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a b s t r a c t

The concept of variability response functions (VRFs) is extended in this work to linear stochastic systems
under dynamic excitations. An integral form for the variance of the dynamic response of stochastic
systems is considered, involving a Dynamic VRF (DVRF ) and the spectral density function of the stochastic
field modeling the uncertain system properties. As in the case of linear stochastic systems under static
loads, the independence of the DVRF to the spectral density and themarginal probability density function
of the stochastic field modeling the uncertain parameters is assumed. This assumption is here validated
with brute-force Monte Carlo simulations. The uncertain system property considered is the inverse of the
elastic modulus (flexibility). The same integral expression can be used to calculate themean response of a
dynamic systemusing aDynamicMeanResponse Function (DMRF )which is a function similar to theDVRF.
These integral forms can be used to efficiently compute the mean and variance of the transient system
response together with time dependent spectral-distribution-free upper bounds. They also provide an
insight into the mechanisms controlling the dynamic mean and variability system response.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past two decades a lot of research has been dedicated
to the stochastic analysis of structural systems involving uncer-
tain parameters in terms of material or geometry with the im-
plementation of stochastic finite element methodologies (SFEM)
to numerically solve the stochastic partial differential equations
(PDEs) governing the respective problems. The most commonly
used SFEM methods are expansion/perturbation-based [1,2] and
Galerkin-based Spectral SFEM (SSFEM) approaches [3]. Although
such methods have proven to be highly accurate and computa-
tionally efficient for a variety of problems, there is still a wide
range of problems in stochastic mechanics involving combinations
of strong non-linearities and/or large variations of system proper-
ties as well as non-Gaussian system properties that can be solved
with reasonable accuracy only through a computationally expen-
sive Monte Carlo simulation approach [1,4–6], limited works deal
with the dynamic propagation of system uncertainties, most of
them reducing the stochastic dynamic PDEs to a linear random
eigenvalue problem [7,8].

In all aforementioned cases, the spectral/correlation character-
istics and themarginal probability distribution function (pdf) of the
stochastic fields describing the uncertain system parameters are
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required in order to estimate the response variability of a stochas-
tic static or dynamic system. As there is usually a lack of experi-
mental data for the quantification of such probabilistic quantities, a
sensitivity analysiswith respect to various stochastic parameters is
often implemented. In this case, however, the problems that arise
are the increased computational effort, the lack of insight on how
these parameters control the response variability of the systemand
the inability to determine bounds of the response variability.

In this framework and to tackle the aforementioned issues, the
concept of the variability response function (VRF ) was proposed
in the late 1980s [9], along with different aspects and applications
of the VRF [10,11]. A development of this approach was presented
in a series of papers [12–14], where the existence of closed-form
integral expressions for the variance of the response displacement
of the form

Var[u] =


∞

−∞

VRF(κ, σff )Sff (κ)dκ (1)

was demonstrated for linear stochastic systems under static loads
using a flexibility-based formulation. The basic difference of this
approach with respect to previous work is that by using a
flexibility-based formulation, no approximations were involved in
the derivation of the resulting integral expression in Eq. (1). It was
shown that the VRF depends on standard deviation σff but appears
to be independent of the functional form of the spectral density
function Sff (κ) modeling the inverse of the elastic modulus. The
existencehowever of this integral expressionhad to be conjectured
for statically indeterminate as well as for general stochastic
finite element systems. A rigorous proof of such existence is
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Fig. 1. One degree of freedom oscillator: (a) Geometry and loading (b) Static displacement for unit load.
available only for statically determinate systems for which VRF
is independent of σff as well [12]. Further investigations [15]
verified the aforementioned results but showed that VRF has a
slight dependence on the marginal pdf of the stochastic field
modeling the flexibility. In [14], results were presented for general
linear stochastic finite element systems including beams, space
frames, plane stress and shell-type structures under static loads.
Another important extension of the concept of VRF has been
recently drawn [16] to determine effective material properties in
homogenization problems.

