04 7 3.35E�01 3.77E�01 11 9.91E�02 2.88E+03
4 2.92E�01 1.30E�03 8 2.84E�01 2.65E+00 12 5.97E�02 7.16E+04

Fig. 11. Illustration of the embedded beam element.
Fig. 12. Stress states on reinforcement beams in a RVE in tension.
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translation degrees of freedom, �KB
RR is accordingly related only to

the rotation dof and �KB
TR and �KB

RT contain the interaction terms for
the translation and rotation dof respectively.

5.2. Bond-slip model

Mechanical and damping properties of the nanocomposites are
sensitive to the interfacial characteristics between the CNT and
the matrix. Loads are transferred from the polymer to the CNTs
through their interface. Experimental evidence (Ramanathan
et al., 2005; Velasco-Santos et al., 2003; Zhu et al., 2003) demon-
strated that if functionalization techniques are applied on the
surface of carbon nanotubes, higher ISS may be achieved leading
to improved stiffness and damping properties of the CNT-RCs, while
high aspect ratio of CNTs enhances this load transfer mechanism.

Pullout tests (Yogeeswaran, 2011; Barber et al., 2003; Qian
et al., 2000; Schadler et al., 1998) on CNT-RCs revealed a stick–slip
behavior of the nanotube inside the matrix. For this reason, a non-
linear friction-type bond-slip model is incorporated in the mulit-
scale analysis described in Section 2. This model was first
implemented in the commercial FEA program ATENA (http://
www.cervenka.cz/products/atena/) where it is used to describe
cohesion between reinforcement bar and concrete. Phenomenolog-
ically the nanoscale CNT-RC problem is similar to the mesoscale

http://www.cervenka.cz/products/atena/
http://www.cervenka.cz/products/atena/


Fig. 13. Mesh of the RVE with a straight CNT.
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problem of any fiber-reinforced composite material such as rein-
forced concrete. The adopted solution is fairly simple and provides
reasonable accuracy at low computation cost. Fig. 12 depicts a RVE
consisted of a straight CNT modeled with three EBEs of pipe section
profile which are embedded in the polymer discretized with solid
finite elements. The equilibrium equation for the central EBE can
be written as:

jrRi � rLijAi ¼ sipðDi þ tiÞli ð22Þ

where Ai is the cross sectional area of the beam which has an outer
diameter Di + ti and li is the beam’s length. The nodal axial stresses
rRi and rLi acting on right and left end section of the beam are de-
rived after a smoothing operation as:

rRi ¼
rili þ riþ1liþ1

li þ liþ1
ð23Þ

rLi ¼
rili þ ri�1li�1

li þ li�1
ð24Þ

Solving Eq. (22) for si we obtain the shear stress at the interface be-
tween the CNT and the matrix. Comparing this value to the interfa-
Fig. 14. Stress–strain curves for CNT-RC RVEs considering linear elasti
cial shear strength (ISS), a bond slip friction-type model is
implemented in the form:

si ¼
Ai

pðDi þ tiÞli
jrRi � rLij

< ISS
P ISS

fully bonded

slip

�
ð25Þ

If an EBE, representing some portion of the full length CNT, is in slip
state, this means that its corresponding interface bond has failed,
leading to its inability for further load-transferring. The condition
of slip for a beam element is simulated by reducing its axial stiffness
to a very small value. Notice that bending and torsion rigidities are
not affected allowing the element in slip to resist against bending
and torsion.

The above procedure is implemented within a full Newton–
Raphson incremental-iterative scheme, used for the solution of
the resulted nonlinear equations, as follows:

Step 1: Compute the incremental displacements tDuðiÞ at incre-
ment t and iteration i due to the increment tDP of the external
load vector

tDuðiÞ ¼ tKðiÞT

h i�1
tDP ð26Þ

where tKðiÞT is the global tangent stiffness matrix of the RVE model.

