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Abstract 

This paper examines the application of Neural Networks (NN) to the reliability analysis of complex structural systems in 
connection with Monte Carlo Simulation (MCS). The failure of the system is associated with the plastic collapse. The use of NN 
was motivated by the approximate concepts inherent in reliability analysis and the time consuming repeated analyses required for 
MCS. A Back Propagation algorithm is implemented for training the NN utilising available information generated from selected 
elasto-plastic analyses. The trained NN is then used to compute the critical load factor due to different sets of basic random 
variables leading to close prediction of the probability of failure. The use of MCS with Importance Sampling further improves the 
prediction of the probability of failure with Neural Networks. 

1. Introduction 

The theory and methods of structural reliability have developed significantly during the last twenty 
years and have been documented in an increasing number of publications. These advancements in 
structural reliability theory and the attainment of more accurate quantification of the uncertainties 
associated with structural loads and resistances have stimulated the interest in the probabilistic 
treatment of structures. The reliability of a structure or its probability of failure is an important factor in 
the design procedure since it investigates the probability of the structure to successfully complete its 
design requirements. Reliability analysis leads to safety measures that a design engineer has to take into 
account due to the aforementioned uncertainties. Although from a theoretical point of view the field 
has reached a stage where the developed methodologies are becoming widespread, from a computation- 
al point of view serious obstacles have been encountered in practical implementations. 

First and second order reliability methods that have been developed to estimate structural reliability 
[l-5] lead to elegant formulations requiring prior knowledge of only the means and variances of the 
component random variables and the definition of a differentiable failure function. For small-scale 
problems these type of methods prove to be very efficient, but for large-scale problems and/or large 
numbers of random variables Monte Carlo Simulation (MCS) methods seem to be superior. In fact, 
simulation methods are the only methods available to treat practical reliability problems. The Basic 
MCS is simple to use, but for typical structural reliability problems the computational effort involved 
becomes excessive because of the enormous sample size and the CPU time required for each Monte 
Carlo run. To reduce the computational effort, more elaborate simulation methods, called variance 
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reduction techniques, have been developed. Despite the improvement in the efficiency of the basic 
MCS variance reduction techniques, they still require disproportionate computational effort for treating 
practical reliability problems. This is the reason why very few successful numerical investigations are 
known in estimating the probability of failure and are mainly concerned with simple elastic frames and 
trusses [6-81. 

The use of artiticial intelligence techniques, such as Neural Networks (NN), to predict analysis 
outputs has been studied previously in the context of optimal design of structural systems [lo-121. 
fracture mechanics [13] and adaptive mesh generation [14]. The principal advantage of a properly 
trained NN is that it requires a trivial computational effort to produce an acceptable approximate 
solution. Such approximations appear to be valuable in situations where the actual response computa- 
tions are CPU intensive and a quick estimation is required. Structural loads and material properties can 
be considered as time dependent or independent, while the failure domain can be considered as time 
variant or invariant. In the present study a time invariant structural reliability analysis in conjunction 
with NN is performed. The use of NN was motivated by the approximate concepts inherent in reliability 
analysis and the time consuming repeated analyses required for MCS. The suitability of NN predictions 
is investigated in evaluating the probability of failure of real scale plane and space framed structures. 

An NN is trained first utilising available information generated from selected elasto-plastic analyses. 
The limit state analysis data was processed to obtain input and output pairs which were used to produce 
a trained NN. The trained NN is then used to predict the critical load factor due to different sets of 
basic random variables. After the critical load factors are predicted, the probability of failure is 
calculated by means of MCS in order to produce acceptable results. The predicted values for the critical 
load factors should resemble closely. though not identically, to the corresponding values of the limit 
state analyses which are considered ‘exact’. The NN type considered here is based on the feed-forward 
error back-propagation training algorithm [15]. The ‘exact’ limit state analysis required to train the NN 
are generated using a first order analysis approach in conjunction with efficient solution techniques 

developed in [16, 171, for plane and space frames, respectively. It appears that the use of a properly 
selected and trained NN can eliminate any limitation on the sample size used for MCS and on the 
dimensionality of the problem, due to the drastic reduction of the computing time required for the 
repeated analyses. Furthermore, the use of importance sampling leads, in most cases, to considerable 
improvement in the quality of the NN results. 

2. Time invariant structural reliability analysis 

The inherent probabilistic nature of design parameters, material properties and loading conditions 
involved in structural analysis is an important factor that influences structural safety. Reliability analysis 
leads to safety measures that a design engineer has to take into account due to the aforementioned 

uncertainties. The probability of failure can be determined using the relationship 

where R denotes the structure’s resistance and S the loading. The randomness of R and S can be 
described by known probability density functions f&) and f&) respectively, with F,&) being the 
cumulative probability density function of S. By defining a performance (failure) function G(R, S), Eq. 
(1) may be alternatively expressed as 

In the case of structural reliability analysis the performance function is denoted by G(R, S) = R - S. For 
large and complex structural systems, where R is not known analytically because of the large number of 
combinations of events that can lead to structural failure, reliability analysis requires a great amount of 
numerical and computational effort, while the integral of Eq. (2) can only be calculated by approximate 
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means. Several probabilistic methods have been developed in the past to calculate the integral of Eq. 
(2). Among them the so-called exact methods and the First Order Second Moment (FOSM) [l] are of 
significant importance. Exact methods require that the probability density functions of all component 
variables are known prior to the analysis. Monte Carlo Simulation (MCS) belongs to that category. 