The present paper extends the aforementioned approach to
linear statically determinate stochastic systems under dynamic
excitations. Although the derivation of an analytic expression for
the variability response function of the dynamic system (DVRF ), if
possible at all, is extremely cumbersome, a numerical computation
of the DVRF can be easily achieved to provide results for the
variance time history of the dynamic system response. As in
previous works [12–14], the existence of the DVRF and an integral
form expression similar to Eq. (1) has to be conjectured. This
assumption is numerically validated by comparing the results from
Eq. (1)with brute forceMonte Carlo simulations. It is demonstrated
that the DVRF is highly dependent on the standard deviation σff
of the inverse of the elastic modulus and, based on numerical
evidence further presented but, to this point, not to a full proof
verification technique, appears to be almost independent of the
functional form of Sff (κ) as well as of the marginal pdf of the
flexibility. In addition, an integral expression similar to that of
Eq. (1) is proposed for the mean system response involving a
Dynamic Mean Response Function (DMRF ), which is a function
similar to the DVRF .

Both integral forms for the mean and variance can be used
to efficiently compute the first and second order statistics of the
transient system responsewith reasonable accuracy, togetherwith
time dependent spectral-distribution-free upper bounds. They also
provide an insight into themechanisms controlling the uncertainty
propagation with respect to both space and time and in particular
the mean and variability time histories of the stochastic system
dynamic response.

2. Dynamic analysis of a stochastic single degree of freedom
oscillator

For the single degree of freedom statically determinate
stochastic oscillator of length L and mass Ms in Fig. 1(a), loaded
with a dynamic deterministic load P(t), the inverse of the elastic
modulus is considered to vary randomly along the length of the
beam according to the following expression:

1
E(x)

= F0(1 + f (x)) (2)

where E(x) is the elastic modulus, F0 is the mean value of the
inverse of E(x), and f (x) is a zero-mean homogeneous stochastic
field modeling the variation of 1/E(x) around its mean value F0.

The displacement time history u(t) of the oscillator can be
derived from the solution of Duhamel’s integral:

u(t) =
1
ωD

 t

0
P(τ )e−ξω(t−τ) sin(ωD(t − τ))dτ (3)
Fig. 2. Spectral density function for stochastic field f (x) standard deviation
σff = 0.2.

Fig. 3. 3D plot of DVRF , as a function of frequency κ (rad/m) and time t (s) for LC1
and σff = 0.2.

where ξ is the damping ratio and ωD = ω

1 − ξ 2 with ω being

the circular frequency of the system. Due to the systemuncertainty
in Eq. (2), the circular frequencyω is a randomvariable given by the
following relation:

ω =

k/Ms (4)

where k is the stiffness of the oscillator which can be derived
from the static displacement of the oscillator for a unit static
deterministic load at the end of the beam (Fig. 1(b)) as follows:

k =
1
ust

=


−

F0
I

 L

0
(x − α)M(α)(1 + f (α))dα

−1

(5)

where I is the moment of inertia of the beam and M(α) is the
moment at position α.

In the general case where the load is arbitrary and the system
is initially at rest, the deterministic displacement at the right end
of the beam can be derived by numerically solving Duhamel’s
integral. In the special case of a sinusoidal P(t) = P0 sin(ω̄t) the
solution of Eq. (3) leads to the following expression for u(t):

u(t) = u0(t) + up(t) (6)

where

u0(t) = e−ξωt(A sinωDt + B cosωDt) (7a)
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Fig. 4. Values of VRF for static load P0 and DVRF for constant load P(t) = P0 at
t = 10 s.

Fig. 5. DMRF as a function of σff for (a) t = 1 s, (b) t = 3 s and (c) t = 5 s.

up(t) = C1 sin ω̄t + C2 cos ω̄t (7b)

A =
P0
K

∗
1

(1 − β2)2 + (2ξβ)2
∗

2βξ 2
− (1 − β2)β
1 − ξ 2

(7c)

B = −
P0
K

∗
2ξβ

(1 − β2)2 + (2ξβ)2
(7d)

C1 =
P0
K

∗
1

(1 − β2)2 + (2ξβ)2
(1 − β2) (7e)
Fig. 6. DVRF as a function of σff for (a) t = 1 s, (b) t = 3 s and (c) t = 5 s.

Fig. 7. DMRF (a) and DVRF (b) as a function of t for κ = 2 rad/s and σff = 0.2.

