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Subset Simulation (SS) is a powerful tool, simple to implement and capable of solving a broad range of
reliability analysis problems. In many cases however, SS leads to reliability predictions that exhibit a
large variability due to the fact that the robustness of the SS prediction depends on the selection of an
adequate width of the proposal distribution when applying the modified Metropolis algorithm. In this
work a Neural Network-based SS (SS-NN) methodology is proposed in which NN are effectively trained
over smaller sub-domains of the total random variable space which are generated progressively at each
SS level by the modified Metropolis algorithm. NN are then used as robust meta-models in order to
increase the efficiency of SS by increasing significantly the samples per SS level with a minimum addi-
tional computational effort. In the numerical examples considered, it is demonstrated that the training
of a sufficiently accurate NN meta-model in the context of SS simulation leads to more robust estimations
of the probability of failure both in terms of mean and variance of the estimator.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Reliability analysis methods have been developed over the last
two decades and have stimulated the interest for the probabilistic
treatment of structures. Despite the theoretical advancements in
the field of reliability analysis serious computational obstacles
arise when treating realistic problems. In particular, reliability
analysis of large-scale structural systems is an extremely computa-
tionally intensive task, which requires disproportionate computa-
tional effort for practical reliability problems, when a Monte
Carlo Simulation (MCS) method is implemented. This is even more
pronounced in cases where nonlinear Finite Element analysis is re-
quired for the prediction of the structural performance.

To alleviate this drawback advanced variance reduction-based
simulation methods have been proposed in order to reduce the
number of Monte Carlo simulations required for an accurate pre-
diction of the probability of failure, such as importance sampling,
line sampling and Subset Simulation (SS) [1–4]. However, the suc-
cess of the aforementioned methodologies in accurately perform-
ing reliability analyses is not always guaranteed. In particular, SS
leads to reliability predictions that in many cases exhibit a large
variability due to the fact that the accuracy of SS prediction de-
pends strongly on an arbitrary selection of the values of certain
parameters for which no a priori knowledge is available.
ll rights reserved.

opoulos).
In addition to the aforementioned methodologies, meta-models,
such as Neural Networks (NN) have been successfully imple-
mented in the framework of reliability analysis leading to cost-
efficient but approximate predictions of the probability of failure
[5,6]. Following these early approaches, NN approximations of
the limit-state function were proposed in [7] combined with either
MCS or with FORM approaches for handling the uncertainties,
while similar approaches were presented in [8–10] in which NN
based response surface methods were implemented in order esti-
mate the reliability integral over the failure domain. In addition,
surrogate models were implemented in [11] in order to obtain a
drastic reduction of the computational labour implied by simula-
tion techniques.

In the present study a methodology for computing the probabil-
ity of structural failure by incorporating NN in the framework of
the SS method is proposed. This way the computational efficiency
of SS is substantially enhanced. The basic concept is to progres-
sively train the NN at each SS level in a sequence of moving ranges
(windows) defined by the upper and lower bounds of the samples
generated by the Markov Chains of the modified Metropolis algo-
rithm. This way the NN are effectively trained and used subse-
quently as robust meta-models in order to improve the efficiency
of SS. This is accomplished by significantly increasing the samples
at each SS level with a minimum additional computational effort. It
is shown that the proposed approach leads to more robust estima-
tions of the probability of failure both in terms of mean and
variance, with respect to classical SS as well as with respect to
NN-based brute force Monte Carlo simulation [5].

http://dx.doi.org/10.1016/j.cma.2012.02.013
mailto:vpapado@central.ntua.gr
http://dx.doi.org/10.1016/j.cma.2012.02.013
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2. The subset simulation method

The estimation of small failure probabilities PF with the aid of
MCS requires an excessive number of simulations in order to cap-
ture rare events. The basic idea of subset sampling is the subdivi-
sion of the failure event F into a sequence of M partial failure
events (subsets) F1 � F2 � . . . � FM ¼ F. The division into subsets
(sub-problems) offers the possibility to transform the simulation
of rare events into a set of simulations of more frequent events.
The determination of the failure events Fi can be determined by
presetting a series of limit values gi, i = 1, 2, . . . , M such as [3]:

Fi ¼ fx : gðxÞ 6 gig ð1Þ

where x being the vector of independent and identically distributed
samples according to a probability density function (PDF) q, and g(x)
is the system performance function, usually a non-linear function of
x. This enables the computation of the failure probability as a prod-
uct of conditional probabilities P(Fi+1|Fi) and P(F1) as follows:

PF ¼ PðFMÞ ¼ PðF1Þ �
YM�1

i¼1

PðFiþ1jFiÞ ð2Þ

The determination of the failure events Fi and the partial conditional
failure probabilities Pi = P(Fi+1|Fi) strongly affects the accuracy of the
simulation. Usually, the limit values gi|i = 1, 2, . . . , M are selected in
such way that nearly equal partial failure probabilities
Pi|i = 2, . . . , M are obtained for each subset. However, it is difficult
to specify in advance the limit values gi according to a prescribed
probability Pi. Therefore the limit values have to be determined
adaptively within the simulation, as a function of the prescribed
Pi [4].