Step 2: Loop over all beam elements and check each element e
for slippage

Slippage
no!
yes!

tKðiÞTe ¼ tKði�1Þ
Te

tKðiÞTe ¼ tKði�1Þ
Te

with ðEAÞe ! 0

(
ð27Þ

when slippage occurs, the axial stiffness is reduced to zero resulting
in a local modified tangent stiffness matrix tKðiÞTe :

Step 3: Correction of internal forces tDFðiÞe of element e and
update global force vector tFðiÞ

tDFðiÞe ¼ tKðiÞTe
tDuðiÞe ð28aÞ
c polymer with wf � 2% and ISS = 0, 5, 10, 20, 40, 80 and 1MPa.



Fig. 15. Stress–strain curves for CNT-RC RVEs considering linear elastic polymer with wf � 1% and ISS = 0, 5, 10, 20, 40, 80 and 1MPa.

Fig. 16. Stress–strain curves for CNT-RC RVEs considering linear elastic polymer with wf � 0.5% and ISS = 0, 5, 10, 20, 40, 80 and 1MPa.
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tFðiÞ ¼ tFði�1Þ þ
XN

e¼1

tDFðiÞe ð28bÞ

Step 4: Compute the residuals trðiÞ

trðiÞ ¼ tP�tFðiÞ
6 tol
> tol

�
then t ¼ t þ 1 go to next increment
then i ¼ iþ 1 go to STEP 1

ð29Þ
6. Numerical results

6.1. Straight CNTs

In the subsequent applications, MWCNTs are used with a nom-
inal outer diameter of 14 nm corresponding to the outer CNT of
chirality type armchair (100,100). Using the procedure described
in Section 2.2, the MMSM space frame model of this CNT is reduced



Fig. 17. Stress–strain curves for CNT-RC RVEs considering linear elastic polymer with wf � 0.1% and ISS = 0, 5, 10, 20, 40, 80 and 1MPa.

Fig. 18. Stress–strain curves for CNT-RC RVEs considering linear viscoelastic polymer with wf � 2% and ISS = 0, 5, 10, 20, 40, 80 and 1MPa.
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to a linear EBE with a pipe profile section with wall thickness
t = 0.34 nm and a mean equivalent diameter computed from Eq.
(8) at deq � 13.453 nm. Equivalent Young’s and shear moduli were
calculated from Eqs. (1)–(3) at E � 1.051 TPa and G � 0.503 TPa,
respectively. RVEs with CNT weight fractions (wfs) ranging from
0.1% to 2% were analyzed in monotonic as well as cyclic axial load-
ing with 1 Hz frequency and strain amplitude 5%. Despite the fact
that the RVEs are strained up to 5%, CNT-polymer slippage occurs
at a much earlier stage which can be observed at Figs. 14–21. As
a result, the CNTs are strained less than 1% for all the considered
cases, leading thus to a reasonable linear elastic assumption for
the CNTs. The RVE FE model is illustrated at Fig. 13. The effect of
the ISS on both stiffness and damping properties of the CNT-RCs
were assessed through parametric studies conducted for various
values of the ISS parameter of the bond-slip model in Section 4,
ranging from 5 to 80 MPa. Notice that the tensile elongation of



Fig. 19. Stress–strain curves for CNT-RC RVEs considering linear viscoelastic polymer with wf � 1% and ISS = 0, 5, 10, 20, 40, 80 and 1MPa.

Fig. 20. Stress–strain curves for CNT-RC RVEs considering linear viscoelastic polymer with wf � 0.5% and ISS = 0, 5, 10, 20, 40, 80 and 1MPa.
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PEEK polymer at yield point is 5% and its shear strength is 53 MPa
(http://www.victrex.com).