2.1. The Monte Carlo simulation 

In reliability analysis the MCS is often employed when the analytical solution is not attainable and 
the failure domain can not be expressed or approximated by an analytical form. This is mainly the case 
in problems of complex nature with a large number of basic variables where all the other methods are 
not applicable. Although the mathematical formulation of the MCS is relatively simple and the method 
has the capability of handling practically every possible case regardless of its complexity, the 
computational effort involved in conventional MCS is excessive. It is for this reason that a lot of 
sampling techniques, also called variance reduction techniques, have been developed in order to 
improve the computational efficiency of the method by reducing the statistical error inherent in Monte 
Carlo methods. Among them Importance Sampling and Conditional Expectation are of particular 
interest because of their potential of being very efficient [7, 18-211. 

Expressing the limit state function as G(X), where X = (Xi, X2, . . . , X,) is the vector of the basic 
random variables, Eq. (2) may be rewritten as 

Pf = s G(x)<0 f,(X) L-w 

where f,(X) is the joint probability and G(X) is an irregular domain with highly non-linear boundaries. 
Following the law of large numbers, an unbiased estimator of the probability of failure is given by 

where Z(Xi) is an indicator defined as 

1 
z(xi) = 

if G(Y) s 0 
0 if G(X,) > 0 

(4) 

(5) 

Accordingly, N independent random samples of a specific probability density function of the vector X 
are prepared and the failure function is computed for each sample Xi. If G(X,) s 0 a successful 
simulation is counted. The Monte Carlo estimate of the probability of failure pf can then be expressed 
in terms of sample mean as 

where NH is the number of successful simulations and N the total number of simulations. 

2.2. Importance sampling 

In order to improve the computational efficiency of the MCS, without deteriorating the accuracy of 
the solution, a number of variance reduction techniques has been proposed among which the 
Importance Sampling (IS) is generally recognised as the most efficient [5, 221. Denoting by Y = (Y, , 

2; may bg rewritten as 
Y ) a second random vector, with g,(Y) being its known joint probability density function, Eq. 

where g,,(X) is the importance sampling function. An unbiased estimator of Eq. (7) is now given by 
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Fig. 1. Schematic representation of MCS and MCS with Importance Sampling. 

(8) 

where X, is generated according to g,(X,). The Monte Carlo estimate of Eq. (8) may then be expressed 
in terms of sample mean as 

where S, is now a scale factor given by 

(9) 

(10) 

The selection of an appropriate important sampling density function is of critical importance for both 
the efficiency and the accuracy of the simulation. A successful choice of the Important Sampling 
function will reduce the variance of the estimation and accordingly will yield a reliable result in fewer 
steps while ‘wrong’ choice of the Importance Sampling function may lead to erroneous results. A 
schematic representation of MCS and MCS with Importance Sampling is shown in Fig. 1. 

3. Limit elasto-plastic analysis 

In this work the reliability analysis connected to a structural failure criterion of plane and space 
frames is examined, The failure criterion is considered to be the formation of a mechanism. The 
adopted incremental non-holonomic first order step-by-step limit analysis is based on the generalised 
plastic node concept proposed in [23, 241. The non-linear yield surface is approximated by a 
multi-faceted surface, while the linear equilibrium equations at each load step are solved using the 
preconditioned conjugate gradient method 116, 171. 

Under the assumption of concentrated plasticity all plastic deformations are confined to zero length 
plastic zones at the two ends of the member, leaving elastic the part of the member between the two 
plastic nodes. The materials are assumed to be elastic-perfectly plastic and the structural response is in 
the range of small displacements. The tangent elasto-plastic stiffness matrix used for the limit state 
analysis may be expressed as 

Kep = K, - Ke@{@TKe@} -I@ TK, (11) 

in which Kep is the elasto-plastic element stiffness matrix. K, is the elastic element stiffness matrix, and 
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@ is the gradient vector of the multi-faceted surface at the force point where a member end initiates the 
plastic behaviour. In this study the yield surface proposed in [23] is approximated by a piece-wise linear 
multi-faceted surface. For an efficient computer implementation a second internal yield surface of 
similar orientation (homothetic) and close to the first one is introduced in order to avoid unnecessary 
analysis steps [ 171. 

The first-order step-by-step limit analysis adopted requires the computation of a number of successive 
linear solutions in which the overall stiffness matrix is slightly modified from one solution to the other. 
The total number of solutions corresponds to the total number of load increments required for the 
structure to become a mechanism. The change of stiffness from one step to the other is only due to the 
contribution of the elasto-plastic stiffness matrices of the elements with the newly formed or modified 
plastic nodes. These special features of the problem make the preconditioned conjugate gradient 
method (PCG) very attractive for the solution of the linear problem at each load increment. An 
important factor affecting the efficiency of the PCG is the preconditioning matrix. In this study two 
Cholesky type preconditioners are used for the PCG method. The first one is based on an incomplete 
Cholesky factorisation of the stiffness matrix [25] in which a rejection by magnitude factor controls the 
number of terms of the preconditioning matrix. Alternatively, a complete factored matrix is used as 
preconditioner and it is kept fixed for a number of steps before its reformulation [16, 171. In addition to 
the PCG method, a direct solver based on a modified Cholesky factorisation is also employed to take 
into account the characteristic formulation aspects of the problem. Since the overall stiffness matrix 
changes gradually, with the successive formation of plastic nodes, the factorisation phase at each load 
increment is confined to the bottom right hand corner of the stiffness matrix, starting from the first node 
with a change in its stiffness value due to the plastic node formation at the end of one or more elements 
connected to that node. 