2.1. Subset simulation algorithm

In the first step the probability P1 is determined by direct Monte
Carlo simulation:

P1 ¼ PðF1Þ �
1
N
�
XN1

k¼1

IF1 ðx
ð1Þ
k Þ ð3Þ

where ½xð1Þk : k ¼ 1; . . . ;N� are independent and identically distrib-
uted (i.i.d) samples simulated according to PDF q and IF1 ðx

ð1Þ
k Þ is

the indicator

IF1 ðx
ð1Þ
k Þ ¼

0 if xð1Þk R F1

1 if xð1Þk 2 F1

(
ð4Þ

To obtain the conditional probabilities P(Fi+1|Fi) of Eq. (2), the
evaluation of the respective conditional probability density func-
tions is required:

qðxjFiÞ ¼
IFiðxÞqðxÞ

PðFiÞ
ð5Þ

Samples that follow the q(x|Fi) conditional PDF can be generated
numerically using a Markov Chain Monte Carlo procedure. Then
the conditional probability at subset level i + 1 can be estimated
as:

PðFiþ1jFiÞ ¼ Piþ1 �
1

Niþ1

XNiþ1

k¼1

IFiþ1
ðxðiþ1Þ

k Þ ð6Þ

The samples of i + 1 subset are generated from the samples of
subset i that are located in the failure region Fi as follows

xðiÞ : gðxðiÞÞ > gi; i ¼ 1;2; . . . ;M � 1 ð7Þ

The limit value gi of the ith partial subset is determined during the
simulation from a list of sorted pairs ðxðiÞk ; gðx

ðiÞ
k ÞÞ; k ¼ 1;2; . . . ;Ni in
ascending order, according to the values of gðxðiÞk Þ. The limit value
gi corresponds to the value of the performance function of the jth
sorted sample given by

gi ¼ gðxðiÞj Þ; j ¼ Pi � Ni ð8Þ

The number of samples Ni is selected in a way that partial prob-
abilities Pi at each subset level are accurately estimated, in the con-
text of MCS. The last failure probability P(FM|FM�1) can be
estimated with the following expression:

PðFMjFM�1Þ � PM ¼
1

NM

XNM

k¼1

IFM ðx
ðMÞ
k Þ ð9Þ

The total failure probability PF may then be computed as

PF ¼
YM
i¼1

Pi ð10Þ
2.2. Markov chain Monte Carlo simulation

Markov Chain Monte Carlo Simulation (MCMCS), in particular,
the Metropolis method, is a powerful simulation technique for
simulating samples according to an arbitrary probability distribu-
tion function (PDF). It originates from the method developed by
Metropolis and his co-workers for applications in statistical phys-
ics [12]. The advantages of MCMCS for solving reliability analysis
problems is that it succeeds in simulating samples compatible to
a conditional probability distribution q( � |F), which has been the
main challenge in simulation–based reliability analysis. The algo-
rithm used here is a modified version of the original Metropolis
algorithm [4].

2.2.1. Modified Metropolis algorithm
For every j = 1, . . . , n let p�j ðyjxÞ, called the ‘proposal PDF’, be a

one-dimensional PDF for y centred at x with the symmetry prop-
erty p�j ðyjxÞ ¼ p�j ðxjyÞ. Generate a sequence of samples{x1, x2, . . .},
from a given sample x1 by computing xk+1 from xk ¼ ½xkð1Þ; . . . ;

xkðnÞ�; k ¼ 1;2; . . . as follows:

1. Generate a ‘candidate’ state x⁄: for each component j = 1, . . . , n,
simulate yj from p�j ð�jxkðjÞÞ.

Compute the ratio rj ¼
qjðyjÞ

qjðxkðjÞÞ
ð11Þ

Set x⁄(j) = yj with probability

x�ðjÞ ¼
yj with probability minf1; rjg
xkðjÞwith probability 1�minf1; rjg

�
ð12Þ

1. Accept/reject x⁄: Check the location of x⁄. If x⁄ e Fi , accept it as
the next sample, i.e. xk+1 = x⁄ ; Otherwise reject it and take the
current sample as the next sample i.e. xk+1 = xk.
xkþ1 ¼
x�kþ1 when x� 2 Fi

xk when x� R Fi

� �
ð13Þ

Step 1 can be viewed as a ‘local’ random walk in the neighbour-
hood of the current state xk , while Step 2 ensures that the next
sample always lies in Fi, so as to produce the correct conditioning
in the samples.

The choice of the proposal PDFs affects the deviation of the can-
didate state from the current one and controls the efficiency of the
Markov Chain samples. Simulations show that the efficiency of the
method is insensitive to the type of the proposal PDFs, and hence
those which can be operated easily are the most preferable. For
example, the uniform PDF centred at the current sample with



Fig. 1. Fully connected back-propagation neural network.
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width 2lj is a good candidate for p�j . However, the spread of the pro-
posal PDFs is of crucial importance since it affects the size of the
region covered by the Markov chain samples, and consequently it
controls the efficiency of the method. Very small spreads of the
proposal PDFs tends to increase the dependence between succes-
sive samples due to their proximity, thus slowing down conver-
gence of the estimator and occasionally causing ergodicity
problems. On the other hand, excessive large spreads may reduce
the acceptance rate, by increasing the number of repeated Markov
Chain samples and thus slowing down convergence. The optimal
choice for the spread of the proposal PDFs depends on a trade-off
between acceptance rate and correlation due to proximity. Usually,
the spread is chosen to be a fraction of the standard deviation of
the starting samples, since no a priori knowledge is available that
would lead to a convenient choice of spread [3,4].