Figs. 14–17 present the computed stress–strain diagrams for
five different values of the ISS (ISS = 5, 10, 20, 40 and 80 MPa)
as well as the fully bonded model (ISS =1) and the neat PEEK
(ISS = 0) for CNT weight fractions wf � 2%, 1%, 0.5% and 0.1%,
respectively. The polymer in all above cases is assumed as
purely elastic. The energy dissipation under cyclic loading in
these figures is attributed only to CNT slippage along its interface
with the polymer. From these figures it can be observed that in
all cases, the stiffness and the energy dissipation capability of
the CNT-RC is increased with increasing ISS, while the overall
stiffness approaches the stiffness of the fully bonded case,
which reaches 3 times the stiffness of the neat PEEK for a
wf � 2%. A wf � 0.1% marginally influences the behavior of neat
PEEK.

http://www.victrex.com


Fig. 21. Stress–strain curves for CNT-RC RVEs considering linear viscoelastic polymer with wf � 0.1% and ISS = 0, 5, 10, 20, 40, 80 and 1MPa.

Fig. 22. Loss factor computed from the hysteresis loop of CNT-RC RVEs considering linear viscoelastic polymer for wf = 2, 1, 0.5, 0.1% and ISS = 0, 5, 10, 20, 40, 80 and1MPa.
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Figs. 18–21 present the same results with Figs. 14–17, but for a
viscoelastic behavior of the polymer. The energy dissipation under
cyclic loading in these figures is attributed to both the viscoelastic
matrix and the CNT slippage along its interface with the polymer.
From these figures it can also be observed that in all weight frac-
tions, the energy dissipation capability of the CNT-RC is increased
for increasing ISS, while the overall stiffness approaches the stiff-
ness of the fully bonded case. The energy dissipation characteris-
tics are more pronounced for weight fractions larger than 0.5%
while relatively small weight fractions of the order of 0.1% exhibit
a damping behavior very similar to that of the neat PEEK material.
Fig. 22 presents the effective loss factor as a function of the var-
ious ISS values (5, 10, 20, 40 and 80 MPa) and weight fractions
(wf � 2, 1, 0.5 and 0.1%) for linear viscoelastic polymer (PEEK).
The loss factor values for the case of neat PEEK (ISS = 0) and for
the fully bonded case (ISS =1) are also depicted. The effective loss
factor is computed as the ratio of the dissipated energy per unit
volume to the maximum stored energy per unit volume expressed
by

tan d ¼ D
pr0e0

ð30Þ



Fig. 23. Comparison between average stress–strain curve of 50 RVEs with random wavy CNTs with the corresponding RVE with a straight CNT (wf = 2% and ISS = 40 MPa).

Table 2
Loss factor values for straight and wavy CNTs.

Straight CNT Wavy CNTs

Loss factor 0.3744 0.3182
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where r0 and e0 are the mean stress and strain amplitudes obtained
from the finite element analysis of the RVE model subjected to cyclic
load and D is the area captured within the hysteresis stress–strain
loop corresponding to the dissipated energy per cycle. This figure
quantifies the previously mentioned observation that the energy dis-
sipation capacity of the CNT-RC is increased for increasing ISS. The
loss factor increases with increasing ISS and reaches a maximum pla-
teau for values greater than 40 MPa which are values that are equal
or greater than the shear strength of the PEEK (52 MPa). The maxi-
mum loss factor reached for ISS = 80 MPa is more than 200%, 250%
and 300% the loss factor of neat PEEK for wfs � 0.5, 1% and 2%,
respectively. This increase, however, is marginal in the case of small
weight fractions in the order of wf = 0.1%. In all cases, the loss factor
decreases after this maximum plateau (for values of the ISS larger
than 80 Mpa), reaching the loss factor of the full-bond condition.
This behavior of the CNT-RCs implies that a successful functionaliza-
tion process capable of producing an increased ISS, close or slightly
higher than the corresponding shear strength of the polymer, is cru-
cial for achieving optimum damping characteristics. Notice that as
CNTs content is increased the stiffness of the RVE is increased too,
leading to the reduction of the loss factor. This fact can be observed
in Fig. 22 especially for the fully bonded case (ISS =1). However as
wf is increased the total area of the lateral surface of CNTs is in-
creased too, leading to a reduction of the interfacial shear stresses
under the same external loads on the RVE. This means that the
RVE can reach higher stresses before the critical ISS value is exceeded
and subsequently slip occurs. This delay of slip causes an increased
hysteresis loop in the stress–strain diagram of the RVE. Notice that
in all simulations the strain amplitude is constant (±5%) as the RVE
model is subjected to a prescribed cyclic deformation. For ISS values
higher than 80 MPa the loss factor is decreasing as the fully bonded
state and the high stiffness of the RVE start to dominate.