C2 = −
P0
K

∗
1

(1 − β2)2 + (2ξβ)2
(2ξβ) (7f)

β = ω̄/ω. (7g)

In the trivial case in which a static load P(t) = P0 is suddenly
applied, the response displacement is given by

u(t) =
P0
k


1 −


cosωDt +

ξ
1 − ξ 2

sinωDt


e−ξωt


. (7h)
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Fig. 8. Time histories of the variance of the response displacement for a truncated Gaussian field with (a) σgg = 0.2, (b) σgg = 0.4, and (c) σgg = 0.6. Comparison of results
obtained from Eq. (8a) and MCS.
Fig. 9. Time histories of: (a) mean response displacement for a truncated Gaussian field with σgg = 0.2, (b) σgg = 0.4, (c) σgg = 0.6 and (d) the deterministic displacement.
Comparison of results obtained from Eq. (8b) and MCS.
3. Response variance and mean value of the dynamic response

Following a procedure similar to the one presented in [12] for
linear stochastic systems under static loading, it is possible to
express the variance of the dynamic response of the stochastic
system in the following integral form expression:

Var[u(t)] =


∞

−∞

DVRF(t, κ, σff )Sff (κ)dκ (8a)

where DVRF is the dynamic version of a VRF , assumed to be a
function of deterministic parameters of the problem related to
geometry, loads and (mean) material properties and the standard
deviation σff of the stochastic field that models the system
flexibility. A similar integral expression can provide an estimate
for the mean value of the dynamic response of the system using
the Dynamic Mean Response Function (DMRF ) [14]:

ε[u(t)] =


∞

−∞

DMRF(t, κ, σff )Sff (κ)dκ. (8b)

DMRF is assumed to be a function similar to the DVRF in the sense
that it also depends on deterministic parameters of the problem as
well as σff . It is extremely difficult however, to prove that theDVRF
(the same counts forDMRF ) is independent (or even approximately
independent) of the marginal pdf and the functional form of the
power spectral density of the stochastic field f (x). As in [12–14],
the aforementioned assumptions are considered to form a
conjecture which is numerically validated here by comparing the
results from Eqs. (8a) and (8b) with brute force MCS.

The derivation of an analytic expression for theDVRF andDMRF ,
if possible at all, is an extremely cumbersome task. A numerical
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Fig. 10. Comparative results from Eq. (11) and MCS for a lognormal field with σff = 0.2 for (a) the variance and (b) the mean of the response displacement time history.
Fig. 11. DMRF as a function of σff for (a) t = 1 s, (b) t = 3 s and (c) t = 5 s.

computation, however can be easily achieved, as described in
the following section and then fed into Eqs. (8a) and (8b) to
provide estimates of themean and variance of the dynamic system
response.

3.1. Numerical estimation of the DVRF and the DMRF using fast
Monte Carlo simulation

The numerical estimation of DVRF and DMRF involves a fast
Monte Carlo simulation (FMCS) whose basic idea is to consider
the random field f (x) as a random sinusoid [12,13] and plug its
monochromatic power spectrum into Eqs. (8a) and (8b), in order
to compute the respective mean and variance response at various
wave numbers. The steps of the FMCS approach are the following:

(i) Generate N (10–20) sample functions of the random sinusoid
given below with standard deviation σff and wave number κ̄
modeling the variation of the inverse of the elastic modulus
1/E around its mean F0:

fj(x) =
√
2σff cos(κ̄x + ϕj) (9)

where j = 1, 2, . . . ,N and ϕj varies randomly under uniform
distribution in the range [0, 2π ].

(ii) Using theseN generated sample functions it is straightforward
to compute their respective dynamic mean and response
variance, ε[u(t)]κ̄ and Var[u(t)]κ̄ , respectively for a given time
step t .

(iii) The value of the DMRF at wave number κ̄ can then be
computed as follows

DMRF(t, κ̄, σff ) =
ε[u(t)]κ̄

σ 2
ff

(10a)

and likewise the value of the DVRF at wave number κ̄

DVRF(t, κ̄, σff ) =
Var[u(t)]κ̄

σ 2
ff

. (10b)

Both previous equations are direct consequences of the
integral expressions in Eqs. (8a) and (8b) in the case that the
stochastic field becomes a random sinusoid.