4. Application of neural networks 

Only the basic ideas of NN will be discussed in this study. A more detailed introduction to NN may 
be found in [15, 261. Neural net models of learning and the accumulation of expertise have found their 
way into practical applications in many areas. It appears that a number of computational structures 
technology applications, that are heavily dependent on extensive computer resources, have been 
investigated as demonstration of neural network capabilities [ 10, 271. Reliability analysis of ultimate 
elastic plastic structural response using Monte Carlo Simulation is a highly intensive computational 
problem which makes conventional approaches incapable of treating real scale problems even in today’s 
powerful computers. In the present study the use of NN was motivated by the approximation concepts 
inherent in reliability analysis. The idea here is to train a NN to provide computationally inexpensive 
estimates of analysis outputs required for the reliability analysis problem. The major advantage of a 
trained NN over the conventional process, under the provision that the predicted results fall within 
acceptable tolerances, is that results can be produced in a few clock cycles, representing orders of 
magnitude less computational effort than the conventional computational process. 

4.1. Back Propagation learning algorithm 

The basic model for a processing element is shown in Fig. 2. A neural network consists of multiple 
processing elements linked together. In a Back Propagation (BP) algorithm, learning is carried out 
when a set of input training patterns is propagated through a network consisting of an input layer, one 
or more hidden layers and an output layer as shown in Fig. 3. Each layer has its corresponding units 
(processing elements, neurons or nodes) and weight connections. A single training pattern is an i-o row 
vector of input-output values in the entire matrix of i-o training set. 

The inputs xi, i = 1,2, . . . , n which are received by the input layer are analogous to the electro- 
chemical signals received by neurons in human brain. In the simplest model these input signals are 
multiplied by connection weights wp,ii and the effective input netp,) to elements is the weighted sum of 
the inputs 
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Fig. 2. Basic model for a processing element. 

Fig. 3. A three fully connected NN configuration. 

net,,, = 2 wp.lj net,.l 

where wP,;, is the connecting weight of the layer p from the i neuron in the q (source) layer to the j 
neuron in the p (target) layer, netq,, is the output produced at the i neuron of the layer q and net,,, is 
the output produced at the j neuron in the layer p, as shown in Fig. 4. Inputs X, correspond to net,,i for 
the input layer. 

In the biological system, a typical neuron may only produce an output signal if the incoming signal 
builds up to a certain level. This output is expressed in NN by 

out,., = F(net,,,) 

where F is an activation function which produce the output at the j neuron in the p layer. The type of 
activation function that was used in the present study is the sigmoid function, given by the expression 

F(netp,j) = 1 + e-(n!zt,.,+bp,,) 

(13) 

(14) 

where b, j is a bias parameter used to modulate the element output. The principal advantage of the 
sigmoid function is its ability to handle both large and small input signals. The determination of the 
proper weight coefficients and bias parameters is embodied in the network learning process. The nodes 
are initialised arbitrarily with random weight and bias parameters. 

loyer q 

1 

2 

m 

layer p 

Fig. 4. Connection pattern between two layers. 
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At the output layer the computed output(s), otherwise known as the observed output(s), are 
subtracted from the desired or target output(s) to give the error signal 

errk,r = tark,i - outk,i (15) 

where tarkTi and outk,i are the target and the observed output(s) for the node i in the output layer k, 
respectively. This is called supervised learning. For the output layer the error signal, as given by Eq. 
(15), is multiplied by the derivative of the activation function, for the neuron in question, to obtain 

Sk,i = dF(netk,i). errk,i (16) 

while the derivative of the sigmoid function dF is given by 

dF(netk,i) = outk,i * (1 - outk,i) (17) 

Subsequently, &k,i is used for the evaluation of the weight changes in the output layer k according to 

Aw,, ji = n . c?,,~ . out,, j (18) 

where n denotes a learning rate coefficient usually selected between 0.01 and 0.9 and OU$,~ denotes the 
output of the layer p immediately before the output layer. This learning rate coefficient is analogous to 
the step size parameter in the numerical optimisation algorithms. 

The changes in the weights may alternatively be expressed according to [15] by 

Aw;;,; = n . Sk,i . out,,j + (Y . Aw; ji (19) 

where the superscript t denotes the cycle of the weight modification and d is the momentum term which 
controls the influence of the previous weight change. For the hidden layers the corresponding weight 

$,j = dF(net,,,) * 2 sk,i * wk,ji 

i=l > 

Aw;+~; = n.6, j . out,, + a + Aw; ,j 

where out,,, denotes the output of the 

(20) 

(21) 

neuron I in the hidden layer r, Aw~,~~ is the weight, changes 
between neuron I in the hidden layer r to neuron i in the hidden layer p. 

changes are given by 

After the evaluation of the weight changes the updated values of the weights given by wiyi; = wi ij + 
AwEi;, are used for the next training cycle. This process has to be repeated for all input training 
patterns until the desired level of error is obtained. The procedure used in this study is the single 
pattern training where all the weights are updated before next training pattern (training example) is 
processed. 