The choice of the intermediate failure events also plays a key
role in the SS robustness since it affects the values of the condi-
tional level probabilities and hence the efficiency of the method.
A commonly applied procedure is to choose a priori the intermedi-
ate threshold values gi in eq.(1) in such way that nearly equal
partial failure probabilities Pi|i = 2, . . . , M are obtained for each
subset. However, as it is often difficult to specify the limit values
gi in advance according to a prescribed partial probability Pi, these
values are obtained during the SS procedure from a list of sorted
pairs in ascending order so that the estimated conditional proba-
bilities are equal to predefined values (see eq.(8)). This choice of
the intermediate limit thresholds implies that the limit values gi

are no longer deterministic, since they depend on the conditional
samples.
3. Artificial neural networks

Artificial Neural Networks (NNs) are information processing
models configured for a specific application through a training pro-
cess. Trained NNs provide with rapid mapping of a given input into
the desired output quantities, thereby can be used as meta-models
that enhance the computational efficiency of a numerical analysis
process. This major advantage of a trained NN over a conventional
numerical analysis procedures, under the provision that the pre-
dicted results fall within acceptable tolerances, is that results can
be produced in a fraction of wall clock time, requiring orders of
magnitude less computational effort than the conventional proce-
dure [13–15,18].

Learning algorithms are divided into two major categories. (i)
Algorithms that use global knowledge of the state of the entire net-
work, referred as global techniques such as the direction of the
overall weight update vector. In the conventional back-propaga-
tion learning algorithm, a global learning algorithm that is fre-
quently used is the gradient descent algorithm. (ii) Local
adaptation strategies, based on the temporal behaviour of the par-
tial derivative of the corresponding weight. A local approach is
more closely related to the neural network concept of distributed
processing in which computations can be made independent to
each other. Furthermore, it appears that for many applications lo-
cal strategies achieve faster and more reliable prediction than glo-
bal techniques despite the fact that they use less information [16].
In this work the Resilient (Rprop) training algorithms have been
adopted which belong to the second category (local adaptation
strategy) since they have been proved very efficient for training a
NN [17]. In the Rprop learning algorithm the locally adaptive learn-
ing rates are bounded by upper and lower limits in order to avoid
oscillations and arithmetic underflow. The NN learning process
progresses iteratively, through a number of epochs. On each epoch
the training patterns are submitted in turn to the network and the
error is calculated by combining the actual outputs with the corre-
sponding target values. In the present investigation a fully con-
nected network is used (Fig. 1).

4. Neural networks based subset simulation (SS-NN)

The basic idea of the proposed methodology is to transfer infor-
mation from the modified Metropolis algorithm to the NN training
process in order to train effectively the NN in a sequence of moving
ranges (windows), as these are produced by the upper and lower
bounds of the random variables generated by Markov chains of
the MCMCS at each successive SS level. The NN is then used as a
robust meta-model in order to increase the SS efficiency by signif-
icantly enriching the sample space at each SS level with a mini-
mum additional computational cost. In order to achieve that, a
large number, with respect to standard SS procedure, of NMC sam-
ples is generated at each subsequent SS level using MCMC algo-
rithm and the corresponding failure function values are
evaluated with the trained NN instead of the real numerical model.

Two alternative training strategies were implemented for the
NN training procedure. The first (SS-NN1) introduces a closed mul-
tidimensional set XM, subset of the total random variable space
H(XM�H) defined by the upper and lower bounds of the random
variables as these are generated by the increased, with respect to
standard SS, space of MCMCS samples at each SS level. Subse-
quently, the NN is effectively trained over progressive and rela-
tively small sets XM instead of H, with the minimum required
training points using a Latin Hypercube Sampling (LHS) training
scheme. The second strategy (SS-NN1) introduces a width l around
each initial seed that the MCMCS uses as center in order to gener-
ate a random walk according to the proposal pdf q(x|Fi) of eq. (5).
This width defines a closed subset X(j) around each seed j, defined
by a lower and upper bound at distance ±l from the center. The NN
is effectively trained at each X(j) with a minimum computational
cost using the LHS. Obviously, the subset XM in the case of SS-
NN2 is constructed by the union of all X(j) at each SS level.

The basic difference between the proposed methodology and
the classical NN-based MCS [5] is that the SS-NN1 and SS-NN2
training processes are more effective since in both cases the NN
is trained over smaller but sufficient progressive subsets of the to-
tal random variable space H. The NN is used subsequently as a
more accurate meta-model, compared to a NN that is trained over
the whole H, as in the case of classical NN-MCS [5]. The trained NN
is then used to produce estimates of the failure function values re-
quired for the definition of the conditional parametric space
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FM|FM�1 over which the probability P(FM|FM�1) of eq. (9) is calcu-
lated at each SS level. Detailed pseudo-algorithms of the two NN
training alternatives are presented next.

4.1. First NN training approach (SS-NN1)

Step 1: At the Mth SS level, generate a large number of NMC sam-
ples for each random xðMÞi variable satisfying failure criterion FM�1,
using the Metropolis–Hastings algorithm as follows:

ð16Þ

where xðMÞij , i=1,2, . . . ,n are the points of the MCMC random walk
around xðMÞi , n being the number of random variables.