(iv) Get DMRF and DVRF as a function of both time t and wave
number κ by repeating previous steps for various wave
numbers and different time steps. The entire procedure can
be repeated for different values of the standard deviation σff
of the random sinusoid.

3.2. Bounds of the mean and variance of the dynamic response

Upper bounds on the mean and variance of the dynamic
response of the stochastic system can be established directly from
Eqs. (8a) and (8b), as follows:

ε[u(t)] =


∞

−∞

DMRF(t, κ, σff )Sff (κ)dκ

≤ DMRF(t, κmax(t), σff )σ
2
ff (11a)

Var[u(t)] =


∞

−∞

DVRF(t, κ, σff )Sff (κ)dκ

≤ DVRF(t, κmax(t), σff )σ
2
ff (11b)

where κmax(t) is the wave number at which DMRF and DVRF ,
corresponding to a given time step t and value of σff , reach their
maximum value. An envelope of time evolving upper bounds
on the mean and variance of the dynamic system response can
be extracted from Eqs. (11a) and (11b). As in the case of linear
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Fig. 12. DVRF as a function of σff for (a) t = 1 s, (b) t = 3 s and (c) t = 5 s.

stochastic systems under static loads [12–14], this envelope is
physically realizable since the form of the stochastic field that
produces it is the random sinusoid of Eq. (9) with κ̄ = κmax(t).

4. Numerical example

For the cantilever beam shown in Fig. 1with length L = 4m, the
inverse of the modulus of elasticity is assumed to vary randomly
along its length according to Eq. (2)with F0 = (1.25×108 kN/m)−1

and I = 0.1 m4. A concentrated mass Ms = 3.715 × 103 kg is
assumed at the right end of the beam. The damping ratio is taken
as ξ = 5% and the mean eigenperiod of this one d.o.f oscillator is
calculated at T0 = 0.5 s.

Three load cases are considered: LC1 consisting of a constant
load P(t) = 100, LC2 consisting of a concentrated dynamic
periodic load P(t) = 100 sin(ω̄t) and LC3 consisting of P(t) =

−MsÜg(t) where Üg(t) is the acceleration time history of the 1940
El Centro earthquake.

The spectral density function (SDF ) of Fig. 2 was used for the
modeling of the inverse of the elastic modulus stochastic field,
given by:

Sff (κ) =
1
4
σ 2b3κ2e−b|κ| (12)

with b = 10 being a correlation length parameter.
In order to demonstrate the validity of the proposed method-

ology, a truncated Gaussian and a lognormal pdf were used to
model f (x). For this purpose, an underlying Gaussian stochastic
Fig. 13. 3D plots of (a) DMRF and (b) DVRF , as a function of frequency κ (rad/m)
and time t (s) for LC3 and σff = 0.2.

field denoted by g(x) is generated using the spectral representa-
tion method [17] and the power spectrum of Eq. (12). The trun-
cated Gaussian field fTG(x) is obtained by simply truncating g(x)
in the following way: −0.9 ≤ g(x) ≤ 0.9, while the lognormal
fL(x) is obtained from the following transformation as a translation
field [18]:

fL(x) = F−1
L {G[g(x)]}. (13)

The SDF of the underlying Gaussian field in Eq. (12) and the
corresponding spectral densities of the truncated Gaussian and the
lognormal fields denoted SfTGfTG(κ) and SfLfL(κ), respectively, will
be different. These are computed from the following formula

Sfifi(κ) =
1

2πLx

 Lx

0
fi(x)e−iκxdx

2 ; i = TG, L (14)

where Lx is the length of the sample functions of the non-Gaussian
field modeling flexibility. As the sample functions of the non-
Gaussian fields are non-ergodic, the estimation of power spectra
in Eq. (14) is performed in an ensemble average sense [18].