4.2. The NN training 

In our implementation the main objective is to investigate the ability of the NN to predict the 
collapse load by using the Back Propagation algorithm. This objective comprises the following tasks: (i) 
select the proper training set; (ii) find a suitable network architecture; (iii) determine the appropriate 
values of characteristic parameters, such as the learning rate and momentum term. The main limitation 
of an NN training algorithm is the fact that its efficiency depends on the correct learning rate, 
momentum term and network architecture. Unfortunately, there is little guidance on the selection of 
these parameters other than the experience which is based on a trial and error procedure. For the BP 
algorithm to provide good results the training set must include data over the entire range of the output 
space. The appropriate selection of input-output training data is one of the important factors in NN 
training. Although the number of training patterns may not be the only concern, the distribution of 
samples is of greater importance. 

The output of the sigmoid function used in the conventional BP algorithm lies between 0 and 1. Thus, 
for Eq. (15) to produce meaningful results the output values of the training patterns should be 
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normalised within the same range. As the network is trained, the weights can become adjusted to very 
large values. This can force all or most of the neurons to operate at large output values in a region 
where the derivative of the activation function is very small. Since the correction of the weights depends 
on the derivative of the sigmoid function the network may come to virtual standstill. Initialising the 
weights to small random values would help to avoid this situation, however it is more appropriate to 
normalise the input patterns to be also between 0 and 1. 

There are typically two types of networks, namely fully and patterned connected networks. In a fully 
connected network, as shown in Fig. 3, each unit in a layer is connected to all the units of the previous 
and the next layer. This type of network architecture is widely used. Alternatively, some local 
associativity between the units may be created or the number of connections may be reduced producing 
a patterned connected network. The number of neurons to be used in the hidden layers is not known in 
advance and usually is estimated by trial and error approach. At the first phase of learning it is 
convenient to gradually increase the number of hidden units and next, after achieving the desired 
convergence to try to remove some of them in order to find the minimal size of the network which 
performs the desired task (271. 

The learning rate coefficient and the momentum term are two user defined BP parameters that effect 
the learning procedure of NN. The training is sensitive to the choice of these net parameters. The 
learning rate coefficient, employed during the adjustment of weights, is used to speed-up or slow-down 
the learning process. A bigger learning coefficient increases the weight changes, hence large steps are 
taken toward the global minimum of error level, while smaller learning coefficients increase the number 
of steps taken to reach the desired error level. If an error curve shows a downward trend but with poor 
convergence rate the learning rate coefficient is likely to be too high. Although these learning rate 
coefficients are usually taken to be constant for the whole net, local learning rate coefficients for each 
individual layer or unit may be applied as well. 

In this work a fully connected network is used. The number of conventional step-by-step limit 
analysis calculations performed are in the range of 20 to 60, while 10 to 20 out of them are selected to 
give the pairs (inputs-outputs) for the NN training. This selection is based on the requirement that the 
full range of possible results should be represented in the training procedure. For the application of the 
NN simulation and for the selection of the suitable training pairs, the sample space for each random 
variable is divided into equally spaced distances. The central points within the intervals are used as 
inputs for the limit state analyses. 

The basic NN configuration employed in this study is selected to have one hidden layer. Tests 
performed for more than one hidden layer showed no significant improvement in the obtained results. 
Based on this configuration various NN architectures are tested in order to find the most suitable in 
terms of the smallest prediction error. This is done either with a direct comparison of the predicted with 
the ‘exact’ results produced by the limit elasto-plastic analysis or by means of the Root Mean Square 
(RMS) error which is given by 

z’ (tar, -out,)’ (22) 

where Np is the total number of i-o pairs in the training set and N,“, is the number of output units. 
eRMS gives a measure of the difference between predicted at each NN cycle and ‘exact’ values. 

After the selection of the suitable NN architecture and the training procedure, the network is then 
used to produce predictions of the critical load factor corresponding to different values of the input 
random variables. The results are then processed by means of MCS or MCS with IS to calculate the 
probability of failure pr. 

4.3. NN based MCS for reliability analysis 

In reliability analysis of elastoplastic structures using MCS the computed critical load factors are 
compared to the corresponding external loading leading to the computation of the probability of 
structural failure according to Eq. (5). By approximating the ‘exact’ solution with a NN prediction of 
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Fig. 5. Sensitivity of p, prediction to different sample space of resistances. 

the critical load factor, the accuracy of the predicted pf depends not only on the accuracy of the NN 
prediction of the critical load factor but also on the sensitivity of pf with regard to a slightly modified, 
due to the NN approximation, sample space of resistances. This sensitivity is represented in Fig. 5 by 
the ratio of the shaded area over the total area defined by the probability density distributions and the 
failure function on the unsafe side. It occurs that the error due to this sensitivity is always present but is 
more pronounced in low probability estimations where the shadowed area becomes significant 
compared to the total area that defines the low probability of failure. Thus, the use of Importance 
Sampling techniques is expected to be beneficial since the sampling is performed in an area of high 
probabilities. In this case, as the ratio of the shaded area over the total area is decreased the introduced 
error can be substantially reduced. 