Step 2: Define the limits of subset XM by determining its lower
and upper bounds. These limits define the window in which NN is
progressively trained at each SS level.

xðMÞlower ¼

xðMÞlower;1

xðMÞlower;2

:

:

:

xðMÞlower;n

2
6666666664

3
7777777775
¼ min

xðMÞ1j

xðMÞ2j

:

:

:

xðMÞnj

2
6666666664

3
7777777775
; j ¼ 1; . . . ;NMC

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð17aÞ
Xupper,1
(M-1)

Xupper,1
(M)

X1

Ω(M-1)

ΩM

ΩM - ΩM Ω

FM

Xlower,1
(M)

Xlower,1
(M-1)

Xupper,2
(M-1

Xlower,2
(M)

Xlower,2
(M-1)

Fig. 2. Schematic representation of progressive NN
xðkÞupper ¼

xðMÞupper;1

xðMÞupper;2

..

.

xðMÞupper;n

2
6666664

3
7777775
¼ max

xðMÞ1j

xðMÞ2j

..

.

xðMÞnj

2
6666664

3
7777775
; j ¼ 1; . . . ;NMC

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð17bÞ

Step 3: Train the Neural Network within the multidimensional
space XM using a LHS scheme in the following range

½xðMÞlower; x
ðMÞ
upper� ¼ ½fx

ðMÞ
lower;ig; fx

ðMÞ
upper;ig�; i ¼ 1; . . . ;n ð18aÞ

In case that the successive training windows overlap, NN is
trained over the remaining non-overlapping domain, which is de-
fined as follows:

XM � ðXM \XðM�1ÞÞ ð18bÞ

A schematic representation of the aforementioned procedure
for the progressive NN training windows in two subsequent subset
levels is presented in the following Fig. 2 for an ideal case of two
random variables.

The number of points used for the NN training at the Mth SS le-
vel spans the dashed area in Fig. 2. This number is equal to the
number of the required analyses of the detailed model (or function
evaluations) and hence the computational effort involved at each
SS level.

Step 4: Estimate the analysis results (function evaluations) at
each one of the NMC sample points of XM generated in Eq. (23)
using the trained NN with practically zero additional computa-
tional cost.
X2

(M-1)

MCMC samples at SS level M

MCMC samples at SS level 
M-1

MCMC samples used as 
seeds for SS level M

-1

)
Xupper,2

(M)

FM

training windows in two subsequent SS levels.
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ð19Þ

Step 5: Estimate the failure criterion FM according to eq.(9) and
return to Step 1 for the subsequent SS Level. This is done by spec-
ifying intermediate target probabilities P(FM|FM�1) at each SS level
(usually set at 10�1) and identifying the failure event FM by sorting
xj and y(M) according to the magnitude of the elements of y(M).

4.1.1. LHS based training
The Resilient Back Propagation (Rprop) algorithm is used for the

NN training. The appropriate selection of I/O training data is an
important factor for a successful training since the training set
must include data over the entire range of the output space.
Although the number of training patterns plays its own role in
the accuracy of the predictions, the distribution of samples is of
greater importance. The selection of the I/O training pairs is based
on the requirement that the full range of possible results should be
represented in the training procedure.

In the present study the sample space for each random variable
is divided into equally spaced distances for the application of the
NN simulation and for the selection of the suitable training pairs.
The range for the random vector x is defined as follows:

xðMÞlower;i ¼minimumðxðMÞij Þ

xðMÞupper;i ¼maximumðxðMÞij Þ

������ i ¼ 1; . . . ;n

j ¼ 1; . . . ;NMC

ð20Þ
 training points at SS level M-2

xlower,2
(M-2)xlower,2

(M-1)xlower,2
(M)

xlower,1
(M-2)

xlower,1
(M-1)

xlower,1
(M)

xupper,1
(M-2)

xupper,1
(M-1)

xupper,1
(M)

 training points at SS level M-1

 training points at SS level M

Fig. 3. LHS training scheme for two random v
where n is the number of random variables, NMC is the total number
of MCMC samples generated at Mth SS level. The samples used at
each SS level for the NN training are generated with the Latin

Hypercube Sampling method within the range ½xðMÞlower;i; x
ðMÞ
upper;i� for

each random variable. As mentioned previously, NN is trained over
the non-overlapping domains of the windows in two subsequent SS
levels. A schematic representation of the LHS training scheme for an
ideal case of two random variables and three subsequent SS levels is
shown in Fig. 3.

The convergence of the training process is controlled by the pre-
diction error. This is done either with a direct comparison of the
predicted results with the target values computed by the conven-
tional numerical procedure denoted as ‘‘exact’’, or by means of the
root mean square error eRMS, which gives a measure of the differ-
ence between predicted at each NN cycle and ‘‘exact’’ values.

eRMSð%Þ ¼
jOutReal � OutNNj

OutReal
� 100 ð21Þ
4.2. Second NN training approach (SS-NN2)

The pseudo-algorithm of the second NN training strategy is as
follows:

Step 1: At the first SS level, generate NMC function evaluations,
sort the samples in ascending order and determine the failure
criterion for the first subset level and the samples which will
be used as seeds for the next subset level. The number of the
samples will be P0 � NMC, where P0 is the target probability of
the intermediate failure events usually taken as 0.1.
xupper,2
(M-2) xupper,2