LC1: constant load at the end of the beam
This load case scenario has been selected in order to further

demonstrate the validity of themethodology and establish a logical
continuation with previous studies related to the current work.
In the case when the excitation is constant P(t) = P0, and the
load P0 is suddenly applied, the response displacement is given
by Eq. (7h). From this equation it can be seen that the solution
degenerates to the static solution u(t) = P0/k as time t tends to
infinity. Accordingly the DVRF should converge to the respective
static VRF of a cantilever beam loaded with a concentrated load at
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Fig. 14. Time histories of the variance of the response displacement for a truncated Gaussian field for (a) σgg = 0.4 and (b) σgg = 0.6. Comparison of results obtained from
Eq. (8a) and MCS.
Fig. 15. Time histories of themean response displacement for a truncated Gaussian fieldwith (a) σgg = 0.4, (b) σgg = 0.6 and (c) of the deterministic response displacement.
Comparison of results obtained from Eq. (8b) and MCS.
its end, given by Eq. (15) [12].

VRF(x, κ) =

F0I
 x

0
h(x, ξ)M(ξ)eiκξdξ

2 (15a)

where h(x, ξ) is the Green function of the beam given by

h(x, ξ) = x − ξ (15b)

and M(x) is the bending moment function given by

M(ξ) = −P0(L − ξ). (15c)

Validating the aforementioned expectations, Fig. 3 presents a 3D
plot of the DVRF with an initial transient phase and afterward the
phase where the system is almost at rest, while Fig. 4 presents
the coinciding VRF and DVRF obtained from Eq. (15a) and FMCS,
respectively, when the system has approached the stationary
condition at t = 10 s and σff = 0.2.
LC2: dynamic periodic load at the end of the beam

Figs. 5 and 6 present DMRF and DVRF , respectively, computed
with FMCS for a periodic load with frequency ω̄ = 2 and three
different values of the standard deviation σff = 0.2, σff = 0.4
and σff = 0.6. From these figures it can be observed that DVRF
do not follow any particular pattern with respect to any increase
or decrease of σff in contrast to DMRF and to what has been
observed in [13] for the corresponding static problem, albeit the
mean and variability response increase as σff increases, as shown
below (Fig. 8). Fig. 7(a) and (b) present plots of DMRF and DVRF
as a function of t for a fixed wave number κ = 2 and σff = 0.2.
From Figs. 5–7 it appears that DMRF and DVRF have a significant
variation along the wave number κ axis and the time axis t . Both
functions and especially DVRF have an initial transient phase and
then appear to be periodic. It is remindedhere thatDVRF andDMRF
are functions of the imposed dynamic loading. This explains the
fact that they do not approach zero with t increasing, since the
applied dynamic load is periodic with constant amplitude which
does not decay.

Fig. 8(a)–(c) present comparatively the results of the computed
response variance time histories using the integral expression of
Eq. (8a) and MCS, for three different standard deviations of a trun-
cated Gaussian stochastic field used for the modeling of flexibility.
The underlying Gaussian field is modeled with the power spectral
density of Eq. (12) and three different standard deviations σgg =

0.2, σgg = 0.4 and σgg = 0.6. The corresponding standard devi-
ations of the truncated Gaussian field f (x) are computed as σff =

0.2, σff = 0.3912 and σff = 0.5286, respectively. Fig. 9(a)–(c),
present the same results with Fig. 8 but for the mean response of
the oscillator. The deterministic displacement time history is also
plotted in Fig. 9(d) for comparison purposes. From these figures it
can be observed that the mean and variability response time his-
tories obtained with the integral expressions of Eqs. (8a) and (8b)
are in close agreement with the corresponding MCS estimates. In
all cases examined the maximum error in the computed Var[u(t)],
observed at the peak values of the variance, is less than 25%, while
in all other time steps this error is less than 3%–4%. In the case of
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Fig. 16. Comparative results from Eq. (11) and MCS for a lognormal field with σff = 0.3 for (a) the variance and (b) the mean of the response displacement time history.
Fig. 17. Upper bounds on the (a) mean and (b) variance of the response
displacement for LC3 and σgg = 0.4.

ε[u(t)], the predictions of Eq. (8b) are almost identical to the ones
obtained with MCS, with an error of less than 3% in all cases. From
Fig. 9(a–d), it can be observed that in all cases, the mean response
time history for all cases examined is almost identical to the de-
terministic one, with the exception of the first cycle where slight
differences in the peak values are observed.