5. Numerical tests 

Three test examples, one plane frame and two space frames, have been considered to illustrate the 
feasibility of the proposed methodology. The probability of failure is estimated using the Basic MCS 
and the MCS with Importance Sampling. Loading, yield stresses and plastic moduli are considered to be 
random variables. The loads acting on the structure follow a Log-normal probability density function, 
while random variables associated with material and section properties follow a normal probability 
density function. The failure condition is represented by the total collapse of the structure due to the 
successive formation of plastic nodes. Limit state analyses following the step-by-step approach 
described in Section 3 are considered ‘exact’ and are used to produce the training pairs required for the 
NN simulation. The step-by-step limit analysis has been also used to compute the ‘exact’ probability of 
failure with conventional Monte Carlo Simulation. The NN model used in this study is the back 
propagation algorithm NETS 2.01 [28] developed by NASA. 

5.1. Example 1 

The first test example is the five-storey plane frame shown in Fig. 6. A unit load is applied at the top 
storey of the frame. The dimensions and properties of the frame, the load-displacement curve until the 
formation of the collapse mechanism, as well as the plastic nodes at collapse, using the mean values of 
the basic random variables are also depicted in Fig. 6. Three test cases are considered for this example. 
In the first test case the yield stress is considered to be random variable with specified probability 
density function. In the second test case the plastic moduli of beams (Z,) and columns (Z,) are taken as 
additional but correlated random variables, requiring one random generation, while in the third test 
case the plastic moduli of beams (Z,) and columns (Z,) are considered to be independent random 
variables. Since Eq. (5) requires a comparison between the external loading and the critical load factor 
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Fig. 6. Example 1. Five-story plane frame with data loading; mode of failure and load-displacement curve. 

representing the resistance of the structure, the external loading is also considered as a random variable 
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for all test cases. When the external loading is less than the critical load factor, Z(X,) of Eq. (5) takes the 
value of 1, otherwise it becomes 0. The type of probability density functions (PDF), mean values (p) 
and standard deviations (u) for all variables are presented in Table 1. A normal distribution is assumed 
for the Importance Sampling function g,(x) of the loading. The mean value of g,(x) is assumed to 
correspond to the failure load when all other random variables are kept to their mean values. The 
properties of the IS probability density functions are shown in Table 2 for all test cases. 

Twenty values of the yield stress were used for test case one as input variables for the limit 
elastoplastic analysis. Ten of them were selected, together with their corresponding ‘exact’ critical load 
factors produced by the limit elastoplastic analysis, to be the training set. The remaining ‘exact’ pairs 
are used to test the accuracy of the NN prediction. For test cases 2 and 3 a similar procedure is adopted. 
In these cases 30 and 60 combinations of the 2 and 3 basic random variables were processed, while 13 
and 19 of them were finally selected, together with their corresponding critical load factors, for training 
purposes, respectively. 

Fig.7 demonstrates the performance of the NN configuration using different numbers of hidden units 
for the three test cases considered. It can be seen that the RMS error is reaching a plateau after a 
certain number of hidden units without any further improvement. In Table 3 three NN architectures 
with different number of hidden units are examined for each test case of this example in order to select 
the architecture that delivers good results as measured by the difference between predicted and ‘exact’ 

Table 1 

Example 1. Characteristics of random variables for Basic MCS 

Random variables PDF 

aL (kN/cm’) N 

Loads (kN) Log-N 

Z, (cm’) N 

Z.. (cm’) N 

w <r 

24.0 2.4 

6.57 0.2 

1866.0 93.3 

2396.0 119.0 

Table 2 

Example 1. Characteristics of random variables for MCS-IS 

Random variables PDF CL (r 

a, (kN/cm’) 
Loads 

N 24.0 2.4 

N 855.0 165.0 
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Fig. 7. Example 1. Performance of NN configuration using different number of hidden units. 

Table 3 
Example 1. Performance of varous NN architectures 

Random NNl NN2 NN3 
variables 

i-j-k eRMS eMAx e (%I i-j-k eRMS eMAx e (%) i-j-k eRMS eMAX e (%) 

2 1-3-1 0.021 0.029 0.67 1-4-1 0.014 0.028 0.35 1-7-1 0.007 0.016 0.26 
3 2-3-l 0.019 0.061 0.47 2-4-l 0.019 0.046 0.61 2-6-l 0.013 0.030 0.26 
4 3-7-l 0.019 0.047 0.80 3-8-l 0.020 0.069 0.85 3-9-l 0.013 0.036 7.96 

values of critical load factors. The symbols i-j-k correspond to the number of units at each layer 
(input-hidden-output) while E gives the mean value of the error. The depicted results indicate that the 
selection of the best NN architecture can be based on the minimum achieved value of eRMs. After the 
selection of the best NN architecture, the network was tested for different eRMs tolerances, as shown in 
Table 4, in order to examine the existence of any overtraining effects before choosing the final trained 
NN. This table depicts the values of eRMs and its corresponding error E in the prediction. It can be 
observed that the lowest e RMS produces the lowest error in the prediction. Hence, no overtraining 
effects are present in this study. 