6.2. Wavy CNTs

Stochastic analysis is performed as a next step to account for
the random CNT waviness. For this purpose, a number of random
CNT geometries were generated using Eq. (13) and the correspond-
ing RVE FE models with wf � 2% were analyzed in the context of a
Monte Carlo simulation for cyclic loading and ISS = 40 MPa.
From the cloud of the computed stress–strain curves presented in
Fig. 23, the average curve was estimated. This average curve, to-
gether with the stress–strain curve corresponding to a RVE with
a straight CNT, is also depicted in Fig. 23 for comparison purposes.
It must be mentioned that CNT length is the same in all RVE
models, so the observed differences in the stress–strain curves
are exclusively attributed to CNT stochastic waviness. From these
curves, the values of the loss factor were obtained for the case of
wavy and straight CNTs and presented in Table 2 where it can be
seen that CNT waviness results in a 15% reduction of loss factor.
So we can conclude that CNTs straightening is important, leading
to improved damping properties of the CNT-RCs.
7. Conclusions

In the present study the effect of interfacial shear strength on
the mechanical and damping properties of CNT-RCs is investigated
using a multiscale simulation. The atomic lattice of CNTs is mod-
eled as a space frame structure using the modified molecular struc-
tural mechanics approach. Subsequently, this model is reduced to
an equivalent beam element which is used as the basic building
block for the construction of full length CNTs embedded in the
polymer. Linear material properties are assigned to the equivalent
beam elements, while a Maxwell–Wiechert material model is used
for modeling the viscoelastic behavior of the PEEK polymer. The
interfacial load transfer mechanism between the lateral surface
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of the CNT and the surrounding matrix is taken into account with
a nonlinear bond-slip friction-type model. Straight as well as
wavy CNTs were investigated. In the case of wavy CNTs, random
CNT geometries are generated using the spectral representation
method with evolutionary power spectra derived from processing
scanning electron microscope images. Stochastic average proper-
ties were derived with Monte Carlo simulation.

From the Numerical results presented, the significant effect of
the interfacial shear strength, as well as the influence of CNT wav-
iness on the damping behavior of CNT-RCs, was demonstrated.
Specifically it was shown that the loss factor increases with
increasing ISS and reaches a maximum plateau for values equal
or greater than the shear strength of the polymer. This behavior
of the CNT-RCs implies that a successful functionalization process
that results in increased interfacial shear strength is crucial for
achieving optimum damping characteristics. In addition, it is dem-
onstrated that CNT waviness results in a reduction of loss factor
leading to the conclusion that straightening of CNTs is important
leading to improved damping properties of the CNT-RCs. Nonlinear
phenomena, such as buckling of nanotubes or defected C–C bonds,
which would result in an equivalent beam element (EBE) with non-
linear behavior, would be considered by the authors in a future re-
search. Experimental validation of the present numerical results is
essential in order to demonstrate the effectiveness of the proposed
modeling. To the authors knowledge there is luck of published
experimental data concerning damping measurements on CNT-
PEEK composites in literature. However in Michelis et al. (2012)
experimental results are provided for cyclic tests on CNT-PEEK
tapes with wf = 0.5% under constant strain amplitude performed
at room temperature, 1 Hz frequency and at different strain levels
ranging from well within the elastic domain to large plastic defor-
mations near failure. The measured damping coefficient ranged
from 0.3 to 0.56. These values are quite close to the ones predicted
numerically in this study.
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