Fig. 10(a) and (b) repeat the same comparisons with the
previous Figs. 8 and 9 but for the case of a lognormal stochastic
field used for the modeling of flexibility with σff = 0.2 and lower
bound lb = −0.8. The conclusions extracted previously for the case
of truncated Gaussian fields also apply here (Fig. 10).
LC3: El Centro earthquake

Figs. 11 and 12 present plots of DMRF and DVRF , respectively,
for the load case of the acceleration time history of the 1940 El
Centro earthquake. As in the previous load case scenario, three
different values of the standard deviation were used, σff = 0.2,
σff = 0.4 andσff = 0.6. From these figures it can again be observed
that DVRF does not follow any pattern with respect to an increase
or decrease of σff , while in this case this is also observed for the
DMRF at Fig. 11(c) for t = 5 s.

Fig. 13(a) and (b) present 3D plots of the DMRF and DVRF as a
function of frequency κ and time t (s) for σff = 0.2. From these
figures, as well as from Figs. 11 and 12, it can be observed that
again DMRF and DVRF have a significant variation in both κ and t
axis, without being periodic in contrast to what has been observed
in LC2. In addition, both DMRF and DVRF approach a zero value
with time increasing due to the fact that ground accelerations
decay and vanish after some time.

Fig. 14(a) and (b) present a comparison of the response vari-
ance computed with Eq. (8a) and MCS, in the case of a truncated
Gaussian stochastic field modeling flexibility with σgg = 0.4 and
0.6, while Fig. 15(a) and (b) present the same results for the mean
dynamic response of the stochastic oscillator along with the cor-
responding deterministic displacement time history (Fig. 15(c)).
Fig. 16(a) and (b) repeat the same comparisons for the case of a
lognormal stochastic field used for the modeling of flexibility and
σff = 0.3 and lower bound lb = −0.8.

From the above figures it can be observed that, as in LC2, the
mean and variability response time histories obtained with the
integral expressions of Eqs. (8a) and (8b) are in close agreement
with the corresponding MCS estimates, in all cases. Again, the
maximum error in the computed Var[u(t)] was observed at the
peak values of the variance and is less than 25%, while in all other
time steps this error is less than 3%–4%. In the case of ε[u(t)], the
predictions of Eq. (8b) are very close to the ones obtainedwithMCS,
with an error of less than 3% in all cases. From Fig. 15(a–c), it can be
observed that, in contrast to what was observed in LC2, the mean
response time history differs significantly from the corresponding
deterministic one, in terms of both frequencies and amplitudes.
Upper bounds on the mean and variance of the response of LC3

Spectral-distribution-free upper bounds on both the mean and
variance of the response are obtained via Eqs. (11a) and (11b),
respectively. Results of this calculation are presented in Fig. 16(a)
and (b), in which the time dependent upper bounds on the mean
and variance of the response displacement are plotted against time
for a standard deviation σff = 0.4.
Sensitivity analysis for LC3 using the integral expressions in Eqs. (8a)
and (8b)

Finally, a sensitivity analysis is performed using Eqs. (8a)
and (8b) at minimum computational cost, with respect to three
different values of the correlation length parameter of the SDF in
Eq. (12) and σff = 0.2 (Figs. 17 and 18).

5. Concluding remarks

In the present work, dynamic variability response functions
and dynamic mean response functions are obtained for a linear
stochastic single d.o.f. oscillator with random material properties
under dynamic excitation. The inverse of the modulus of elasticity
was considered as the uncertain system parameter.

It is demonstrated that, as in the case of stochastic systems
under static loading, DVRF and DMRF depend on the standard
deviation of the stochastic field modeling the uncertain parameter
but appear to be almost independent of its power spectral
density and marginal pdf. The results obtained from the integral
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Fig. 18. (a) Mean and (b) variance time histories of the response displacement computed from Eqs. (8a) and (8b), respectively for three different values of the correlation
length parameter b of the SDF in Eq. (12).
expressions are close to those obtained with MCS reaching a
maximum error of the order of 20%–25%.

As in the case of stochastic systems under static loading,
the DVRF and the DMRF provide us with an insight into the
dynamic system sensitivity to the stochastic parameters and the
mechanisms controlling the response mean and variability and
their evolution in time.
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