Once an acceptable trained NN in predicting the critical load factors is obtained, the probability of 
failure for each test case is estimated by means of NN based Monte Carlo Simulation using the Basic 
MCS and the MCS with IS. The results for various number of simulations are depicted in Tables 5-7 for 

Table 4 
Example 1. Performance of various training tolerances 

Number of NN 
random variables 

i-j-k e,,, eMAx e (%) 

2 1-7-1 0.024 0.047 0.65 
1-7-1 0.018 0.037 0.38 
1-7-1 0.011 0.025 0.29 
1-7-1 0.010 0.022 0.29 
1-7-1 0.008 0.017 0.26 

2-6-l 0.028 0.094 0.78 

2-6-l 0.025 0.064 0.53 
2-6-l 0.021 0.045 0.49 
2-6-l 0.017 0.035 0.47 
2-6-l 0.016 0.032 0.43 
2-6-l 0.013 0.030 0.26 

3-7-l 0.030 0.081 3.00 

3-7-l 0.022 0.065 2.10 
3-7-l 0.021 0.057 1.95 
3-7-l 0.020 0.051 1.80 
3-7-l 0.019 0.047 0.80 
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Table 5 

Example l-test case 1. ‘Exact’ and predicted values of p, and the required CPU time (i = 1. 1 = 7, k = 1) 

Number of 

simulations 

‘exact’ 

Basic MCS 

I’, (“/c) 

NN 

Basic MCS 

PI (S) 

‘exact’ 

MCS-IS 

P,(S) 

NN 

Basic-IS 

P, (S) 

so 
100 

300 

500 
1000 

5000 

10 000 

SO 000 

100 000 

CPU time in seconds 

6.00 2.00 X.18 6.72 

7.00 5.00 7.45 6.2X 

x.00 5.33 7.X8 6.72 

8.20 5.40 8.61 7.30 

8.60 5.90 8.55 7.38 

X.48 5.98 X.46 7.40 

X.36 5.93 x.44 7.40 

6.04 7.38 

6.04 7.38 

Pattern selection _ 6 _ 6 

Training _ 4 3 

Propagation _ 20 20 

Total 31 320” 30 3 132” 30 

’ Projected after 100 000 simulations 

’ For 10 000 simulations. 

Table 6 

Example l-test case 2. ‘Exact’ and predicted values of p, and the required CPU time (r = 2, i = 6, k = 1) 

Number of 

simulations 

‘exact’ 

Basic MCS 

P,(S) 

NN 

Basic MCS 

P, (%I 

‘exact’ 

MCS-IS 

Pr (S) 

NN 

Basic-IS 

P, (%) 

so 
100 

300 

SO0 

1000 

5000 

10 000 

50 000 

100 000 

CPU time in seconds 

10.00 4.00 x.74 8.11 

9.00 X.00 8.89 7.96 

8.33 X.67 8.89 8.06 

8.40 8.00 8.86 x.14 

8.79 8.00 x.73 8.01 

X.76 7.96 8.X3 x.09 

x.90 7.67 x.x9 8.10 

7.74 x.12 

7.71 8.13 

Pattern selection _ 10 _ 10 

Training _ 4 ._ 4 

Propagation 27 27 

Total 33 690” 41 3369.Sh 41 

‘I Projected after 100 000 simulations. 

h For 10 000 simulations. 

the three test cases, respectively. From these tables it can be observed that, in the case of basic MCS 
simulation, the maximum difference of the predicted probability of failure with respect to the ‘exact’ 
one is 30%, while the corresponding difference in the case of MCS with IS is around 10%. In Table 8 a 
comparison between ‘exact’ and predicted values of the critical load factor is shown, for five randomly 
selected simulations. The results indicate that the maximum error is only 1.5%. This accuracy however 
is not reflected, for this example, to the corresponding values of the probability of failure, where the 
error of the prediction is much larger as described above. This is because pf shows a high sensitivity 
with respect to the slightly modified, due to the NN approximation, sample space of resistances. 
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Table 7 
Example l-test case 3. ‘Exact’ and predicted values of p, and the required CPU time (i = 3, j = 7, k = 1) 

Number of ‘exact’ NN ‘exact’ NN 
simulations Basic MCS Basic MCS MCS-IS Basic-IS 

Pr (%) Pr (%I Pr (%I Pr (%) 

50 8.00 4.00 9.00 6.90 
100 8.00 5.00 7.95 6.45 
300 8.00 5.67 8.05 7.25 
500 8.00 5.60 8.82 7.83 

1000 8.30 5.70 8.73 7.73 
5000 8.68 5.96 8.66 7.65 

10000 8.68 5.98 8.68 7.66 
50000 6.07 7.65 

100000 6.03 7.64 

CPU time in seconds 

Pattern selection _ 22 22 
Training _ 5 5 
Propagation - 33 _ 33 
Total 36 070” 60 3607h 60 

a Projected after 1000 000 simulations. 
’ For 10 000 simulations. 

Table 8 
Example l-test case 3. Performance of NN in calculating the collapse loads (i = 3, j = 7, k = 1) 

Simulation run ‘Exact’ values NN estimates 

1 848.60 845.20 
228 934.21 929.69 

1994 879.10 884.77 
4165 850.14 856.61 
5000 874.92 882.27 

5.2. Example 2 

The second test example is the six storey space frame 
kN/m’ gravity load and a basic load of 110 kN applied 

shown in Fig. 8. The loads consist of a 19 
to each node in the front elevation in the 

negative z direction. The three test cases examined in Example 1, for different combinations of random 
variables, are also considered here. The type of probability density functions, mean values and standard 
deviations for all variables are presented in Tables 9 and 10 for Basic MCS and MCS-IS, respectively. 