(M-1) xupper,2
(M)

ariables and three subsequent SS levels.
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Step 2: For every seed xðjÞcenter ¼ ðx
j
center;1; . . . ; xj

center;nÞ satisfying the
first failure criterion (>F1), train a NN within subset
XðjÞ � XM � H defined as:

XðjÞ ¼ ½xðjÞlower; x
ðjÞ
upper� ¼ ½fx

ðjÞ
center � lg; fxðjÞcenter þ lg�;

j ¼ 1; . . . ; P0 � N ð22aÞ

where l is a width that defines X(j). Subset XM in this case is given
by the following union:

XM ¼
[P0 �N

j

XðjÞ ð22bÞ

The total number of the NN training points at this step will be

Ntrain ¼ T � P0 � NMC ð23Þ
Sample a

Sample b

Sample g

Sample g

x 2

xcenter
(j)

,     j = 1,…,P0.NMC

F1

NMC

P0.NMC .
.
.

Fig. 4. Schematic representation of steps 1 an

P0
.NNN

F2

.

.

.

.

.

.

NNN

s

Subset 2 Samples co
F2|F

Fig. 5. Schematic repres
where T is the number of points generated by LHS. A schematic rep-
resentation of steps 1 and 2 is shown in Fig. 4.

Step 3: Use the trained Neural Network to perform NNN

(NNN P Ntrain) function evaluations in the context of SS proce-
dure and modified Metropolis algorithm. Estimate the failure
criterion of the second subset and obtain the samples P0 � NNN

used as seeds for the next SS level.
Step 4: Among the P0 � NNN samples select only Ntrain which will
be used for the NN training. The selection is made stepwise in
order to achieve the best representation of the parametric space
(Fig. 5). In order to train the NN accurately and effectively,
replace the values of the performance function for the Ntrain

points with a real function evaluations.
Step 5: Train the Neural Network and generate NNN MCMC
samples.
F

NN enrichement

bove limit state F1 

elow limit state F1 

enerated by LHS for training NN

enerated by Markov Chain “solved” by NN

NN training

LH sampling
+

1

F1

x 1

d 2 for the second NN training approach.

Stepwise 
Selection

P0
.NNN

Ntrain
tep  =

ntained in 
1

Stepwise selected 
seeds for subset 3

entation of step 4.
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Step 6: Repeat steps 4 and 5 until the target failure criterion is
achieved.

4.2.1. Choice of witdh for the NN training in SS-NN2
It must be mentioned here that the selection of an appropriate

width l for the NN training in SS-NN2, is of crucial importance since
it affects the ability of the NN to accurately predict the values of
the failure function within XM. This is due to the fact that the
NN is not trained over the total subspace that covers the random
walk around each seed of the MCMCS, as in the case of XMin SS-
NN1. Therefore, the accuracy of SS-NN2 relies on the aliasing of
the various X(j) so that samples of the random walk around one
seed that violate the limits of eq. 22, i.e. plus and minus the width
of the proposal pdf, are expected to fall in to the training window
of an adjacent seed. The selection of an appropriate width is not a
priori known but it seems that a convenient choice is l = 2.
5. Numerical examples

In order to assess the performances of the SS-NN methods, two
test examples are considered, one based on mathematical models
and one based on a structural analysis problem. For the mathemat-
ical models, all random variables x(j), j = 1, . . . , n are assumed to fol-
low the Normal distribution with mean value lx = 0 and standard
deviation rx = 1. The partial failure probabilities are predefined to
Pi = P0 = 0.1 for each subset. For this example a number of n = 3,
10 and 100 random variables have been used in order to test the
efficiency of the proposed method and its sensitivity to the dimen-
sionality of the problem. The target probability of failure is taken
PF = 10�4.

5.1. Example 1: Mathematical model 1

The proposed method is first implemented in a simple linear
analytic performance function, given by the following expression:

Y1ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðxðjÞÞ2
vuut ; j ¼ 1; . . . ; n ð24Þ
Table 1
SS estimation of failure probability PF.

Subset simulation (10 simulation runs)

Failure function Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1x2
i

q
Random variables Function evaluations per subset Mean Pf COV

3 1.000 9.89 	 10�5 0.40
10.000 9.96 	 10�5 0.15

10 1.000 9.59 	 10�5 0.34
10.000 9.94 	 10�5 0.15

100 1.000 9.89 	 10�5 0.29
10.000 9.98 	 10�5 0.09

Table 2
SS-NN estimation of failure probability for the case of three random variables.

Failure function

Random variables Function evaluations per subset MCMC samples per subset f

3 1.000 104

105

106
5.1.1. Subset Simulation
A standard SS is initially performed generating 1.000 and 10.000

samples per subset level. The spread of the uniform proposal PDF is
taken l = 2. Table 1 depicts the mean value and COV of the esti-
mated probability of failure, which corresponds to the reference
failure criterion for the cases of 3, 10 and 100 random variables.
The reference failure criterion which corresponds to the target
probability of PF = 10�4, is calculated in all cases considered by
means of brute force Monte Carlo Simulation with 106 samples.