The performance of the basic NN configuration with one hidden layer, using different number of 
hidden units, is shown in Fig. 9, while Table 11 shows the efficiency of various NN architectures as 

Table 9 
Examule 2. Characteristics of random variables for Basic MCS 

Random variables 
uy (kNlcm*) 
Loads (X 10’) 

PDf 
N 
Log-N 

CL G- 
24.0 2.4 

6.4 0.2 

Random variables 

Z1 (cm’) 
Z, (cm”) 
-? (cm’) 
Z, (cm’) 
=? (cm’) 

PDf & 4 a, 
N 1276.5 476.9 63.8 2.8 
N 609.6 30.5 133.9 6.7 
N 1222.5 61.1 573.6 28.7 
N 2163.1 108.1 989.8 49.5 
N 3048.0 152.4 1399.5 70.0 
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Perspective view 

-Load factor 

W12X26 

Plan view 

Fig. 8. Example 2. Six-story space frame and load-displacement curve 

Table 10 

Example 2. Characteristics of random variables for MCS-IS 

Random variables PDF p n 

CT” (kN/cm*) 
Loads 

N 24.0 2.4 
N 0.723 0.160 

0 / 1 

1 2 3 4 5 6 7 8 9 

Number of hidden units 

Fig. 9. Examples 2 and 3. Performance of NN configuration using different number of hidden units. 
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Table 11 
Example 2. Performance of various NN architectures 

Random NNl NN2 NN3 
variables 

i-j-k eRMS eMAX E (%) i-j-k cRMS eMAX c (%) i-j-k cRMS eMAX E (%) 

2 1-3-1 0.021 0.029 0.67 1-5-1 0.008 0.012 0.37 1-7-1 0.007 0.016 0.27 
3 2-3-l 0.026 0.092 0.87 2-4-l 0.018 0.045 0.61 2-5-l 0.010 0.019 0.39 
4 3-4-l 0.014 0.041 0.43 3-5-l 0.008 0.022 0.41 3-7-l 0.021 0.047 0.78 

Table 12 
Example 2-test case 1. ‘Exact’ and predicted values of p, and the required CPU time (i = 1, j = 7, k = 1) 

Number of ‘exact’ NN ‘exact’ NN 
simulations Basic MCS Basic MCS MCS-IS Basic-IS 

Pf (%) Pf (“ro) Pf (%I P/ (%I 

50 2.00 2.00 3.64 3.64 
100 4.00 5.00 4.70 4.70 
300 5.00 5.33 5.04 5.00 
500 5.20 5.40 5.40 5.38 

loo0 5.20 5.60 5.38 5.40 
5000 5.42 5.82 5.38 5.38 

10 000 5.76 5.42 
50 000 5.84 5.41 

100000 5.85 5.41 

CPU time in seconds 

Pattern selection 
selection 
Training 
Propagation 
Total 

_ 163 _ 163 

_ 4 _ 4 
20 _ 20 

816 322” 187 40 816h 187 

a Projected after 100 000 simulations. 
h For 5000 simulations. 

Table 13 
Example 2-test case 2. ‘Exact’ and predicted values of pf and the required CPU time (i = 2, j = 5, k = 1) 

Number of 
simulations 

‘exact’ 
Basic MCS 

Pf (%I 

NN 
Basic MCS 

Pf (%) 

‘exact’ 
MCS-IS 

Pf (%) 

NN 
Basic-IS 

Pf (%) 

50 12.00 14.00 15.40 14.96 
100 16.00 17.00 15.98 15.74 
300 17.33 19.33 16.95 16.88 
500 17.80 18.40 18.05 17.76 

1000 17.60 17.50 18.15 18.08 
5000 18.15 18.08 18.12 18.28 

10000 18.10 18.28 
50 000 17.98 18.36 

100000 17.98 18.35 

CPU time in seconds 

Pattern selection 261 _ 261 
Training 9 _ 9 
Propagation 26 _ 26 
Total 869 841” 296 43 492b 296 

’ Projected after 100,000 simulations. 
b For 5.000 simulations. 
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Table 14 

Example 2-test case 3. ‘Exact’ and predicted values of pr and the required CPU time (i = 3, i = 5, k = 1) 

Number of 

simulations 

50 
100 

300 

500 

1000 

5000 
10000 

50000 

1OOOQO 

‘exact’ 

Basic MCS 

Pf (%I 

22.00 
15.00 

14.66 

16.60 

17.20 

16.74 

CPU time in seconds 

NN 

Basic MCS 

Pf (%I 
18.00 

13.00 

14.00 

16.40 

17.40 

17.12 

17.28 

17.27 

17.27 

‘exact’ 

MCS-IS 

P, (%I 

17.28 

15.41 

16.41 

17.16 

16.86 

16.70 

NN 

Basic-IS 

Pf (%I 

17.28 

15.64 

16.41 

17.16 

17.00 

16.90 

16.95 

16.99 

16.99 

Pattern selection 

selection 

Training 

Propagation 

Total time 

554 554 

26 _ 26 

33 _ 33 

923 360” 61? 46 16gh 613 

a Projected after 100,000 simulations. 

h For 5000 simulations. 

A -Load factor 

2.5-- 

, I b 
10 20 30 40 (inches) 

x-displacement - node 1 top storey 

Fig. 10. Example 3. Twenty-story space frame and load-displacement. 
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measured by the difference between final predicted and ‘exact’ values of critical load factors. It can be 
seen that the selection of the best NN architecture can again be based on the minimum achieved value 

Of ‘RMS- The probabilities of failure as well as the CPU times required are shown in Tables 12-14. The 
difference between predicted and ‘exact’ values of the probability of failure for the three test cases 
considered, when Basic MCS is employed are 7%) 0.9%) 3%) while the corresponding differences when 
MCS-IS is used are 0.5%) 1.2%, 1.7%, respectively. 