From this Table it can be seen that the efficiency of the Subset
Simulation is highly depended on the number of the samples gen-
erated in each Subset and less in the dimensionality of the prob-
lem. The coefficient of variation for the estimated probability
significantly reduces when increasing the number of analyses
and reaches a 10–20% value only when 10.000 samples per ubset
are used. These results tend to improve when higher dimensional-
ity problems are investigated (10 and 100 random variables). The
bias of SS in the prediction of the mean PF, is 1.1%, 4.1% and 1.1%
for the 1.000 function evalutations per subset levels and 3, 10
and 100 random variables, respectively, while the same results
for 10.000 function evaluations per SS level are 0.4%, 0.6% and 0.2%.

5.1.2. Proposed SS-NN methodologies
The same problem is now solved with the proposed SS-NN ap-

proaches using the procedures described in section 4.1 and 4.2.
Tables 2–4 present the results for the two approaches for the cases
of n=3, 10 and 100 random variables, respectively.

Form these Tables it can be seen that the performance of the
two NN training alternatives is almost equivalent in terms of the
COV of their estimations. For SS-NN1, the bias for the cases of 3,
10 and 100 variables in the mean PF is 1%, 1% and 5%, respectively,
while SS-NN2 produces improved predictions with a correspond-
ing bias of 0.2%, 0.2% and 0.7%. In all cases examined, very good
predictions of the mean PF with a relatively small COV (10–20%)
where achieved with the proposed approach using 1.000 training
points and 106 MCMC samples per SS level, which is an order of
magnitude less computational effort with respect to the 10.000
number of function evaluations per subset required by standard
SS in order to reach the same accuracy.

5.2. Example 1: Mathematical model 2

The proposed method is also implemented in a non-linear ana-
lytic performance function, given by the following expression:

Y1ðxÞ ¼
Xn

i¼1

X5
i � 5 �

Xn

i¼1

Xi þ 12; j ¼ 1; . . . ;n ð25Þ

The results of the standard Simulation method and of the proposed
methodologies are presented in the next Tables.

From Table 5 it can be seen that the bias of SS in the prediction
of the mean PF, is 2.5%, 2% and 1.1% for the 1.000 function evaluta-
tions per subset levels and 3, 10 and 100 random variables, respec-
tively, while the same results for 10.000 function evaluations per
SS level are 0.7%, 0.4% and 2%. Form Tables 6–8 it can be concluded
Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1X2
i

q
SS SS-NN1 SS-NN2

or the NN Mean Pf COV Mean Pf COV Mean Pf COV

9.89 	 10�5 0.40 9.86 	 10�5 0.20 1.09 	 10�4 0.14
9.94 	 10�5 0.18 1.01 	 10�4 0.07
1.01 	 10�4 0.11 9.98 	 10�5 0.06



Table 3
SS-NN estimation of failure probability for the case of 10 random variables.

Failure function Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1X2
i

q
SS SS-NN1 SS-NN2

Random variables Function evaluations per subset MCMC Samples per subset for the NN Mean Pf COV Mean Pf COV Mean Pf COV

10 1.000 104 9.59 	 10�5 0.34 9.84 	 10�5 0.24 9.93 	 10�5 0.19
105 1.07 	 10�4 0.15 1.01 	 10�4 0.12
106 1.01 	 10�4 0.12 9.98 	 10�5 0.09

Table 4
SS-NN estimation of failure probability for the case of 100 random variables.

Failure function Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1X2
i

q
SS SS-NN1 SS-NN2

Random variables Function evaluations per subset MCMC Samples per subset for the NN Mean Pf COV Mean Pf COV Mean Pf COV

100 1.000 104 9.89 	 10�5 0.29 9.85 	 10�5 0.23 9.81 	 10�5 0.21
105 9.91 	 10�5 0.16 9.94 	 10�5 0.13
106 1.05 	 10�4 0.12 9.93 	 10�5 0.12

Table 5
SS estimation for 3, 10 and 100 random variables for the second mathematical function.

Subset simulation (10 simulation runs)

Failure function Y1ðxÞ ¼
Pn

i¼1X5
i � 5 �

Pn
i¼1Xi þ 12

Random variables Function evaluations per subset Mean Pf COV

3 1.000 9.75 	 10�5 0.42
10.000 9.93 	 10�5 0.17

10 1.000 9.82 	 10�5 0.32
10.000 9.96 	 10�5 0.15

100 1.000 9.89 	 10�5 0.28
10.000 1.02 	 10�4 0.11

Table 6
SS-NN estimation of failure probability for the case of three random variables.

Failure function Y1ðxÞ ¼
Pn

i¼1X5
i � 5 �

Pn
i¼1Xi þ 12

SS SS-NN1 SS-NN2

Random variables Function evaluations per subset MCMC Samples per subset for the NN Mean Pf COV Mean Pf COV Mean Pf COV

3 1.000 104 9.75 	 10�5 0.42 9.85 	 10�5 0.21 1.09 	 10�4 0.17
105 9.90 	 10�5 0.19 1.04 	 10�4 0.12
106 9.89 	 10�5 0.13 9.92 	 10�5 0.08

Table 7
SS-NN estimation of failure probability for the case of 10 random variables.