5.3. Example 3 

The third test example is the twenty story space frame shown in Fig. 10. This example is selected in 
order to show, in a more realistic problem, the efficiency of the proposed approach both in terms of 
accuracy and computing effort in conjunction with advanced solution techniques. For this reason only 
test case 1 of previous examples is considered, while the type of probability density functions, mean 
values and standard deviations for all variables are presented in Table 15 for Basic MCS. The loads 
considered here are vertical forces equivalent to uniform load of 100 psf (4.788 kN/m*) and a basic 
horizontal pressure of 20 psf (0.956 kN/m*). The performance of different NN architectures with one 
hidden layer is shown in Fig. 9, while in Table 16 a comparison between ‘exact’ and predicted values of 
critical load factors is performed in five randomly selected simulation runs. The results indicate that a 
remarkable agreement is attained between ‘exact’ and predicted values of critical load factor. Very good 
agreement is also achieved, as shown in Table 17, between ‘exact’ and predicted values of the 
probability of failure. In fact the two sets of results are almost identical. It seems that the accuracy of 
the NN prediction depends also on the type and the scale of the structure as well as on the smoothness 
of the load displacement curve. Additionally, this table presents a comparison between different 
solution strategies for the ‘exact’ limit elastoplastic analysis. MCS I stands for the application of the 
direct Cholesky factorisation, while MCS II and MCS III correspond to the application of the PCG 
method. In MCS II the preconditioner is based on an incomplete factorisation of the stiffness matrix in 
which a rejection by magnitude factor I(r controls the number of terms’ retained in the preconditioning 
matrix. In the present tests $ is taken equal to lo-*. In the case of MCS III a complete factored matrix 
is used as preconditioner which is kept fixed for a number of steps of the incremental analysis before its 
reformulation. The number of steps at which the preconditioner is reformulated, is controlled by the 
number of CG iterations as described in [17]. A 60% and 30% reduction in CPU time is obtained, 
respectively, with the two versions of the preconditioning matrix as compared to the modified direct 
Cholesky solution. 

Table 15 
Example 3. Characteristics of random variables for Basic MCS 

Random variables PDF CL IJ 

uy (kN/cm*) N 24.0 2.4 
Loads Log-N 5.2 0.2 

Table 16 
Example 3. Performance of NN in calculating the collapse loads (i = 1, j = 7, k = 1) 

Simulation run ‘Exact values’ NN estimates 

1 220.38 220.64 
92 218.61 218.94 

159 199.66 200.87 
219 220.78 221.00 
300 208.51 209.10 
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Table 17 
Example 3. ‘Exact’ and predicted values of p, and the required CPU time (i = 1, j = 7, k = 1) 

Number of ‘exact’ ‘exact’ ‘exact’ NN 
simulations Basic MCS-I Basic MCS-II Basic MCS-III Basic-MCS 

P, (%) Pi (%) P, (%I P/ (%I 

SO 7.99 7.99 7.99 7.99 
100 7.90 7.99 7.99 7.99 
300 8.33 8.33 8.33 x.33 
500 8.82 x.x2 X.82 X.80 

1000 Y.25 9.25 0.25 9.20 
5000 9.08 

10000 9.04 
50 000 9.13 

100000 9.12 

CPU time in seconds 

Pattern selection 
Training 
Propagation 
Total 

_ _ _ 4010 
_ _ _ 4 
_ _ _ 20 
639 344” 390 000” 200 488” 4034 

* Projected after 1000 simulations. 

6. Conclusions 

This paper presents an application of Neural Networks to the reliability analysis of complex structural 
systems in which failure of the system is due to plastic collapse. The approximate concepts that are 
inherent in reliability analysis and the time consuming requirements of repeated analyses involved in 
Monte Carlo Simulation motivated the use of Neural Networks. 

The computational effort involved in the conventional Monte Carlo Simulation becomes excessive in 
large-scale problems because of the enormous sample size and the computing time required for each 
Monte Carlo run. The use of Neural Networks can practically eliminate any limitation on the scale of 
the problem and the sample size used for Monte Carlo Simulation provided that the predicted critical 
load factors, corresponding to different simulations, fall within acceptable tolerances. 

A Back Propagation Neural Network algorithm is successfully used to produce approximate estimates 
of the critical load factors, regardless the size or the complexity of the problem, leading to very close 
predictions of the probability of failure. Moreover, for large and complex structural systems which resist 
a great percentage of the loading beyond their elastic state, the NN prediction appears to be more 
accurate. It was also deduced that, contrary to Neural Network applications in other fields of 
Computational Structural Mechanics, the present application showed a considerable robustness with 
regard to selection of training set and network architecture in predicting the of probability failure. 
Training samples, required to train the Neural Network, appear to be independent on the type of 
structure or the type of the required analysis. 

The use of Monte Carlo Simulation with Importance Sampling leads to considerable improvement in 
Neural Network prediction of the probability of failure. This is due to the fact that using the 
Importance Sampling technique the sensitivity of pr with regard to the modified sample space of critical 
load factors, displayed by Neural Network predictions, is reduced leading to more accurate estimates. 
The methodology presented could therefore be implemented for predicting accurately and at a fraction 
of computing time the probability of failure of large and complex structures. 
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