Failure function Y1ðxÞ ¼
Pn

i¼1X5
i � 5 �

Pn
i¼1Xi þ 12

SS SS-NN1 SS-NN2

Random variables Function evaluations per subset MCMC samples per subset for the NN Mean Pf COV Mean Pf COV Mean Pf COV

10 1.000 104 9.82 	 10�5 0.32 1.08 	 10�4 0.25 9.89 	 10�5 0.18
105 9.88 	 10�5 0.15 9.92 	 10�5 0.14
106 1.03 	 10�4 0.10 9.96 	 10�5 0.09
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that again the performance of the two NN training alternatives is
almost equivalent in terms of the COV of their estimations. For
SS-NN1, the bias for the cases of 3, 10 and 100 variables in the
mean PF is 1%, 3% and 6%, respectively, while SS-NN2 produces im-
proved predictions with a corresponding bias of 0.8%, 0.4% and
0.5%. Thus, in all cases examined, very good predictions of the
mean PF with a relatively small COV (10–20%) where achieved with
the proposed approach using 1.000 training points and 106 MCMC
samples per SS level, which is an order of magnitude less compu-
tational effort with respect to the 10.000 number of function
evaluations per subset required by standard SS in order to reach
the same accuracy.



Table 8
SS-NN estimation of failure probability for the case of 100 random variables.

Failure function Y1ðxÞ ¼
Pn

i¼1X5
i � 5 �

Pn
i¼1Xi þ 12

SS SS-NN1 SS-NN2

Random variables Function evaluations per subset MCMC samples per subset for the NN Mean Pf COV Mean Pf COV Mean Pf COV

100 1.000 104 9.89 	 10�5 0.28 9.75 	 10�5 0.22 9.81 	 10�5 0.21
105 9.88 	 10�5 0.15 9.90 	 10�5 0.13
106 1.06 	 10�4 0.12 9.95 	 10�5 0.11
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5.3. Example 2: 6-storey reinforced concrete building

The third test example considered in this study is the evaluation
of the failure probability of a 6-storey reinforced concrete building
of Fig. 4. The base nodes are fixed while the slabs are considered to
act as diaphragms. The building is analyzed with a Non linear Static
Pushover (NSP) analysis. A lateral load distribution corresponding
to the fundamental mode is implemented [7,19]. The building
has been designed to meet the Eurocode requirements of EC8
[19] and EC2 [20] design codes. Concrete of class 16/20 (nominal
cylindrical strength of 16 MPa) and class S500 steel (nominal yield
stress of 500 MPa) is assumed. The base shear is obtained from a
response spectrum of soil type B characteristic periods:
(TB = 0.15 s, TC = 0.50 s, TD = 2.00 s) while the Peak Ground Acceler-
ation (PGA) considered is equal to 0.31g. Moreover, the importance
factor cI was taken equal to1.0, while the damping correction factor
is equal to 1.0, since a damping ratio of 5% has been considered.
The slab thickness is equal to 15 cm and is considered to contribute
to the moment of inertia of the beams with an effective flange
width. In addition to the self weight of beams and slabs, a distrib-
uted permanent vertical load of 2 KN/m2 due to floor finishing par-
titions and an imposed load with nominal value of 1.5 KN/m2, is
considered (Fig. 6). Following EC8 for the seismic loading combina-
tion, dead loads are considered with their nominal values, while
live loads with 30% of their nominal value.

Beam-column members are modelled with the inelastic force-
based fibber element [21]. Three random variables were intro-
duced, namely the concrete compression strength fc, the steel
tensile strength fs and the steel Young modulus Es which were
Fig. 6. Views of the 6-s
considered to differ in each storey, resulting a total number of 18
random variables. All random variables were assumed to follow
the Gaussian distribution with parameters presented in Table 9.

Again, the target PF is set at 10�3 which corresponds to a refer-
ence failure criterion g = 1.7219 of the top storey drift. As long as
the network architecture is concerned, the Rprop and the Leven-
berg- Marquardt training algorithms with 10 hidden layers were
chosen. Both the approaches of the proposed methodology were
studied. The reference value for the failure criterion was obtained
via crude MCS with 105 samples.

The same problem is solved using the proposed SS-NN method
And 104, 105 and 106 samples generated by the NN in order to en-
rich the sampling space at each subsequent SS step, while 1.000
training points are used in each subset in order to train the NN
with a total of 4000 NSP Analyses. Table 10 depicts the mean
and COV of PF obtained for the SS and the two NN training ap-
proaches. Again SS-NN2 produces better predictions, with respect
to SS-NN1, on the mean PF, with a bias of 2% instead of 3% and a
COV. of 0.08 instead of 0.13 estimated through SS-NN1. The corre-
sponding COV of the SS is 0.38.

5.4. Neural Network prediction error

As mentioned above, the key point of the proposed SS-NN ap-
proach is that it exploits the ability of NN to accurately predict
the system response if trained in a properly selected sub-domain
of the total space of the random variables. This is demonstrated
in the following by computing the average eRMS error of the NN
prediction in the context of a SS-NN procedure. This error corre-
torey RC building.



Table 9
Random variable parameters of the Gaussian distribution, for the 6-storey RC
building.

Random variables Mean value COV

Es 220 GPa 0.05
fs 500.000 kPa 0.05
fc 20.000 kPa 0.15
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sponds to the mean error of 1.000 randomly selected MCMC sam-
ples, in the case of the mathematical function of Eq. (33). Fig. 7 pre-
sents the computed error for the case of 3, 10 and 100 random
variables for different number of hidden layers for the two ap-
proaches of the proposed methodology in the estimation of the
performance function. From this figure, it can be seen that in the
first approach and for the case of 10 hidden layers and three ran-
dom variables the NN prediction reaches a relative error of 2%.
However, in the case of 10 and 100 random variables, the predic-
tion error increases to 11%, and 45% respectively. For the case of
30 hidden layers the prediction errors reduces to 0.8%, 3.2% and
23% for the cases of 3, 10 and 100 random variables respectively.
For the second approach the NN prediction error is slightly smaller.
For the case of 3 random variables and 10 hidden layers it reaches
1% and for the cases of 10 and 100 random variables the prediction
error increases to 9% and 45% respectively. Finally, for the case of
30 hidden layers the error is 0.5%, 2.2% and 21% for the cases of
3, 10 and 100 random variables respectively. These results show
us the dependency of the quality of the results to the architecture
of the Neural Network.

From the above Figure it can be observed that the relative error
decreases with the increase of the number of the hidden layers of
the Neural Network. In additioni, the error increases with the in-
Table 10
SS-NN estimation of the failure probability PF for the 6-storey RC building.

Failure function

Random variables NPS per subset MCMC samples per subset for the NN

18 1.000 104

105

106
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crease of the number of random variables. The latest obviously im-
poses the following limitation of the proposed approaches: The
larger the dimensionality of the problem becomes, the more the
quality of the NN results becomes poor requiring more training
points for a succesful prediction.

5.5. SS-NN versus NN-MCS

The results of the SS-NN2 procedure, considered to be more ro-
bust, are further compared against results obtained via classical
NN-based brute-force Monte Carlo Simulation (NN-MCS) as this
was proposed in [5,6]. In order to perform a fair comparison be-
tween the two approaches, the total number of required detailed
numerical analyses (or function evaluations) is kept the same for
both methodologies. In the case of NN-MCS the training set of
the random variable space is obtained with the previously de-
scribed LH training scheme in the range [�5r, +5r], r being the
standard deviation of the random variables. The brute-force MCS
was performed for 106 samples. The results are obtained for the
cases of 3 and 100 random variables and presented in Tables 11
and 12, respectively for the mathematical models of examples 1
and 2. At this point it is reminded that in all cases, considered
the target ‘exact’ probability of failure is set at 10�4. The COV for
the Monte Carlo Simulation is

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ

N � p

s
: ð26Þ

From these Tables it can be seen that SS-NN2 produces signifi-
cantly improved predictions of the mean PF, with a bias of less than
1% in all cases considered. The corresponding NN-MCS bias of the
Non-linear static pushover analysis (NSP)

SS SS-NN1 SS-NN2

Mean Pf COV Mean Pf COV Mean Pf COV

9.86 	 10�4 0.38 9.81 	 10�4 0.22 9.91 	 10�4 0.19
9.94 	 10�4 0.19 1.03 	 10�3 0.11
1.03 	 10�3 0.13 1.02 	 10�3 0.08

20 25 30

3 random variables - 1st approach
3 random variables - 2nd  approach
10 random variables - 1st approach
10 random variables - 2nd approach
100 random variables - 1st approach
100 random variables - 2nd approach
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0 and 100 random variables.



Table 11
SS-NN vs NN-MCS estimation of failure probability for the case of 3 random variables.

Failure function Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1X2
i

q
NN-MCS SS - NN2

Random variables Total function evaluations Mean Pf COV Mean Pf COV

3 4.000 8.98 	 10�5 0.10 9.98 	 10�5 0.06

Failure function Y ¼
Pn

i¼1X5
i � 5 �

Pn
i¼1Xi þ 12

NN-MCS SS-NN2

Mean Pf COV Mean Pf COV

4.000 8.72 	 10�5 0.10 9.93 	 10�5 0.08

Table 12
SS-NN2 vs NN-MC estimation of failure probability for the case of 100 random variables.

Failure function: Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1X2
i

q
NN & MC SS-NN2

Random variables Total function evaluations Mean Pf COV Mean Pf COV

100 4.000 8.98 	 10�5 0.10 1.005 	 10�4 0.12

Failure function Y ¼
Pn

i¼1X5
i � 5 �

Pn
i¼1Xi þ 12

NN & MC SS-NN2

Mean Pf COV Mean Pf COV

4.000 8.72 	 10�5 0.10 9.95 	 10�5 0.11
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estimation is more than 10%. Thus, the proposed methodology
leads to a more than one order of magnitude reduction in the bias
of the PF estimation.

6. Conclusions

In this work a methodology is proposed for accurate and efficient
system reliability analysis using a Neural Network-based Subset
Simulation approach. This methodology takes advantage of the spe-
cial characteristics of the SS in order to exploit the capability of a NN
to efficiently approximate limit state structural performance, pro-
vided that it is trained over a properly selected domain. The basic
idea is to progressively train the NN at each SS level in a sequence
of moving windows defined by the upper and lower bounds of the
samples generated by the Markov Chains of the modified Metropolis
algorithm. This way the NN are effectively trained and used subse-
quently as robust meta-models in order to improve the efficiency
of SS. This is accomplished by significantly increasing the samples
at each SS level with a minimum additional computational effort.
It is shown that the proposed approach improves the efficiency of
classical SS reaching the same accuracy, both in terms of mean and
COV of the estimation, with one order of magnitude less computa-
tional effort. In addition it leads to more robust predictions, with re-
spect to classical NN-based brute force Monte Carlo simulation, with
more than one order of magnitude less error in the estimation of the
mean probability of failure.
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